Added SRFI 25, 26, 27, 28, 30.

This commit is contained in:
mainzelm 2002-09-11 14:34:58 +00:00
parent 87846eef58
commit 024d938e39
7 changed files with 2360 additions and 3 deletions

227
c/srfi/srfi-27.c Normal file
View File

@ -0,0 +1,227 @@
/* 54-BIT (double) IMPLEMENTATION IN C OF THE "MRG32K3A" GENERATOR
===============================================================
Sebastian.Egner@philips.com, Mar-2002, in ANSI-C and Scheme 48 0.57
This code is a C-implementation of Pierre L'Ecuyer's MRG32k3a generator.
The code uses (double)-arithmetics, assuming that it covers the range
{-2^53..2^53-1} exactly (!). The code of the generator is based on the
L'Ecuyer's own implementation of the generator. Please refer to the
file 'mrg32k3a.scm' for more information about the method.
The method provides the following functions via the C/Scheme
interface of Scheme 48 0.57 to 'mrg32k3a-b.scm':
s48_value mrg32k3a_pack_state1(s48_value state);
s48_value mrg32k3a_unpack_state1(s48_value state);
s48_value mrg32k3a_random_range();
s48_value mrg32k3a_random_integer(s48_value state, s48_value range);
s48_value mrg32k3a_random_real(s48_value state);
As Scheme48 FIXNUMs cannot cover the range {0..m1-1}, we break up
all values x in the state into x0+x1*w, where w = 2^16 = 65536.
The procedures in Scheme correct for that.
compile this file with:
gcc -c -I $SCHEME48 mrg32k3a-b.c
history of this file:
SE, 18-Mar-2002: initial version
SE, 22-Mar-2002: interface changed
SE, 25-Mar-2002: tested with Scheme 48 0.57 in c/srfi-27
SE, 27-Mar-2002: cleaned
SE, 13-May-2002: bug found by Shiro Kawai removed
*/
#include "scheme48.h" /* $SCHEME48/c/scheme48.h */
#include <sys/time.h>
/* maximum value for random_integer: min(S48_MAX_FIXNUM_VALUE, m1) */
#define m_max (((long)1 << 29) - 1)
/* The Generator
=============
*/
/* moduli of the components */
#define m1 4294967087.0
#define m2 4294944443.0
/* representation of the state in C */
typedef struct {
double
x10, x11, x12,
x20, x21, x22;
} state_t;
/* recursion coefficients of the components */
#define a12 1403580.0
#define a13n 810728.0
#define a21 527612.0
#define a23n 1370589.0
/* normalization factor 1/(m1 + 1) */
#define norm 2.328306549295728e-10
/* the actual generator */
static double mrg32k3a(state_t *s) { /* (double), in {0..m1-1} */
double x10, x20, y;
long k10, k20;
/* #define debug 1 */
#if defined(debug)
printf(
"state = {%g %g %g %g %g %g};\n",
s->x10, s->x11, s->x12,
s->x20, s->x21, s->x22
);
#endif
/* component 1 */
x10 = a12*(s->x11) - a13n*(s->x12);
k10 = x10 / m1;
x10 -= k10 * m1;
if (x10 < 0.0)
x10 += m1;
s->x12 = s->x11;
s->x11 = s->x10;
s->x10 = x10;
/* component 2 */
x20 = a21*(s->x20) - a23n*(s->x22);
k20 = x20 / m2;
x20 -= k20 * m2;
if (x20 < 0.0)
x20 += m2;
s->x22 = s->x21;
s->x21 = s->x20;
s->x20 = x20;
/* combination of component */
y = x10 - x20;
if (y < 0.0)
y += m1;
return y;
}
/* Exported Interface
==================
*/
s48_value mrg32k3a_pack_state1(s48_value state) {
s48_value result;
state_t s;
#define REF(i) (double)s48_extract_integer(S48_VECTOR_REF(state, (long)(i)))
/* copy the numbers from state into s */
s.x10 = REF( 0) + 65536.0 * REF( 1);
s.x11 = REF( 2) + 65536.0 * REF( 3);
s.x12 = REF( 4) + 65536.0 * REF( 5);
s.x20 = REF( 6) + 65536.0 * REF( 7);
s.x21 = REF( 8) + 65536.0 * REF( 9);
s.x22 = REF(10) + 65536.0 * REF(11);
#undef REF
/* box s into a Scheme object */
result = S48_MAKE_VALUE(state_t);
S48_SET_VALUE(result, state_t, s);
return result;
}
s48_value mrg32k3a_unpack_state1(s48_value state) {
s48_value result;
state_t s;
/* unbox s from the Scheme object */
s = S48_EXTRACT_VALUE(state, state_t);
/* make and fill a Scheme vector with the numbers */
result = s48_make_vector((long)12, S48_FALSE);
#define SET(i, x) { \
long x1 = (long)((x) / 65536.0); \
long x0 = (long)((x) - 65536.0 * (double)x1); \
S48_VECTOR_SET(result, (long)(i+0), s48_enter_integer(x0)); \
S48_VECTOR_SET(result, (long)(i+1), s48_enter_integer(x1)); }
SET( 0, s.x10);
SET( 2, s.x11);
SET( 4, s.x12);
SET( 6, s.x20);
SET( 8, s.x21);
SET(10, s.x22);
#undef SET
return result;
}
s48_value mrg32k3a_random_range(void) {
return s48_enter_fixnum(m_max);
}
s48_value mrg32k3a_random_integer(s48_value state, s48_value range) {
long result;
state_t s;
long n;
double x, q, qn, xq;
s = S48_EXTRACT_VALUE(state, state_t);
n = s48_extract_integer(range);
if (!( ((long)1 <= n) && (n <= m_max) ))
s48_raise_range_error(n, (long)1, m_max);
/* generate result in {0..n-1} using the rejection method */
q = (double)( (unsigned long)(m1 / (double)n) );
qn = q * n;
do {
x = mrg32k3a(&s);
} while (x >= qn);
xq = x / q;
/* check the range */
if (!( (0.0 <= xq) && (xq < (double)m_max) ))
s48_raise_range_error((long)xq, (long)0, m_max);
/* return result */
result = (long)xq;
S48_SET_VALUE(state, state_t, s);
return s48_enter_fixnum(result);
}
s48_value mrg32k3a_random_real(s48_value state) {
state_t s;
double x;
s = S48_EXTRACT_VALUE(state, state_t);
x = (mrg32k3a(&s) + 1.0) * norm;
S48_SET_VALUE(state, state_t, s);
return s48_enter_double(x);
}
/* Kludge for scsh */
static s48_value current_time(void){
struct timeval tv;
gettimeofday(&tv, NULL);
return s48_enter_integer(tv.tv_sec);
}
/* Exporting the C values to Scheme
================================
*/
void s48_init_srfi_27(void) {
S48_EXPORT_FUNCTION(mrg32k3a_pack_state1);
S48_EXPORT_FUNCTION(mrg32k3a_unpack_state1);
S48_EXPORT_FUNCTION(mrg32k3a_random_range);
S48_EXPORT_FUNCTION(mrg32k3a_random_integer);
S48_EXPORT_FUNCTION(mrg32k3a_random_real);
S48_EXPORT_FUNCTION(current_time);
}

View File

@ -532,3 +532,15 @@
))
(define-interface srfi-27-interface
(export random-integer
random-real
default-random-source
make-random-source
random-source?
random-source-state-ref
random-source-state-set!
random-source-randomize!
random-source-pseudo-randomize!
random-source-make-integers
random-source-make-reals))

View File

@ -728,7 +728,8 @@
(begin
(define available-srfis
'(srfi-1 srfi-2 srfi-5 srfi-6 srfi-7 srfi-8 srfi-9
srfi-11 srfi-13 srfi-14 srfi-16 srfi-17 srfi-23))
srfi-11 srfi-13 srfi-14 srfi-16 srfi-17 srfi-23
srfi-25 srfi-26 srfi-27 srfi-28 srfi-30))
; Some SRFI's redefine Scheme variables.
(define shadowed
@ -807,11 +808,50 @@
; SRFI-19 - implementation is specific to MzScheme
; SRFI-20 - withdrawn
; SRFI-21 - no implementation given
; SRFI-22 - not final yet
; SRFI-22 - no implementation given
(define-structure srfi-23 (export error)
(open (subset signals (error))))
; SRFI-24 - withdrawn
(define-structure srfi-25 (export
array? make-array shape array
array-rank
array-start array-end
array-ref array-set! share-array)
(open scheme
srfi-23
srfi-9)
(files (srfi srfi-25)))
(define-structure srfi-26 (export ((cut cute) :syntax))
(open scheme)
(files (srfi srfi-26)))
(define-structure srfi-27 srfi-27-interface
(open
scheme-level-1
floatnums
external-calls
(subset srfi-9 (define-record-type))
(subset srfi-23 (error)))
;; scsh doesn't have S48's posix subsystem yet:
; (subset posix-time (current-time))
; (subset posix (time-seconds)))
(files (srfi srfi-27)))
(define-structure srfi-28 (export format)
(open scheme
srfi-23
srfi-6)
(files (srfi srfi-28)))
; SRFI-29 - requires access to the current locale
; SRFI-30 - scheme/rts/read.scm contains the reader for #|...|# comments
; ... end of package definitions.
; Temporary compatibility stuff
@ -897,7 +937,7 @@
; SRFI packages
srfi-1 srfi-2 srfi-5 srfi-6 srfi-7 srfi-8 srfi-9
srfi-11 srfi-13 srfi-14 srfi-16 srfi-17
srfi-23
srfi-23 srfi-25 srfi-26 srfi-27 srfi-28
)
:structure)
((define-signature define-package) :syntax)))

1380
scheme/srfi/srfi-25.scm Normal file

File diff suppressed because it is too large Load Diff

96
scheme/srfi/srfi-26.scm Normal file
View File

@ -0,0 +1,96 @@
; REFERENCE IMPLEMENTATION FOR SRFI-26 "CUT"
; ==========================================
;
; Sebastian.Egner@philips.com, 5-Jun-2002.
; adapted from the posting by Al Petrofsky <al@petrofsky.org>
; placed in the public domain
;
; The code to handle the variable argument case was originally
; proposed by Michael Sperber and has been adapted to the new
; syntax of the macro using an explicit rest-slot symbol. The
; code to evaluate the non-slots for cute has been proposed by
; Dale Jordan. The code to allow a slot for the procedure position
; and to process the macro using an internal macro is based on
; a suggestion by Al Petrofsky. The code found below is, with
; exception of this header and some changes in variable names,
; entirely written by Al Petrofsky.
;
; compliance:
; Scheme R5RS (including macros).
;
; loading this file into Scheme 48 0.57:
; ,load cut.scm
;
; history of this file:
; SE, 6-Feb-2002: initial version as 'curry' with ". <>" notation
; SE, 14-Feb-2002: revised for <...>
; SE, 27-Feb-2002: revised for 'cut'
; SE, 03-Jun-2002: revised for proc-slot, cute
; SE, 04-Jun-2002: rewritten with internal transformer (no "loop" pattern)
; SE, 05-Jun-2002: replace my code by Al's; substituted "constant" etc.
; to match the convention in the SRFI-document
; (srfi-26-internal-cut slot-names combination . se)
; transformer used internally
; slot-names : the internal names of the slots
; combination : procedure being specialized, followed by its arguments
; se : slots-or-exprs, the qualifiers of the macro
(define-syntax srfi-26-internal-cut
(syntax-rules (<> <...>)
;; construct fixed- or variable-arity procedure:
;; (begin proc) throws an error if proc is not an <expression>
((srfi-26-internal-cut (slot-name ...) (proc arg ...))
(lambda (slot-name ...) ((begin proc) arg ...)))
((srfi-26-internal-cut (slot-name ...) (proc arg ...) <...>)
(lambda (slot-name ... . rest-slot) (apply proc arg ... rest-slot)))
;; process one slot-or-expr
((srfi-26-internal-cut (slot-name ...) (position ...) <> . se)
(srfi-26-internal-cut (slot-name ... x) (position ... x) . se))
((srfi-26-internal-cut (slot-name ...) (position ...) nse . se)
(srfi-26-internal-cut (slot-name ...) (position ... nse) . se))))
; (srfi-26-internal-cute slot-names nse-bindings combination . se)
; transformer used internally
; slot-names : the internal names of the slots
; nse-bindings : let-style bindings for the non-slot expressions.
; combination : procedure being specialized, followed by its arguments
; se : slots-or-exprs, the qualifiers of the macro
(define-syntax srfi-26-internal-cute
(syntax-rules (<> <...>)
;; If there are no slot-or-exprs to process, then:
;; construct a fixed-arity procedure,
((srfi-26-internal-cute
(slot-name ...) nse-bindings (proc arg ...))
(let nse-bindings (lambda (slot-name ...) (proc arg ...))))
;; or a variable-arity procedure
((srfi-26-internal-cute
(slot-name ...) nse-bindings (proc arg ...) <...>)
(let nse-bindings (lambda (slot-name ... . x) (apply proc arg ... x))))
;; otherwise, process one slot:
((srfi-26-internal-cute
(slot-name ...) nse-bindings (position ...) <> . se)
(srfi-26-internal-cute
(slot-name ... x) nse-bindings (position ... x) . se))
;; or one non-slot expression
((srfi-26-internal-cute
slot-names nse-bindings (position ...) nse . se)
(srfi-26-internal-cute
slot-names ((x nse) . nse-bindings) (position ... x) . se))))
; exported syntax
(define-syntax cut
(syntax-rules ()
((cut . slots-or-exprs)
(srfi-26-internal-cut () () . slots-or-exprs))))
(define-syntax cute
(syntax-rules ()
((cute . slots-or-exprs)
(srfi-26-internal-cute () () () . slots-or-exprs))))

569
scheme/srfi/srfi-27.scm Normal file
View File

@ -0,0 +1,569 @@
; MODULE DEFINITION FOR SRFI-27, C/SCHEME-IMPLEMENTATION
; ======================================================
;
; Sebastian.Egner@philips.com, Mar-2002, in Scheme 48 0.57
;
; This file contains the top-level definition for the C-code
; implementation of SRFI-27 for the Scheme 48 0.57 system.
;
; 1. The core generator is implemented in 'mrg32k3a-b.c'.
; 2. The generic parts of the interface are in 'mrg32k3a.scm'.
; 3. The non-generic parts (record type, time, error, C-bindings) are here.
;
; creating the module:
; copy mrg32k3a-b.c into $SCHEME48/c/srfi-27/mrg32k3a-b.c
; edit $SCHEME48/Makefile.in
; add c/srfi-27/mrg32k3a-b.o to EXTERNAL_OBJECTS
; add mrg32k3a_init to EXTERNAL_INITIALIZERS
; add the make line c/srfi-27/mrg32k3a-b.o: c/scheme48.h
; cd $SCHEME48
; make clean
; configure
; make
; cd $SRFI27
; ,config ,load srfi-27-b.scm
;
; loading the module, once created:
; ,open srfi-27
;
; history of this file:
; SE, 22-Mar-2002: initial version
; SE, 25-Mar-2002: initial version
; MG, September 2002: merged in mrg32k2a.scm, move package definitons to
; more-packages.scm
(define-record-type :random-source
(:random-source-make
state-ref
state-set!
randomize!
pseudo-randomize!
make-integers
make-reals)
:random-source?
(state-ref :random-source-state-ref)
(state-set! :random-source-state-set!)
(randomize! :random-source-randomize!)
(pseudo-randomize! :random-source-pseudo-randomize!)
(make-integers :random-source-make-integers)
(make-reals :random-source-make-reals))
; We have neither scsh nor posix...
; (define (:random-source-current-time)
; (time-seconds (current-time)))
(import-lambda-definition :random-source-current-time () "current_time")
; interface to core generator
(import-lambda-definition mrg32k3a-pack-state1 (state))
(import-lambda-definition mrg32k3a-unpack-state1 (state))
(import-lambda-definition mrg32k3a-random-range ())
(import-lambda-definition mrg32k3a-random-integer (state range))
(import-lambda-definition mrg32k3a-random-real (state))
(define (mrg32k3a-pack-state state)
(mrg32k3a-pack-state1
(list->vector
(apply append
(map (lambda (x)
(list (modulo x 65536)
(quotient x 65536)))
(vector->list state))))))
(define (mrg32k3a-unpack-state state)
(let ((s (mrg32k3a-unpack-state1 state)) (w 65536))
(vector
(+ (vector-ref s 0) (* (vector-ref s 1) w))
(+ (vector-ref s 2) (* (vector-ref s 3) w))
(+ (vector-ref s 4) (* (vector-ref s 5) w))
(+ (vector-ref s 6) (* (vector-ref s 7) w))
(+ (vector-ref s 8) (* (vector-ref s 9) w))
(+ (vector-ref s 10) (* (vector-ref s 11) w)))))
; GENERIC PART OF MRG32k3a-GENERATOR FOR SRFI-27
; ==============================================
;
; Sebastian.Egner@philips.com, 2002.
;
; This is the generic R5RS-part of the implementation of the MRG32k3a
; generator to be used in SRFI-27. It is based on a separate implementation
; of the core generator (presumably in native code) and on code to
; provide essential functionality not available in R5RS (see below).
;
; compliance:
; Scheme R5RS with integer covering at least {-2^53..2^53-1}.
; In addition,
; SRFI-23: error
;
; history of this file:
; SE, 22-Mar-2002: refactored from earlier versions
; SE, 25-Mar-2002: pack/unpack need not allocate
; SE, 27-Mar-2002: changed interface to core generator
; SE, 10-Apr-2002: updated spec of mrg32k3a-random-integer
; Generator
; =========
;
; Pierre L'Ecuyer's MRG32k3a generator is a Combined Multiple Recursive
; Generator. It produces the sequence {(x[1,n] - x[2,n]) mod m1 : n}
; defined by the two recursive generators
;
; x[1,n] = ( a12 x[1,n-2] + a13 x[1,n-3]) mod m1,
; x[2,n] = (a21 x[2,n-1] + a23 x[2,n-3]) mod m2,
;
; where the constants are
; m1 = 4294967087 = 2^32 - 209 modulus of 1st component
; m2 = 4294944443 = 2^32 - 22853 modulus of 2nd component
; a12 = 1403580 recursion coefficients
; a13 = -810728
; a21 = 527612
; a23 = -1370589
;
; The generator passes all tests of G. Marsaglia's Diehard testsuite.
; Its period is (m1^3 - 1)(m2^3 - 1)/2 which is nearly 2^191.
; L'Ecuyer reports: "This generator is well-behaved in all dimensions
; up to at least 45: ..." [with respect to the spectral test, SE].
;
; The period is maximal for all values of the seed as long as the
; state of both recursive generators is not entirely zero.
;
; As the successor state is a linear combination of previous
; states, it is possible to advance the generator by more than one
; iteration by applying a linear transformation. The following
; publication provides detailed information on how to do that:
;
; [1] P. L'Ecuyer, R. Simard, E. J. Chen, W. D. Kelton:
; An Object-Oriented Random-Number Package With Many Long
; Streams and Substreams. 2001.
; To appear in Operations Research.
;
; Arithmetics
; ===========
;
; The MRG32k3a generator produces values in {0..2^32-209-1}. All
; subexpressions of the actual generator fit into {-2^53..2^53-1}.
; The code below assumes that Scheme's "integer" covers this range.
; In addition, it is assumed that floating point literals can be
; read and there is some arithmetics with inexact numbers.
;
; However, for advancing the state of the generator by more than
; one step at a time, the full range {0..2^32-209-1} is needed.
; Required: Backbone Generator
; ============================
;
; At this point in the code, the following procedures are assumed
; to be defined to execute the core generator:
;
; (mrg32k3a-pack-state unpacked-state) -> packed-state
; (mrg32k3a-unpack-state packed-state) -> unpacked-state
; pack/unpack a state of the generator. The core generator works
; on packed states, passed as an explicit argument, only. This
; allows native code implementations to store their state in a
; suitable form. Unpacked states are #(x10 x11 x12 x20 x21 x22)
; with integer x_ij. Pack/unpack need not allocate new objects
; in case packed and unpacked states are identical.
;
; (mrg32k3a-random-range) -> m-max
; (mrg32k3a-random-integer packed-state range) -> x in {0..range-1}
; advance the state of the generator and return the next random
; range-limited integer.
; Note that the state is not necessarily advanced by just one
; step because we use the rejection method to avoid any problems
; with distribution anomalies.
; The range argument must be an exact integer in {1..m-max}.
; It can be assumed that range is a fixnum if the Scheme system
; has such a number representation.
;
; (mrg32k3a-random-real packed-state) -> x in (0,1)
; advance the state of the generator and return the next random
; real number between zero and one (both excluded). The type of
; the result should be a flonum if possible.
; Required: Record Data Type
; ==========================
;
; At this point in the code, the following procedures are assumed
; to be defined to create and access a new record data type:
;
; (:random-source-make a0 a1 a2 a3 a4 a5) -> s
; constructs a new random source object s consisting of the
; objects a0 .. a5 in this order.
;
; (:random-source? obj) -> bool
; tests if a Scheme object is a :random-source.
;
; (:random-source-state-ref s) -> a0
; (:random-source-state-set! s) -> a1
; (:random-source-randomize! s) -> a2
; (:random-source-pseudo-randomize! s) -> a3
; (:random-source-make-integers s) -> a4
; (:random-source-make-reals s) -> a5
; retrieve the values in the fields of the object s.
; Required: Current Time as an Integer
; ====================================
;
; At this point in the code, the following procedure is assumed
; to be defined to obtain a value that is likely to be different
; for each invokation of the Scheme system:
;
; (:random-source-current-time) -> x
; an integer that depends on the system clock. It is desired
; that the integer changes as fast as possible.
; Accessing the State
; ===================
(define (mrg32k3a-state-ref packed-state)
(cons 'lecuyer-mrg32k3a
(vector->list (mrg32k3a-unpack-state packed-state))))
(define (mrg32k3a-state-set external-state)
(define (check-value x m)
(if (and (integer? x)
(exact? x)
(<= 0 x (- m 1)))
#t
(error "illegal value" x)))
(if (and (list? external-state)
(= (length external-state) 7)
(eq? (car external-state) 'lecuyer-mrg32k3a))
(let ((s (cdr external-state)))
(check-value (list-ref s 0) mrg32k3a-m1)
(check-value (list-ref s 1) mrg32k3a-m1)
(check-value (list-ref s 2) mrg32k3a-m1)
(check-value (list-ref s 3) mrg32k3a-m2)
(check-value (list-ref s 4) mrg32k3a-m2)
(check-value (list-ref s 5) mrg32k3a-m2)
(if (or (zero? (+ (list-ref s 0) (list-ref s 1) (list-ref s 2)))
(zero? (+ (list-ref s 3) (list-ref s 4) (list-ref s 5))))
(error "illegal degenerate state" external-state))
(mrg32k3a-pack-state (list->vector s)))
(error "malformed state" external-state)))
; Pseudo-Randomization
; ====================
;
; Reference [1] above shows how to obtain many long streams and
; substream from the backbone generator.
;
; The idea is that the generator is a linear operation on the state.
; Hence, we can express this operation as a 3x3-matrix acting on the
; three most recent states. Raising the matrix to the k-th power, we
; obtain the operation to advance the state by k steps at once. The
; virtual streams and substreams are now simply parts of the entire
; periodic sequence (which has period around 2^191).
;
; For the implementation it is necessary to compute with matrices in
; the ring (Z/(m1*m1)*Z)^(3x3). By the Chinese-Remainder Theorem, this
; is isomorphic to ((Z/m1*Z) x (Z/m2*Z))^(3x3). We represent such a pair
; of matrices
; [ [[x00 x01 x02],
; [x10 x11 x12],
; [x20 x21 x22]], mod m1
; [[y00 y01 y02],
; [y10 y11 y12],
; [y20 y21 y22]] mod m2]
; as a vector of length 18 of the integers as writen above:
; #(x00 x01 x02 x10 x11 x12 x20 x21 x22
; y00 y01 y02 y10 y11 y12 y20 y21 y22)
;
; As the implementation should only use the range {-2^53..2^53-1}, the
; fundamental operation (x*y) mod m, where x, y, m are nearly 2^32,
; is computed by breaking up x and y as x = x1*w + x0 and y = y1*w + y0
; where w = 2^16. In this case, all operations fit the range because
; w^2 mod m is a small number. If proper multiprecision integers are
; available this is not necessary, but pseudo-randomize! is an expected
; to be called only occasionally so we do not provide this implementation.
(define mrg32k3a-m1 4294967087) ; modulus of component 1
(define mrg32k3a-m2 4294944443) ; modulus of component 2
(define mrg32k3a-initial-state ; 0 3 6 9 12 15 of A^16, see below
'#( 1062452522
2961816100
342112271
2854655037
3321940838
3542344109))
(define mrg32k3a-generators #f) ; computed when needed
(define (mrg32k3a-pseudo-randomize-state i j)
(define (product A B) ; A*B in ((Z/m1*Z) x (Z/m2*Z))^(3x3)
(define w 65536) ; wordsize to split {0..2^32-1}
(define w-sqr1 209) ; w^2 mod m1
(define w-sqr2 22853) ; w^2 mod m2
(define (lc i0 i1 i2 j0 j1 j2 m w-sqr) ; linear combination
(let ((a0h (quotient (vector-ref A i0) w))
(a0l (modulo (vector-ref A i0) w))
(a1h (quotient (vector-ref A i1) w))
(a1l (modulo (vector-ref A i1) w))
(a2h (quotient (vector-ref A i2) w))
(a2l (modulo (vector-ref A i2) w))
(b0h (quotient (vector-ref B j0) w))
(b0l (modulo (vector-ref B j0) w))
(b1h (quotient (vector-ref B j1) w))
(b1l (modulo (vector-ref B j1) w))
(b2h (quotient (vector-ref B j2) w))
(b2l (modulo (vector-ref B j2) w)))
(modulo
(+ (* (+ (* a0h b0h)
(* a1h b1h)
(* a2h b2h))
w-sqr)
(* (+ (* a0h b0l)
(* a0l b0h)
(* a1h b1l)
(* a1l b1h)
(* a2h b2l)
(* a2l b2h))
w)
(* a0l b0l)
(* a1l b1l)
(* a2l b2l))
m)))
(vector
(lc 0 1 2 0 3 6 mrg32k3a-m1 w-sqr1) ; (A*B)_00 mod m1
(lc 0 1 2 1 4 7 mrg32k3a-m1 w-sqr1) ; (A*B)_01
(lc 0 1 2 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 3 4 5 0 3 6 mrg32k3a-m1 w-sqr1) ; (A*B)_10
(lc 3 4 5 1 4 7 mrg32k3a-m1 w-sqr1)
(lc 3 4 5 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 0 3 6 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 1 4 7 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 9 10 11 9 12 15 mrg32k3a-m2 w-sqr2) ; (A*B)_00 mod m2
(lc 9 10 11 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 9 10 11 11 14 17 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 9 12 15 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 11 14 17 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 9 12 15 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 11 14 17 mrg32k3a-m2 w-sqr2)))
(define (power A e) ; A^e
(cond
((zero? e)
'#(1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1))
((= e 1)
A)
((even? e)
(power (product A A) (quotient e 2)))
(else
(product (power A (- e 1)) A))))
(define (power-power A b) ; A^(2^b)
(if (zero? b)
A
(power-power (product A A) (- b 1))))
(define A ; the MRG32k3a recursion
'#( 0 1403580 4294156359
1 0 0
0 1 0
527612 0 4293573854
1 0 0
0 1 0))
; check arguments
(if (not (and (integer? i)
(exact? i)
(integer? j)
(exact? j)))
(error "i j must be exact integer" i j))
; precompute A^(2^127) and A^(2^76) only once
(if (not mrg32k3a-generators)
(set! mrg32k3a-generators
(list (power-power A 127)
(power-power A 76)
(power A 16))))
; compute M = A^(16 + i*2^127 + j*2^76)
(let ((M (product
(list-ref mrg32k3a-generators 2)
(product
(power (list-ref mrg32k3a-generators 0)
(modulo i (expt 2 28)))
(power (list-ref mrg32k3a-generators 1)
(modulo j (expt 2 28)))))))
(mrg32k3a-pack-state
(vector
(vector-ref M 0)
(vector-ref M 3)
(vector-ref M 6)
(vector-ref M 9)
(vector-ref M 12)
(vector-ref M 15)))))
; True Randomization
; ==================
;
; The value obtained from the system time is feed into a very
; simple pseudo random number generator. This in turn is used
; to obtain numbers to randomize the state of the MRG32k3a
; generator, avoiding period degeneration.
(define (mrg32k3a-randomize-state state)
; G. Marsaglia's simple 16-bit generator with carry
(define m 65536)
(define x (modulo (:random-source-current-time) m))
(define (random-m)
(let ((y (modulo x m)))
(set! x (+ (* 30903 y) (quotient x m)))
y))
(define (random n) ; m < n < m^2
(modulo (+ (* (random-m) m) (random-m)) n))
; modify the state
(let ((m1 mrg32k3a-m1)
(m2 mrg32k3a-m2)
(s (mrg32k3a-unpack-state state)))
(mrg32k3a-pack-state
(vector
(+ 1 (modulo (+ (vector-ref s 0) (random (- m1 1))) (- m1 1)))
(modulo (+ (vector-ref s 1) (random m1)) m1)
(modulo (+ (vector-ref s 2) (random m1)) m1)
(+ 1 (modulo (+ (vector-ref s 3) (random (- m2 1))) (- m2 1)))
(modulo (+ (vector-ref s 4) (random m2)) m2)
(modulo (+ (vector-ref s 5) (random m2)) m2)))))
; Large Integers
; ==============
;
; To produce large integer random deviates, for n > m-max, we first
; construct large random numbers in the range {0..m-max^k-1} for some
; k such that m-max^k >= n and then use the rejection method to choose
; uniformly from the range {0..n-1}.
(define mrg32k3a-m-max
(mrg32k3a-random-range))
(define (mrg32k3a-random-power state k) ; n = m-max^k, k >= 1
(if (= k 1)
(mrg32k3a-random-integer state mrg32k3a-m-max)
(+ (* (mrg32k3a-random-power state (- k 1)) mrg32k3a-m-max)
(mrg32k3a-random-integer state mrg32k3a-m-max))))
(define (mrg32k3a-random-large state n) ; n > m-max
(do ((k 2 (+ k 1))
(mk (* mrg32k3a-m-max mrg32k3a-m-max) (* mk mrg32k3a-m-max)))
((>= mk n)
(let* ((mk-by-n (quotient mk n))
(a (* mk-by-n n)))
(do ((x (mrg32k3a-random-power state k)
(mrg32k3a-random-power state k)))
((< x a) (quotient x mk-by-n)))))))
; Multiple Precision Reals
; ========================
;
; To produce multiple precision reals we produce a large integer value
; and convert it into a real value. This value is then normalized.
; The precision goal is unit <= 1/(m^k + 1), or 1/unit - 1 <= m^k.
; If you know more about the floating point number types of the
; Scheme system, this can be improved.
(define (mrg32k3a-random-real-mp state unit)
(do ((k 1 (+ k 1))
(u (- (/ 1 unit) 1) (/ u mrg32k3a-m1)))
((<= u 1)
(/ (exact->inexact (+ (mrg32k3a-random-power state k) 1))
(exact->inexact (+ (expt mrg32k3a-m-max k) 1))))))
; Provide the Interface as Specified in the SRFI
; ==============================================
;
; An object of type random-source is a record containing the procedures
; as components. The actual state of the generator is stored in the
; binding-time environment of make-random-source.
(define (make-random-source)
(let ((state (mrg32k3a-pack-state ; make a new copy
(list->vector (vector->list mrg32k3a-initial-state)))))
(:random-source-make
(lambda ()
(mrg32k3a-state-ref state))
(lambda (new-state)
(set! state (mrg32k3a-state-set new-state)))
(lambda ()
(set! state (mrg32k3a-randomize-state state)))
(lambda (i j)
(set! state (mrg32k3a-pseudo-randomize-state i j)))
(lambda ()
(lambda (n)
(cond
((not (and (integer? n) (exact? n) (positive? n)))
(error "range must be exact positive integer" n))
((<= n mrg32k3a-m-max)
(mrg32k3a-random-integer state n))
(else
(mrg32k3a-random-large state n)))))
(lambda args
(cond
((null? args)
(lambda ()
(mrg32k3a-random-real state)))
((null? (cdr args))
(let ((unit (car args)))
(cond
((not (and (real? unit) (< 0 unit 1)))
(error "unit must be real in (0,1)" unit))
((<= (- (/ 1 unit) 1) mrg32k3a-m1)
(lambda ()
(mrg32k3a-random-real state)))
(else
(lambda ()
(mrg32k3a-random-real-mp state unit))))))
(else
(error "illegal arguments" args)))))))
(define random-source?
:random-source?)
(define (random-source-state-ref s)
((:random-source-state-ref s)))
(define (random-source-state-set! s state)
((:random-source-state-set! s) state))
(define (random-source-randomize! s)
((:random-source-randomize! s)))
(define (random-source-pseudo-randomize! s i j)
((:random-source-pseudo-randomize! s) i j))
; ---
(define (random-source-make-integers s)
((:random-source-make-integers s)))
(define (random-source-make-reals s . unit)
(apply (:random-source-make-reals s) unit))
; ---
(define default-random-source
(make-random-source))
(define random-integer
(random-source-make-integers default-random-source))
(define random-real
(random-source-make-reals default-random-source))

33
scheme/srfi/srfi-28.scm Normal file
View File

@ -0,0 +1,33 @@
(define format
(lambda (format-string . objects)
(let ((buffer (open-output-string)))
(let loop ((format-list (string->list format-string))
(objects objects))
(cond ((null? format-list) (get-output-string buffer))
((char=? (car format-list) #\~)
(if (null? (cdr format-list))
(error 'format "Incomplete escape sequence")
(case (cadr format-list)
((#\a)
(if (null? objects)
(error 'format "No value for escape sequence")
(begin
(display (car objects) buffer)
(loop (cddr format-list) (cdr objects)))))
((#\s)
(if (null? objects)
(error 'format "No value for escape sequence")
(begin
(write (car objects) buffer)
(loop (cddr format-list) (cdr objects)))))
((#\%)
(newline buffer)
(loop (cddr format-list) objects))
((#\~)
(write-char #\~ buffer)
(loop (cddr format-list) objects))
(else
(error 'format "Unrecognized escape sequence")))))
(else (write-char (car format-list) buffer)
(loop (cdr format-list) objects)))))))