moving (length) out of core

changing another recursive call to goto
adding special cases in compiler for 0 and 1 argument versions of some
  vararg builtins
beginning implementation of bytecode interpreter
This commit is contained in:
JeffBezanson 2009-04-09 04:04:27 +00:00
parent ea5d334626
commit debf3fd517
5 changed files with 607 additions and 82 deletions

View File

@ -78,6 +78,35 @@ static value_t fl_memq(value_t *args, u_int32_t nargs)
return FL_F;
}
static value_t fl_length(value_t *args, u_int32_t nargs)
{
argcount("length", nargs, 1);
value_t a = args[0];
cvalue_t *cv;
if (isvector(a)) {
return fixnum(vector_size(a));
}
else if (iscprim(a)) {
cv = (cvalue_t*)ptr(a);
if (cp_class(cv) == bytetype)
return fixnum(1);
else if (cp_class(cv) == wchartype)
return fixnum(u8_charlen(*(uint32_t*)cp_data((cprim_t*)cv)));
}
else if (iscvalue(a)) {
cv = (cvalue_t*)ptr(a);
if (cv_class(cv)->eltype != NULL)
return size_wrap(cvalue_arraylen(a));
}
else if (a == NIL) {
return fixnum(0);
}
else if (iscons(a)) {
return fixnum(llength(a));
}
type_error("length", "sequence", a);
}
static value_t fl_raise(value_t *args, u_int32_t nargs)
{
argcount("raise", nargs, 1);
@ -387,6 +416,7 @@ static builtinspec_t builtin_info[] = {
{ "nconc", fl_nconc },
{ "assq", fl_assq },
{ "memq", fl_memq },
{ "length", fl_length },
{ "vector.alloc", fl_vector_alloc },

View File

@ -18,13 +18,13 @@
:+ :- :* :/ :< :compare
:vector :aref :aset! :length :for
:vector :aref :aset! :for
:loadt :loadf :loadnil :load0 :load1 :loadv :loadv.l
:loadg :loada :loadc :loadg.l
:setg :seta :setc :setg.l
:closure :trycatch :tcall :tapply]))
:closure :trycatch :tcall :tapply :argc :vargc]))
(define arg-counts
(table :eq? 2 :eqv? 2
@ -40,7 +40,7 @@
:eval* 1 :apply 2
:< 2 :for 3
:compare 2 :aref 2
:aset! 3 :length 1))
:aset! 3))
(define 1/Instructions (table.invert Instructions))
@ -121,7 +121,7 @@
(set! i (+ i 1)))
((:loada :seta :call :tcall :loadv :loadg :setg
:list :+ :- :* :/ :vector)
:list :+ :- :* :/ :vector :argc :vargc)
(io.write bcode (uint8 nxt))
(set! i (+ i 1)))
@ -154,7 +154,7 @@
cvec)))
(define (bytecode g)
(cons (encode-byte-code (aref g 0))
(cons (cvalue.pin (encode-byte-code (aref g 0)))
(const-to-idx-vec g)))
(define (bytecode:code b) (car b))
@ -185,7 +185,7 @@
#f)))))
(define (compile-sym g env s Is)
(let ((loc (lookup-sym s env 0 #t)))
(let ((loc (lookup-sym s env -1 #t)))
(case (car loc)
(arg (emit g (aref Is 0) (cadr loc)))
(closed (emit g (aref Is 1) (cadr loc) (caddr loc)))
@ -303,6 +303,14 @@
(begin (just-compile-args g lst env)
(length lst)))))
(define (emit-nothing g) g)
(define (argc-error head count)
(error (string "compile error: " head " expects " count
(if (= count 1)
" argument."
" arguments."))))
(define (compile-app g env tail? x)
(let ((head (car x)))
(let ((head
@ -322,13 +330,24 @@
(let ((count (get arg-counts b #f)))
(if (and count
(not (length= (cdr x) count)))
(error (string "compile error: " head " expects " count
(if (= count 1)
" argument."
" arguments."))))
(if (memq b '(:list :+ :- :* :/ :vector))
(emit g b nargs)
(emit g (if (and tail? (eq? b :apply)) :tapply b))))
(argc-error head count))
(case b ; handle special cases of vararg builtins
(:list (if (= nargs 0) (emit g :loadnil) (emit g b nargs)))
(:+ (if (= nargs 0) (emit g :load0)
(if (= nargs 1) (emit-nothing g)
(emit g b nargs))))
(:- (if (= nargs 0)
(argc-error head 1)
(emit g b nargs)))
(:* (if (= nargs 0) (emit g :load1)
(if (= nargs 1) (emit-nothing g)
(emit g b nargs))))
(:/ (if (= nargs 0)
(argc-error head 1)
(emit g b nargs)))
(:vector (emit g b nargs))
(else
(emit g (if (and tail? (eq? b :apply)) :tapply b)))))
(emit g (if tail? :tcall :call) nargs)))))))
(define (compile-in g env tail? x)
@ -360,10 +379,14 @@
(else (compile-app g env tail? x))))))
(define (compile-f env f)
(let ((g (make-code-emitter)))
(compile-in g (cons (to-proper (cadr f)) env) #t (caddr f))
(let ((g (make-code-emitter))
(args (cadr f)))
(if (null? (lastcdr args))
(emit g :argc (length args))
(emit g :vargc (length args)))
(compile-in g (cons (to-proper args) env) #t (caddr f))
(emit g :ret)
`(compiled-lambda ,(cadr f) ,(bytecode g))))
`(compiled-lambda ,args ,(bytecode g))))
(define (compile x)
(bytecode (compile-in (make-code-emitter) () #t x)))
@ -410,7 +433,8 @@
(print-val (aref vals (aref code i)))
(set! i (+ i 1)))
((:loada :seta :call :tcall :list :+ :- :* :/ :vector)
((:loada :seta :call :tcall :list :+ :- :* :/ :vector
:argc :vargc)
(princ (number->string (aref code i)))
(set! i (+ i 1)))

View File

@ -223,26 +223,17 @@ int isstring(value_t v)
}
// convert to malloc representation (fixed address)
/*
static void cv_pin(cvalue_t *cv)
void cv_pin(cvalue_t *cv)
{
if (!cv->flags.inlined)
if (!isinlined(cv))
return;
size_t sz = cv->flags.inllen;
size_t sz = cv_len(cv);
if (cv_isstr(cv)) sz++;
void *data = malloc(sz);
cv->flags.inlined = 0;
// TODO: handle flags.cstring
if (cv->flags.prim) {
memcpy(data, (void*)(&((cprim_t*)cv)->data), sz);
((cprim_t*)cv)->data = data;
}
else {
memcpy(data, (void*)(&cv->data), sz);
cv->data = data;
}
memcpy(data, cv_data(cv), sz);
cv->data = data;
autorelease(cv);
}
*/
#define num_init(ctype, cnvt, tag) \
static int cvalue_##ctype##_init(fltype_t *type, value_t arg, \
@ -703,6 +694,15 @@ value_t fl_copy(value_t *args, u_int32_t nargs)
return cvalue_copy(args[0]);
}
value_t fl_cv_pin(value_t *args, u_int32_t nargs)
{
argcount("cvalue.pin", nargs, 1);
if (!iscvalue(args[0]))
lerror(ArgError, "cvalue.pin: must be a byte array");
cv_pin((cvalue_t*)ptr(args[0]));
return args[0];
}
static void cvalue_init(fltype_t *type, value_t v, void *dest)
{
cvinitfunc_t f=type->init;
@ -907,6 +907,7 @@ static builtinspec_t cvalues_builtin_info[] = {
{ "sizeof", cvalue_sizeof },
{ "builtin", fl_builtin },
{ "copy", fl_copy },
{ "cvalue.pin", fl_cv_pin },
{ "logand", fl_logand },
{ "logior", fl_logior },

View File

@ -50,6 +50,7 @@
#include <math.h>
#include "llt.h"
#include "flisp.h"
#include "opcodes.h"
static char *builtin_names[] =
{ // special forms
@ -70,7 +71,7 @@ static char *builtin_names[] =
"+", "-", "*", "/", "<", "compare",
// sequences
"vector", "aref", "aset!", "length", "for",
"vector", "aref", "aset!", "for",
"", "", "" };
#define N_STACK 262144
@ -88,7 +89,7 @@ stackseg_t stackseg0 = { StaticStack, 0, NULL };
stackseg_t *current_stack_seg = &stackseg0;
value_t NIL, FL_T, FL_F, LAMBDA, QUOTE, IF, TRYCATCH;
value_t BACKQUOTE, COMMA, COMMAAT, COMMADOT;
value_t BACKQUOTE, COMMA, COMMAAT, COMMADOT, COMPILEDLAMBDA;
value_t IOError, ParseError, TypeError, ArgError, UnboundError, MemoryError;
value_t DivideError, BoundsError, Error, KeyError, EnumerationError;
value_t conssym, symbolsym, fixnumsym, vectorsym, builtinsym;
@ -96,6 +97,7 @@ value_t definesym, defmacrosym, forsym, labelsym, printprettysym, setqsym;
value_t printwidthsym, tsym, Tsym, fsym, Fsym, booleansym, nullsym, elsesym;
static value_t eval_sexpr(value_t e, value_t *penv, int tail);
static value_t apply_cl(uint32_t nargs);
static value_t *alloc_words(int n);
static value_t relocate(value_t v);
@ -770,7 +772,6 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
uint32_t saveSP, bp, envsz, nargs;
int i, noeval=0;
fixnum_t s, lo, hi;
cvalue_t *cv;
int64_t accum;
/*
@ -1085,38 +1086,6 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
}
}
break;
case F_LENGTH:
argcount("length", nargs, 1);
if (isvector(Stack[SP-1])) {
v = fixnum(vector_size(Stack[SP-1]));
break;
}
else if (iscprim(Stack[SP-1])) {
cv = (cvalue_t*)ptr(Stack[SP-1]);
if (cp_class(cv) == bytetype) {
v = fixnum(1);
break;
}
else if (cp_class(cv) == wchartype) {
v = fixnum(u8_charlen(*(uint32_t*)cp_data((cprim_t*)cv)));
break;
}
}
else if (iscvalue(Stack[SP-1])) {
cv = (cvalue_t*)ptr(Stack[SP-1]);
if (cv_class(cv)->eltype != NULL) {
v = size_wrap(cvalue_arraylen(Stack[SP-1]));
break;
}
}
else if (Stack[SP-1] == NIL) {
v = fixnum(0); break;
}
else if (iscons(Stack[SP-1])) {
v = fixnum(llength(Stack[SP-1])); break;
}
type_error("length", "sequence", Stack[SP-1]);
break;
case F_AREF:
argcount("aref", nargs, 2);
v = Stack[SP-2];
@ -1152,7 +1121,7 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
break;
case F_ATOM:
argcount("atom?", nargs, 1);
v = ((!iscons(Stack[SP-1])) ? FL_T : FL_F);
v = (iscons(Stack[SP-1]) ? FL_F : FL_T);
break;
case F_CONSP:
argcount("pair?", nargs, 1);
@ -1325,24 +1294,23 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
break;
case F_EVAL:
argcount("eval", nargs, 1);
v = Stack[SP-1];
if (selfevaluating(v)) { SP=saveSP; return v; }
e = Stack[SP-1];
if (selfevaluating(e)) { SP=saveSP; return e; }
if (tail) {
assert((ulong_t)(penv-Stack)<N_STACK);
penv[-1] = fixnum(2);
penv[0] = NIL;
penv[1] = NIL;
SP = (penv-Stack) + 2;
e=v;
goto eval_top;
}
else {
PUSH(fixnum(2));
PUSH(NIL);
PUSH(NIL);
v = eval_sexpr(v, &Stack[SP-2], 1);
tail = 1;
penv = &Stack[SP-2];
}
break;
goto eval_top;
case F_EVALSTAR:
argcount("eval*", nargs, 1);
e = Stack[SP-1];
@ -1404,9 +1372,14 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
SP = saveSP;
return v;
}
f = Stack[bp+1];
if (__likely(iscons(f))) {
if (car_(f) == COMPILEDLAMBDA) {
v = apply_cl(nargs);
SP = saveSP;
return v;
}
// apply lambda expression
f = Stack[bp+1];
f = Stack[bp+1] = cdr_(f);
if (!iscons(f)) goto notpair;
v = car_(f); // arglist
@ -1422,18 +1395,16 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
lerror(ArgError, "apply: too many arguments");
}
else {
v = NIL;
if (i > 0) {
list(&v, i, &NIL);
if (nargs > MAX_ARGS) {
c = (cons_t*)curheap;
(c-2)->cdr = (c-1)->car;
}
Stack[SP-i] = v;
SP -= (i-1);
}
else {
PUSH(NIL);
}
Stack[SP-i] = v;
SP -= (i-1);
}
f = cdr_(Stack[bp+1]);
if (!iscons(f)) goto notpair;
@ -1477,6 +1448,503 @@ static value_t eval_sexpr(value_t e, value_t *penv, int tail)
return NIL;
}
/*
stack on entry: <func> <args...>
caller's responsibility:
- put the stack in this state
- provide arg count
- respect tail position
- call correct entry point (either eval_sexpr or apply_cl)
callee's responsibility:
- check arg counts
- allocate vararg array
- push closed env, set up new environment
** need 'copyenv' instruction that moves env to heap, installs
heap version as the current env, and pushes the result vector.
this can be used to implement the copy-closure op in terms of
other ops. and it can be the first instruction in lambdas in
head position (let optimization).
*/
static value_t apply_cl(uint32_t nargs)
{
uint32_t i, n, ip, bp;
fixnum_t s;
int64_t accum;
uint8_t op, *code;
value_t func, v, bcode, x, e, ftl;
value_t *penv, *pvals;
symbol_t *sym;
cons_t *c;
apply_cl_top:
func = Stack[SP-nargs-1];
ftl = cdr_(cdr_(func));
bcode = car_(ftl);
code = cv_data((cvalue_t*)ptr(car_(bcode)));
i = code[1];
if (nargs < i)
lerror(ArgError, "apply: too few arguments");
if (code[0] == OP_VARGC) {
s = (fixnum_t)nargs - (fixnum_t)i;
v = NIL;
if (s > 0) {
list(&v, s, &NIL);
if (nargs > MAX_ARGS) {
c = (cons_t*)curheap;
(c-2)->cdr = (c-1)->car;
}
// reload movable pointers
func = Stack[SP-nargs-1];
ftl = cdr_(cdr_(func));
bcode = car_(ftl);
code = cv_data((cvalue_t*)ptr(car_(bcode)));
}
Stack[SP-s] = v;
SP -= (s-1);
nargs = i+1;
}
else if (nargs > i) {
lerror(ArgError, "apply: too many arguments");
}
bp = SP-nargs;
x = cdr_(ftl); // cloenv
Stack[bp-1] = car_(cdr_(func)); // lambda list
penv = &Stack[bp-1];
PUSH(x);
PUSH(cdr_(bcode));
pvals = &Stack[SP-1];
ip = 2;
while (1) {
op = code[ip++];
switch (op) {
case OP_NOP: break;
case OP_DUP: v = Stack[SP-1]; PUSH(v); break;
case OP_POP: (void)POP(); break;
case OP_TCALL:
case OP_CALL:
i = code[ip++]; // nargs
do_call:
s = SP;
func = Stack[SP-i-1];
if (isbuiltinish(func)) {
if (uintval(func) > N_BUILTINS) {
v = ((builtin_t)ptr(func))(&Stack[SP-i], i);
}
}
else {
if (iscons(func) && car_(func) == COMPILEDLAMBDA) {
if (op == OP_TCALL) {
for(s=-1; s < (fixnum_t)i; s++)
Stack[bp+s] = Stack[SP-i+s];
SP = bp+i;
nargs = i;
goto apply_cl_top;
}
else {
v = apply_cl(i);
}
}
}
SP = s-i-1;
PUSH(v);
break;
case OP_JMP: ip = (uint32_t)*(uint16_t*)&code[ip]; break;
case OP_BRF:
v = POP();
if (v == FL_F) ip = (uint32_t)*(uint16_t*)&code[ip];
else ip += 2;
break;
case OP_BRT:
v = POP();
if (v != FL_F) ip = (uint32_t)*(uint16_t*)&code[ip];
else ip += 2;
break;
case OP_JMPL: ip = *(uint32_t*)&code[ip]; break;
case OP_BRFL:
v = POP();
if (v == FL_F) ip = *(uint32_t*)&code[ip];
else ip += 4;
break;
case OP_BRTL:
v = POP();
if (v != FL_F) ip = *(uint32_t*)&code[ip];
else ip += 4;
break;
case OP_RET: v = POP(); return v;
case OP_EQ:
Stack[SP-2] = ((Stack[SP-2] == Stack[SP-1]) ? FL_T : FL_F);
POP(); break;
case OP_EQV:
if (Stack[SP-2] == Stack[SP-1]) {
v = FL_T;
}
else if (!leafp(Stack[SP-2]) || !leafp(Stack[SP-1])) {
v = FL_F;
}
else {
v = (numval(compare(Stack[SP-2], Stack[SP-1]))==0) ?
FL_T : FL_F;
}
Stack[SP-2] = v; POP();
break;
case OP_EQUAL:
if (Stack[SP-2] == Stack[SP-1]) {
v = FL_T;
}
else if (eq_comparable(Stack[SP-2],Stack[SP-1])) {
v = FL_F;
}
else {
v = (numval(compare(Stack[SP-2], Stack[SP-1]))==0) ?
FL_T : FL_F;
}
Stack[SP-2] = v; POP();
break;
case OP_PAIRP:
Stack[SP-1] = (iscons(Stack[SP-1]) ? FL_T : FL_F); break;
case OP_ATOMP:
Stack[SP-1] = (iscons(Stack[SP-1]) ? FL_F : FL_T); break;
case OP_NOT:
Stack[SP-1] = ((Stack[SP-1]==FL_F) ? FL_T : FL_F); break;
case OP_NULLP:
Stack[SP-1] = ((Stack[SP-1]==NIL) ? FL_T : FL_F); break;
case OP_BOOLEANP:
v = Stack[SP-1];
Stack[SP-1] = ((v == FL_T || v == FL_F) ? FL_T : FL_F); break;
case OP_SYMBOLP:
Stack[SP-1] = (issymbol(Stack[SP-1]) ? FL_T : FL_F); break;
case OP_NUMBERP:
v = Stack[SP-1];
Stack[SP-1] = (isfixnum(v) || iscprim(v) ? FL_T : FL_F); break;
case OP_FIXNUMP:
Stack[SP-1] = (isfixnum(Stack[SP-1]) ? FL_T : FL_F); break;
case OP_BOUNDP:
sym = tosymbol(Stack[SP-1], "bound?");
Stack[SP-1] = ((sym->binding == UNBOUND) ? FL_F : FL_T);
break;
case OP_BUILTINP:
v = Stack[SP-1];
Stack[SP-1] = ((isbuiltinish(v) && v!=FL_F && v!=FL_T && v!=NIL)
? FL_T : FL_F);
break;
case OP_VECTORP:
Stack[SP-1] = (isvector(Stack[SP-1]) ? FL_T : FL_F); break;
case OP_CONS:
if (curheap > lim)
gc(0);
c = (cons_t*)curheap;
curheap += sizeof(cons_t);
c->car = Stack[SP-2];
c->cdr = Stack[SP-1];
Stack[SP-2] = tagptr(c, TAG_CONS);
POP(); break;
case OP_CAR:
c = tocons(Stack[SP-1], "car");
Stack[SP-1] = c->car;
break;
case OP_CDR:
c = tocons(Stack[SP-1], "cdr");
Stack[SP-1] = c->cdr;
break;
case OP_SETCAR:
car(Stack[SP-2]) = Stack[SP-1];
POP(); break;
case OP_SETCDR:
cdr(Stack[SP-2]) = Stack[SP-1];
POP(); break;
case OP_LIST:
i = code[ip++];
list(&v, i, &NIL);
POPN(i);
PUSH(v);
break;
case OP_EVAL:
v = toplevel_eval(POP());
PUSH(v);
break;
case OP_EVALSTAR:
case OP_TAPPLY:
case OP_APPLY:
v = POP(); // arglist
i = SP;
while (iscons(v)) {
if (SP-i == MAX_ARGS) {
PUSH(v);
break;
}
PUSH(car_(v));
v = cdr_(v);
}
i = SP-i;
if (op==OP_TAPPLY) op = OP_TCALL;
goto do_call;
case OP_ADD:
s = 0;
n = code[ip++];
i = SP-n;
if (n > MAX_ARGS) goto add_ovf;
for (; i < (int)SP; i++) {
if (__likely(isfixnum(Stack[i]))) {
s += numval(Stack[i]);
if (__unlikely(!fits_fixnum(s))) {
i++;
goto add_ovf;
}
}
else {
add_ovf:
v = fl_add_any(&Stack[i], SP-i, s);
break;
}
}
if (i==SP)
v = fixnum(s);
POPN(n);
PUSH(v);
break;
case OP_SUB:
n = code[ip++];
if (__unlikely(n < 1)) lerror(ArgError, "-: too few arguments");
i = SP-n;
if (n == 1) {
if (__likely(isfixnum(Stack[i])))
Stack[SP-1] = fixnum(-numval(Stack[i]));
else
Stack[SP-1] = fl_neg(Stack[i]);
break;
}
if (n == 2) {
if (__likely(bothfixnums(Stack[i], Stack[i+1]))) {
s = numval(Stack[i]) - numval(Stack[i+1]);
if (__likely(fits_fixnum(s))) {
POP();
Stack[SP-1] = fixnum(s);
break;
}
Stack[i+1] = fixnum(-numval(Stack[i+1]));
}
else {
Stack[i+1] = fl_neg(Stack[i+1]);
}
}
else {
// we need to pass the full arglist on to fl_add_any
// so it can handle rest args properly
PUSH(Stack[i]);
Stack[i] = fixnum(0);
Stack[i+1] = fl_neg(fl_add_any(&Stack[i], n, 0));
Stack[i] = POP();
}
v = fl_add_any(&Stack[i], 2, 0);
POPN(n);
PUSH(v);
break;
case OP_MUL:
accum = 1;
n = code[ip++];
i = SP-n;
if (n > MAX_ARGS) goto mul_ovf;
for (; i < (int)SP; i++) {
if (__likely(isfixnum(Stack[i]))) {
accum *= numval(Stack[i]);
}
else {
mul_ovf:
v = fl_mul_any(&Stack[i], SP-i, accum);
break;
}
}
if (i == SP) {
if (__likely(fits_fixnum(accum)))
v = fixnum(accum);
else
v = return_from_int64(accum);
}
POPN(n);
PUSH(v);
break;
case OP_DIV:
n = code[ip++];
if (__unlikely(n < 1)) lerror(ArgError, "/: too few arguments");
i = SP-n;
if (n == 1) {
Stack[SP-1] = fl_div2(fixnum(1), Stack[i]);
}
else {
if (n > 2) {
PUSH(Stack[i]);
Stack[i] = fixnum(1);
Stack[i+1] = fl_mul_any(&Stack[i], n, 1);
Stack[i] = POP();
}
v = fl_div2(Stack[i], Stack[i+1]);
POPN(n);
PUSH(v);
}
break;
case OP_LT:
if (bothfixnums(Stack[SP-2], Stack[SP-1])) {
v = (numval(Stack[SP-2]) < numval(Stack[SP-1])) ? FL_T : FL_F;
}
else {
v = (numval(compare(Stack[SP-2], Stack[SP-1])) < 0) ?
FL_T : FL_F;
}
POP();
Stack[SP-1] = v;
break;
case OP_COMPARE:
Stack[SP-2] = compare(Stack[SP-2], Stack[SP-1]);
POP();
break;
case OP_VECTOR:
n = code[ip++];
if (n > MAX_ARGS) {
i = llength(Stack[SP-1]);
n--;
}
else i = 0;
v = alloc_vector(n+i, 0);
memcpy(&vector_elt(v,0), &Stack[SP-n], n*sizeof(value_t));
if (i > 0) {
e = POP();
POPN(n);
while (iscons(e)) {
vector_elt(v,n) = car_(e);
n++;
e = cdr_(e);
}
}
PUSH(v);
break;
case OP_AREF:
v = Stack[SP-2];
if (isvector(v)) {
i = tofixnum(Stack[SP-1], "aref");
if (__unlikely((unsigned)i >= vector_size(v)))
bounds_error("aref", v, Stack[SP-1]);
v = vector_elt(v, i);
}
else if (isarray(v)) {
v = cvalue_array_aref(&Stack[SP-2]);
}
else {
type_error("aref", "sequence", v);
}
POP();
Stack[SP-1] = v;
break;
case OP_ASET:
e = Stack[SP-3];
if (isvector(e)) {
i = tofixnum(Stack[SP-2], "aset!");
if (__unlikely((unsigned)i >= vector_size(e)))
bounds_error("aset!", v, Stack[SP-1]);
vector_elt(e, i) = (v=Stack[SP-1]);
}
else if (isarray(e)) {
v = cvalue_array_aset(&Stack[SP-3]);
}
else {
type_error("aset!", "sequence", e);
}
POPN(2);
Stack[SP-1] = v;
break;
case OP_FOR:
case OP_LOADT: PUSH(FL_T); break;
case OP_LOADF: PUSH(FL_F); break;
case OP_LOADNIL: PUSH(NIL); break;
case OP_LOAD0: PUSH(fixnum(0)); break;
case OP_LOAD1: PUSH(fixnum(1)); break;
case OP_LOADV:
v = vector_elt(*pvals, code[ip]); ip++;
PUSH(v);
break;
case OP_LOADVL:
v = vector_elt(*pvals, *(uint32_t*)code[ip]); ip+=4;
PUSH(v);
break;
case OP_LOADGL:
v = vector_elt(*pvals, *(uint32_t*)code[ip]); ip+=4;
goto do_loadg;
case OP_LOADG:
v = vector_elt(*pvals, code[ip]); ip++;
do_loadg:
sym = (symbol_t*)ptr(v);
if (sym->binding == UNBOUND)
raise(list2(UnboundError, v));
PUSH(sym->binding);
break;
case OP_SETGL:
v = vector_elt(*pvals, *(uint32_t*)code[ip]); ip+=4;
goto do_setg;
case OP_SETG:
v = vector_elt(*pvals, code[ip]); ip++;
do_setg:
sym = (symbol_t*)ptr(v);
v = Stack[SP-1];
if (sym->syntax != TAG_CONST)
sym->binding = v;
break;
case OP_LOADA:
i = code[ip++];
if (penv[0] == NIL)
v = vector_elt(penv[1], i+1);
else
v = Stack[bp+i];
PUSH(v);
break;
case OP_SETA:
v = Stack[SP-1];
i = code[ip++];
if (penv[0] == NIL)
vector_elt(penv[1], i+1) = v;
else
Stack[bp+i] = v;
break;
case OP_LOADC:
case OP_SETC:
s = code[ip++];
i = code[ip++];
if (penv[0]==NIL) {
if (nargs > 0) {
// current frame has been captured
s++;
}
v = penv[1];
}
else {
v = penv[numval(penv[-1])-1];
}
while (s--)
v = vector_elt(v, vector_size(v)-1);
if (op == OP_SETC)
vector_elt(v, i) = Stack[SP-1];
else
PUSH(vector_elt(v, i));
break;
case OP_CLOSURE:
case OP_TRYCATCH:
break;
}
}
}
// initialization -------------------------------------------------------------
extern void builtins_init();
@ -1510,6 +1978,7 @@ static void lisp_init(void)
FL_T = builtin(F_TRUE);
FL_F = builtin(F_FALSE);
LAMBDA = symbol("lambda");
COMPILEDLAMBDA = symbol("compiled-lambda");
QUOTE = symbol("quote");
TRYCATCH = symbol("trycatch");
BACKQUOTE = symbol("backquote");

View File

@ -127,9 +127,9 @@ enum {
F_EVAL, F_EVALSTAR, F_APPLY,
F_ADD, F_SUB, F_MUL, F_DIV, F_LT, F_COMPARE,
F_VECTOR, F_AREF, F_ASET, F_LENGTH, F_FOR,
F_VECTOR, F_AREF, F_ASET, F_FOR,
F_TRUE, F_FALSE, F_NIL,
N_BUILTINS,
N_BUILTINS
};
#define isspecial(v) (uintval(v) <= (unsigned int)F_BEGIN)
@ -274,6 +274,7 @@ extern fltype_t *builtintype;
value_t cvalue(fltype_t *type, size_t sz);
void add_finalizer(cvalue_t *cv);
void cv_autorelease(cvalue_t *cv);
void cv_pin(cvalue_t *cv);
size_t ctype_sizeof(value_t type, int *palign);
value_t cvalue_copy(value_t v);
value_t cvalue_from_data(fltype_t *type, void *data, size_t sz);