142 lines
3.7 KiB
Scheme
142 lines
3.7 KiB
Scheme
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
|
||
|
||
; This is file ratnum.scm.
|
||
|
||
; Rational arithmetic
|
||
; Assumes that +, -, etc. perform integer arithmetic.
|
||
|
||
(define-simple-type :exact-rational (:rational :exact)
|
||
(lambda (n) (and (rational? n) (exact? n))))
|
||
|
||
(define-extended-number-type :ratnum (:exact-rational :exact) ;?
|
||
(make-ratnum num den)
|
||
ratnum?
|
||
(num ratnum-numerator)
|
||
(den ratnum-denominator))
|
||
|
||
(define (integer/ m n)
|
||
(cond ((< n 0)
|
||
(integer/ (- 0 m) (- 0 n)))
|
||
((= n 0)
|
||
(error "rational division by zero" m))
|
||
((and (exact? m) (exact? n))
|
||
(let ((g (gcd m n)))
|
||
(let ((m (quotient m g))
|
||
(n (quotient n g)))
|
||
(if (= n 1)
|
||
m
|
||
(make-ratnum m n)))))
|
||
(else (/ m n)))) ;In case we get flonums
|
||
|
||
(define (rational-numerator p)
|
||
(if (ratnum? p)
|
||
(ratnum-numerator p)
|
||
(numerator p)))
|
||
|
||
(define (rational-denominator p)
|
||
(if (ratnum? p)
|
||
(ratnum-denominator p)
|
||
(denominator p)))
|
||
|
||
; a/b * c/d = a*c / b*d
|
||
|
||
(define (rational* p q)
|
||
(integer/ (* (rational-numerator p) (rational-numerator q))
|
||
(* (rational-denominator p) (rational-denominator q))))
|
||
|
||
; a/b / c/d = a*d / b*c
|
||
|
||
(define (rational/ p q)
|
||
(integer/ (* (rational-numerator p) (rational-denominator q))
|
||
(* (rational-denominator p) (rational-numerator q))))
|
||
|
||
; a/b + c/d = (a*d + b*c)/(b*d)
|
||
|
||
(define (rational+ p q)
|
||
(let ((b (rational-denominator p))
|
||
(d (rational-denominator q)))
|
||
(integer/ (+ (* (rational-numerator p) d)
|
||
(* b (rational-numerator q)))
|
||
(* b d))))
|
||
|
||
; a/b - c/d = (a*d - b*c)/(b*d)
|
||
|
||
(define (rational- p q)
|
||
(let ((b (rational-denominator p))
|
||
(d (rational-denominator q)))
|
||
(integer/ (- (* (rational-numerator p) d)
|
||
(* b (rational-numerator q)))
|
||
(* b d))))
|
||
|
||
; a/b < c/d when a*d < b*c
|
||
|
||
(define (rational< p q)
|
||
(< (* (rational-numerator p) (rational-denominator q))
|
||
(* (rational-denominator p) (rational-numerator q))))
|
||
|
||
; a/b = c/d when a = b and c = d (always lowest terms)
|
||
|
||
(define (rational= p q)
|
||
(and (= (rational-numerator p) (rational-numerator q))
|
||
(= (rational-denominator p) (rational-denominator q))))
|
||
|
||
; (rational-truncate p) = integer of largest magnitude <= (abs p)
|
||
|
||
(define (rational-truncate p)
|
||
(quotient (rational-numerator p) (rational-denominator p)))
|
||
|
||
; (floor p) = greatest integer <= p
|
||
|
||
(define (rational-floor p)
|
||
(let* ((n (numerator p))
|
||
(q (quotient n (denominator p))))
|
||
(if (>= n 0)
|
||
q
|
||
(- q 1))))
|
||
|
||
|
||
; Extend the generic number procedures
|
||
|
||
(define-method &rational? ((n :ratnum)) #t)
|
||
|
||
(define-method &numerator ((n :ratnum)) (ratnum-numerator n))
|
||
(define-method &denominator ((n :ratnum)) (ratnum-denominator n))
|
||
|
||
(define-method &exact? ((n :ratnum)) #t)
|
||
|
||
;(define-method &exact->inexact ((n :ratnum))
|
||
; (/ (exact->inexact (numerator n))
|
||
; (exact->inexact (denominator n))))
|
||
|
||
;(define-method &inexact->exact ((n :rational)) ;?
|
||
; (/ (inexact->exact (numerator n))
|
||
; (inexact->exact (denominator n))))
|
||
|
||
(define-method &/ ((m :exact-integer) (n :exact-integer))
|
||
(integer/ m n))
|
||
|
||
(define (define-ratnum-method mtable proc)
|
||
(define-method mtable ((m :ratnum) (n :exact-rational)) (proc m n))
|
||
(define-method mtable ((m :exact-rational) (n :ratnum)) (proc m n)))
|
||
|
||
(define-ratnum-method &+ rational+)
|
||
(define-ratnum-method &- rational-)
|
||
(define-ratnum-method &* rational*)
|
||
(define-ratnum-method &/ rational/)
|
||
(define-ratnum-method &= rational=)
|
||
(define-ratnum-method &< rational<)
|
||
|
||
(define-method &floor ((m :ratnum)) (rational-floor m))
|
||
|
||
;(define-method &sqrt ((p :ratnum))
|
||
; (if (< p 0)
|
||
; (next-method)
|
||
; (integer/ (sqrt (numerator p))
|
||
; (sqrt (denominator p)))))
|
||
|
||
|
||
(define-method &number->string ((p :ratnum) radix)
|
||
(string-append (number->string (ratnum-numerator p) radix)
|
||
"/"
|
||
(number->string (ratnum-denominator p) radix)))
|