; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING. ; Generic arithmetic. ; The different kinds of numbers. (define-enumeration numbers (fixnum bignum rational float complex not-a-number)) ; Mapping numbers to their representation. (define stob-numbers (make-vector stob-count (enum numbers not-a-number))) ; For now all we have are bignums (and fixnums, of course). (vector-set! stob-numbers (enum stob bignum) (enum numbers bignum)) (define (number->representation x) (cond ((fixnum? x) (enum numbers fixnum)) ((stob? x) (vector-ref stob-numbers (header-type (stob-header x)))) (else (enum numbers not-a-number)))) ;---------------- ; Tables for unary and binary operations. All entries initially return DEFAULT. (define (make-unary-table default) (make-vector numbers-count (lambda (x) default))) ; (unary-table-set! <table> <type> <value>) ; (unary-table-set! <table> (<type> ...) <value>) (define-syntax unary-table-set! (syntax-rules () ((unary-table-set! ?table (?kind ...) ?value) (real-unary-table-set! ?table (list (enum numbers ?kind) ...) ?value)) ((unary-table-set! ?table ?kind ?value) (real-unary-table-set! ?table (list (enum numbers ?kind)) ?value)))) (define (real-unary-table-set! table kinds value) (for-each (lambda (kind) (vector-set! table kind value)) kinds)) (define (unary-dispatch table x) ((vector-ref table (number->representation x)) x)) (define (make-binary-table default) (make-vector (* numbers-count numbers-count) (lambda (x y) default))) ; Same as for unary tables, except that we have two indexes or lists of indexes. (define-syntax binary-table-set! (syntax-rules () ((binary-table-set! ?table (?kind0 ...) (?kind1 ...) ?value) (real-binary-table-set! ?table (list (enum numbers ?kind0) ...) (list (enum numbers ?kind1) ...) ?value)) ((binary-table-set! ?table (?kind0 ...) ?kind1 ?value) (real-binary-table-set! ?table (list (enum numbers ?kind0) ...) (list (enum numbers ?kind1)) ?value)) ((binary-table-set! ?table ?kind0 (?kind1 ...) ?value) (real-binary-table-set! ?table (list (enum numbers ?kind0)) (list (enum numbers ?kind1) ...) ?value)) ((binary-table-set! ?table ?kind0 ?kind1 ?value) (real-binary-table-set! ?table (list (enum numbers ?kind0)) (list (enum numbers ?kind1)) ?value)))) (define (real-binary-table-set! table kinds0 kinds1 value) (for-each (lambda (kind0) (for-each (lambda (kind1) (vector-set! table (+ (* kind0 numbers-count) kind1) value)) kinds1)) kinds0)) ; Does this need to be changed to get a computed goto? (define (binary-dispatch table x y) ((vector-ref table (+ (* (number->representation x) numbers-count) (number->representation y))) x y)) (define (binary-lose x y) unspecific-value) ;---------------- ; The actual opcodes ; Predicates (define-primitive number? (any->) (lambda (x) (not (= (number->representation x) (enum numbers not-a-number)))) return-boolean) (define-primitive integer? (any->) (lambda (x) (let ((type (number->representation x))) (or (= type (enum numbers fixnum)) (= type (enum numbers bignum))))) return-boolean) (define-primitive rational? (any->) (lambda (x) (let ((type (number->representation x))) (or (= type (enum numbers fixnum)) (= type (enum numbers bignum)) (= type (enum numbers rational))))) return-boolean) (define-primitive real? (any->) (lambda (x) (let ((type (number->representation x))) (not (or (= type (enum numbers complex)) (= type (enum numbers not-a-number)))))) return-boolean) (define-primitive complex? (any->) (lambda (x) (not (= (number->representation x) (enum numbers not-a-number)))) return-boolean) (define-primitive exact? (any->) (lambda (x) (enum-case number (number->representation x) ((float) (goto return-boolean #f)) ((complex) (goto return-boolean (not (float? (complex-real-part x))))) ((not-a-number) (raise-exception wrong-type-argument 0 x)) (else (goto return-boolean #t))))) ;---------------- ; Arithmetic (define-syntax define-binary-primitive (syntax-rules () ((define-binary-primitive id table careful integer) (define table (make-binary-table binary-lose)) (define-primitive id (any-> any->) (lambda (x y) (if (and (fixnum? x) (fixnum? y)) (goto careful x y return (lambda (x y) (goto return (integer x y)))) (let ((r (binary-dispatch table x y))) (if (vm-eq? r unspecific-value) (raise-exception wrong-type-argument 0 x y) (goto return r)))))) (binary-table-set! table (fixnum bignum) (fixnum bignum) integer)))) (define-binary-primitive + add-table add-carefully integer-add) (define-binary-primitive - subtract-table subtract-carefully integer-subtract) (define-binary-primitive * multiply-table multiply-carefully integer-multiply) (define-binary-primitive quotient quotient-table quotient-carefully integer-quotient) (define-binary-primitive remainder remainder-table remainder-carefully integer-remainder) (define-binary-primitive arithmetic-shift shift-table shift-carefully integer-shift) ; Hm. There is no integer-divide (obviously) (define-binary-primitive / divide-table divide-carefully integer-) **************************************************************** How to structure all this? It would be nice if the interpreter could be broken into several modules. The registers and define-primitive would need to be separated out. ;---------------- ; Tower predicates. ; These need to be changed. (define-unary-opcode-extension integer? &integer? #f) (define-unary-opcode-extension rational? &rational? #f) (define-unary-opcode-extension real? &real? #f) (define-unary-opcode-extension complex? &complex? #f) (define-unary-opcode-extension number? &number? #f) (define-unary-opcode-extension exact? &exact? #f) (let ((true (lambda (x) #t))) (unary-table-set! &integer? (fixnum bignum) true) (unary-table-set! &rational? (fixnum bignum rational) true) (unary-table-set! &real? (fixnum bignum rational float) true) (unary-table-set! &complex? (fixnum bignum rational float complex) true) (unary-table-set! &number? (fixnum bignum rational float complex) true) (unary-table-set! &exact? (fixnum bignum rational) true)) ; The two parts of a complex number must have the same exactness. (unary-table-set! &exact? (complex) (lambda (z) (real-part z))) ;---------------- ; Imaginary operations. (define-unary-opcode-extension real-part &real-part (lambda (x) x)) (define-unary-opcode-extension imag-part &imag-part (lambda (x) 0)) (unary-table-set! &real-part (complex not-a-number) (lambda (x) unimplemented)) (unary-table-set! &imag-part (complex not-a-number) (lambda (x) unimplemented)) ;---------------- ; Fractions (define-unary-opcode-extension floor &floor) (define-unary-opcode-extension numerator &numerator) (define-unary-opcode-extension denominator &denominator) (define (identity x) x) (unary-table-set! &floor (fixnum bignum) identity) (unary-table-set! &numerator (fixnum bignum) identity) (unary-table-set! &denominator (fixnum bignum) (lambda (x) 1)) ;---------------- ; Square root. (define-unary-opcode-extension sqrt &sqrt) ; The bignum code could whack this. ; The VM doesn't do sqrt for positive fixnums. I wonder why? ; For negative N, we lose if MAKE-RECTANGULAR loses. (unary-table-set! &sqrt (fixnum bignum) (lambda (n) (if (>= n 0) (non-negative-integer-sqrt n) ;Dubious (JAR) (let ((s (non-negative-integer-sqrt (- n)))) (if (eq? s unimplemented) s (binary-dispatch &make-rectangular 0 s)))))) ; Courtesy of Mr. Newton. (define (non-negative-integer-sqrt n) (if (<= n 1) ; for both 0 and 1 n (let loop ((m (quotient n 2))) (let ((m1 (quotient n m))) (cond ((< m1 m) (loop (quotient (+ m m1) 2))) ((= n (* m m)) m) (else unimplemented)))))) ;---------------- ; Make sure this has very low priority, so that it's only tried as a ; last resort. ; ; In fact, I'll comment it out completely. -RK ;(define-method &/ (m n) ; (if (and (integer? m) (integer? n)) ; (if (= 0 (remainder m n)) ; (quotient m n) ; (let ((z (abs (quotient n 2)))) ; (set-exactness (quotient (if (< m 0) ; (- m z) ; (+ m z)) ; n) ; #f))) ; (next-method))) ;---------------- ; The rest have no useful defaults. (define-unary-opcode-extension exact->inexact &exact->inexact) (define-unary-opcode-extension inexact->exact &inexact->exact) (define-binary-opcode-extension + &+) (define-binary-opcode-extension - &-) (define-binary-opcode-extension * &*) (define-binary-opcode-extension / &/) (define-binary-opcode-extension = &=) (define-binary-opcode-extension < &<) (define-binary-opcode-extension quotient "ient) (define-binary-opcode-extension remainder &remainder) (define-binary-opcode-extension make-rectangular &make-rectangular) (define-unary-opcode-extension exp &exp) (define-unary-opcode-extension log &log) (define-unary-opcode-extension sin &sin) (define-unary-opcode-extension cos &cos) (define-unary-opcode-extension tan &tan) (define-unary-opcode-extension asin &asin) (define-unary-opcode-extension acos &acos) (define-unary-opcode-extension atan &atan) ; >, <=, and >= are all extended using the table for <. (extend-opcode! (enum op >) (lambda (lose) (lambda (reason arg0 arg1) (let ((res (binary-dispatch &< arg1 arg0))) (if (eq? res unimplemented) (lose reason arg0 arg1) res))))) (extend-opcode! (enum op <=) (lambda (lose) (lambda (reason arg0 arg1) (let ((res (binary-dispatch &< arg1 arg0))) (if (eq? res unimplemented) (lose reason arg0 arg1) (not res)))))) (extend-opcode! (enum op >=) (lambda (lose) (lambda (reason arg0 arg1) (let ((res (binary-dispatch &< arg0 arg1))) (if (eq? res unimplemented) (lose reason arg0 arg1) (not res))))))