; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING. ; Code to find the strongly connected components of a graph. ; (TO <vertex>) are the vertices that have an edge to <vertex>. ; (SLOT <vertex>) and (SET-SLOT! <vertex> <value>) is a settable slot ; used by the algorithm. ; ; The components are returned in a backwards topologically sorted list. (define (strongly-connected-components vertices to slot set-slot!) (make-vertices vertices to slot set-slot!) (let loop ((to-do vertices) (index 0) (stack #t) (comps '())) (let ((to-do (find-next-vertex to-do slot))) (cond ((null? to-do) (for-each (lambda (n) (set-slot! n #f)) vertices) comps) (else (call-with-values (lambda () (do-vertex (slot (car to-do)) index stack comps)) (lambda (index stack comps) (loop to-do index stack comps)))))))) (define (find-next-vertex vertices slot) (do ((vertices vertices (cdr vertices))) ((or (null? vertices) (= 0 (vertex-index (slot (car vertices))))) vertices))) (define-record-type vertex :vertex (really-make-vertex data edges stack index parent lowpoint) vertex? (data vertex-data) ; user's data (edges vertex-edges set-vertex-edges!) ; list of vertices (stack vertex-stack set-vertex-stack!) ; next vertex on the stack (index vertex-index set-vertex-index!) ; time at which this vertex was ; reached in the traversal (parent vertex-parent set-vertex-parent!) ; a vertex pointing to this one (lowpoint vertex-lowpoint set-vertex-lowpoint!)) ; lowest index in this ; vertices strongly connected component (define (make-vertex data) (really-make-vertex data '() #f 0 #f #f)) (define (make-vertices vertices to slot set-slot!) (let ((maybe-slot (lambda (n) (let ((s (slot n))) (if (vertex? s) s (error "graph edge points to non-vertex" n)))))) (for-each (lambda (n) (set-slot! n (make-vertex n))) vertices) (for-each (lambda (n) (set-vertex-edges! (slot n) (map maybe-slot (to n)))) vertices) (values))) ; The numbers are the algorithm step numbers from page 65 of Graph Algorithms, ; Shimon Even, Computer Science Press, 1979. ; 2 (define (do-vertex vertex index stack comps) (let ((index (+ index '1))) (set-vertex-index! vertex index) (set-vertex-lowpoint! vertex index) (set-vertex-stack! vertex stack) (get-strong vertex index vertex comps))) ; 3 (define (get-strong vertex index stack comps) (if (null? (vertex-edges vertex)) (end-vertex vertex index stack comps) (follow-edge vertex index stack comps))) ; 7 (define (end-vertex vertex index stack comps) (call-with-values (lambda () (if (= (vertex-index vertex) (vertex-lowpoint vertex)) (unwind-stack vertex stack comps) (values stack comps))) (lambda (stack comps) (cond ((vertex-parent vertex) => (lambda (parent) (if (> (vertex-lowpoint parent) (vertex-lowpoint vertex)) (set-vertex-lowpoint! parent (vertex-lowpoint vertex))) (get-strong parent index stack comps))) (else (values index stack comps)))))) (define (unwind-stack vertex stack comps) (let loop ((n stack) (c '())) (let ((next (vertex-stack n)) (c (cons (vertex-data n) c))) (set-vertex-stack! n #f) (if (eq? n vertex) (values next (cons c comps)) (loop next c))))) ; 4 (define (follow-edge vertex index stack comps) (let* ((next (pop-vertex-edge! vertex)) (next-index (vertex-index next))) (cond ((= next-index 0) (set-vertex-parent! next vertex) (do-vertex next index stack comps)) (else (if (and (< next-index (vertex-index vertex)) (vertex-stack next) (< next-index (vertex-lowpoint vertex))) (set-vertex-lowpoint! vertex next-index)) (get-strong vertex index stack comps))))) (define (pop-vertex-edge! vertex) (let ((edges (vertex-edges vertex))) (set-vertex-edges! vertex (cdr edges)) (car edges))) ; GRAPH is ((<symbol> . <symbol>*)*) ;(define (test-strong graph) ; (let ((vertices (map (lambda (n) ; (vector (car n) #f #f)) ; graph))) ; (for-each (lambda (data vertex) ; (vector-set! vertex 1 (map (lambda (s) ; (first (lambda (v) ; (eq? s (vector-ref v 0))) ; vertices)) ; (cdr data)))) ; graph ; vertices) ; (map (lambda (l) ; (map (lambda (n) (vector-ref n 0)) l)) ; (strongly-connected-components vertices ; (lambda (v) (vector-ref v 1)) ; (lambda (v) (vector-ref v 2)) ; (lambda (v val) ; (vector-set! v 2 val))))))