scsh-0.6/scsh/awk.scm

553 lines
19 KiB
Scheme
Raw Normal View History

;;; An awk loop, after the design of David Albertz and Olin Shivers.
;;; Copyright (c) 1994 by Olin Shivers.
;;; - Requires RECEIVE from RECEIVING package.
;;; - Would require DESTRUCTURE from DESTRUCTURING package, but it appears
;;; to be broken, so we hack it w/cars and cdrs.
;;; - Requires STRING-MATCH from SCSH package.
;;; This should be hacked to convert regexp strings into regexp structures
;;; at the top of the form, and then just refer to the structs in the
;;; tests.
;;; Examples:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; ;;; Filter -- pass only lines containing my name.
;;; (awk (read-line) (line) ()
;;; ("Olin" (display line) (newline)))
;;;
;;; ;;; Count the number of non-comment lines of code in my Scheme source.
;;; (awk (read-line) (line) ((nlines 0))
;;; ("^[ \t]*;" nlines) ; A comment line.
;;; (else (+ nlines 1))) ; Not a comment line.
;;;
;;; ;;; Read numbers, counting the evens and odds.
;;; (awk (read) (val) ((evens 0) (odds 0))
;;; ((zero? val) (display "zero ") (values evens odds)) ; Tell me about
;;; ((> val 0) (display "pos ") (values evens odds)) ; sign, too.
;;; (else (display "neg ") (values evens odds))
;;;
;;; ((even? val) (values (+ evens 1) odds))
;;; (else (values evens (+ odds 1))))
;;; Syntax:
;;; (awk <reader-exp> <rec&field-vars> [<rec-counter>] <state-var-inits>
;;; <clause1>
;;; .
;;; .
;;; <clausen>)
;;; This macro is written using Clinger/Rees explicit-renaming low-level
;;; macros. So it is pretty ugly. It takes a little care to generate
;;; cosmetically attractive code, for two reasons:
;;; - It makes it easier for humans to examine the expanded code.
;;; - It helps low-tech compilers compile the code well. Some of the
;;; optimisations the expander implements would be hard for even a
;;; sophisticated compiler to perform automatically. For example, it doesn't
;;; introduce a record-counter variable unless required to do so. It's a
;;; non-trivial analysis to spot and remove an unused loop variable (I show
;;; how to do so in my dissertation; I don't know of any production
;;; compilers that do it). Same remarks apply to the variable that tracks
;;; the state bit for ELSE clauses -- we don't introduce one unless the loop
;;; actually contains ELSE clauses. The lesson here is that loop macros
;;; by definition have information about the data-flow of their bodies that
;;; compilers have to work hard to spot by analysis of their expanded forms.
;;; The macro can exploit this knowledge at the high-level.
;;;
;;; Interesting research issue: Could one design a macro system that would
;;; allow the macro to communicate this knowledge to the compiler? Could
;;; the macro's assertions be verified by the compiler, as well?
;;;
;;; In any even, there's a down-side to this cosmetic clean-up:
;;; all of this optimisation definitely makes the macro a lot more hairy
;;; than it would otherwise be. The expanded code is easier to read; the
;;; macro itself is harder to read.
;;; Simple syntax-hacking utilities.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Return a form that produces multiple values.
;;; () => (values)
;;; (v) => v
;;; (v1 v2 ...) => (values v1 v2 ...)
(define (mult-values vals rename)
(if (or (not (pair? vals)) (pair? (cdr vals)))
`(,(rename 'values) . ,vals)
(car vals)))
;;; () => ()
;;; (v1) => (v1)
;;; (v1 v2) => ((VALUES v1 v2))
;;;
;;; Return an expression list, not an expression. (Either 1 or 0 expressions.)
;;; Use this one when we don't care what happens if we are returning 0 vals.
;;; It pairs up with MV-LET below, which ignores the number of values
;;; returned to it when expecting zero values.
(define (sloppy-mult-values vals rename)
(if (and (pair? vals) (pair? (cdr vals)))
`((,(rename 'values) . ,vals))
vals))
;; DEBLOCK maps an expression to a list of expressions, flattening BEGINS.
;; (deblock '(begin (begin 3 4) 5 6 (begin 7 8))) => (3 4 5 6 7 8)
(define (deblock exp rename compare)
(let ((%block (rename 'begin)))
(let deblock1 ((exp exp))
(if (and (pair? exp)
; (name? (car exp))
(compare %block (car exp)))
(apply append (map deblock1 (cdr exp)))
(list exp)))))
;; BLOCKIFY maps an expression list to a BEGIN form, flattening nested BEGINS.
;; (blockify '( (begin 3 4) 5 (begin 6) )) => (begin 3 4 5 6)
(define (blockify exps rename compare)
(let ((new-exps (apply append
(map (lambda (exp) (deblock exp rename compare))
exps))))
(cond ((null? new-exps)
(error "Empty BEGIN" exps))
((null? (cdr new-exps)) ; (begin exp) => exp
(car new-exps))
(else `(,(rename 'begin) . ,new-exps)))))
(define (mv-let r c vars exp body)
(if (pair? vars)
(if (pair? (cdr vars))
`(,(r 'receive) ,vars ,exp . ,(deblock body r c))
`(,(r 'let) ((,(car vars) ,exp)) . ,(deblock body r c)))
(blockify (list exp body) r c)))
;;; Is X one of the keywords {range, :range, range:, :range:}?
(define (range-keyword? x rename compare)
(or (compare x (rename 'range))
(compare x (rename ':range))
(compare x (rename 'range:))
(compare x (rename ':range:))))
;;; Apply PRED to every element of VALS. Collect & return all the non-#f
;;; values produced.
(define (all-trues pred vals)
(let lp ((vals vals) (ans '()))
(if (pair? vals)
(lp (cdr vals)
(cond ((pred (car vals)) => (lambda (elt) (cons elt ans)))
(else ans)))
(reverse ans))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (expand-awk exp r c)
(let* ((%lambda (r 'lambda)) ; Bind a mess of keywords.
(%let (r 'let))
(%receive (r 'receive))
(%values (r 'values))
(%if (r 'if))
(%eof-object? (r 'eof-object?))
(%after (r 'after))
(%else (r 'else))
(%+ (r '+))
(%make-regexp (r 'make-regexp))
(gensym (let ((i 0))
(lambda (s)
(set! i (+ i 1))
(string->symbol (string-append s (number->string i))))))
;; Is the clause a range-test clause?
(range? (lambda (clause) (range-keyword? (car clause) r c)))
;; Make some standard vars we'll need.
(lp-var (r 'lp))
(reader (r 'read-rec))
;; If I throw in an abort-loop or abort-iteration macro,
;; I'll also need to make two vars for the continuations.
;; Rip the form apart.
(reader-exp (cadr exp))
(rec/field-vars (caddr exp))
(rec-var (car rec/field-vars)) ; The var bound to the record.
(rest (cdddr exp))) ; Stuff after the rec&field-vars.
(receive (rec-counter state-inits clauses) ; Parse out the last
(if (list? (car rest)) ; three parts of the
(values #f (car rest) (cdr rest)) ; form.
(values (car rest) (cadr rest) (cddr rest)))
;; Some analysis: what have we got?
;; Range clauses, else clauses, line num tests,...
(let* ((recnum-tests? ; Do any of the clauses test the record
(any? (lambda (clause) ; count? (I.e., any integer tests?)
(let ((test (car clause)))
(or (integer? test)
(and (range? clause)
(or (integer? (cadr clause))
(integer? (caddr clause)))))))
clauses))
;; If any ELSE clauses, bind this to the var in which we
;; will keep the else state, otherwise #f.
(else-var (and (any? (lambda (clause)
(c (car clause) %else))
clauses)
(r 'else)))
;; We compile all of the regexp patterns into regexp
;; data structures outside the AWK loop. So we need to
;; make a list of all the regexps that are used as tests.
(patterns (apply append
(map (lambda (clause)
(let ((test (car clause)))
(cond ((string? test) (list test))
((range? clause)
(let ((t1 (cadr clause))
(t2 (caddr clause)))
(append (if (string? t1)
(list t1)
'())
(if (string? t2)
(list t2)
'()))))
(else '()))))
clauses)))
;; Gratuitous optimisation: uniquify the patterns.
(patterns (let recur ((pats patterns))
(if (pair? pats)
(let ((pat (car pats))
(ans (recur (cdr pats))))
(if (member pat ans) ans (cons pat ans)))
'())))
;; An alist matching regexp patterns with the vars to which
;; we will bind their compiled regexp data structure.
(pats/vars (map (lambda (p) (cons p (r (gensym "re."))))
patterns))
;; A LET-list binding the regexp vars to their compiled regexps.
(regexp-inits (map (lambda (p/v)
`(,(cdr p/v) (,%make-regexp ,(car p/v))))
pats/vars))
;; Make a list of state vars for the range clauses.
;; For each range clause, we need a boolean var to track
;; whether or not the range is activated.
(range-vars (all-trues (lambda (clause)
(and (range? clause)
(r (gensym "r."))))
clauses))
(svars (map car state-inits)) ; The user's state variables.
;; If the user didn't declare a record-counter var,
;; but he is testing line numbers (with integer test forms),
;; go ahead and generate a record-counter of our own.
(rec-counter (or rec-counter
(and recnum-tests?
(r (gensym "record-count.")))))
;; Generate the loop vars & their inits.
;; These are: the record counter, the range vars,
;; and the user's state vars.
;; All of these different sets are optional.
(loop-vars (append (if rec-counter (list rec-counter) '())
range-vars
svars))
(loop-var-init-values (append (if rec-counter '(0) '())
(map (lambda (x) #f) range-vars)
(map cadr state-inits)))
;; A LET list initialising all the loop vars.
(loop-var-init (map list loop-vars loop-var-init-values))
;; Build the clause that computes the loop's return value.
;; If the user gave an AFTER clause, use its body. Otherwise,
;; it's (values ,@svars).
(after-clause? (lambda (clause) (c (car clause) %after)))
(after-exp (let ((after-clauses (filter after-clause? clauses)))
(cond ((null? after-clauses)
(mult-values svars r))
((null? (cdr after-clauses))
(blockify (cdar after-clauses) r c))
(else (error "Multiple AFTER clauses in awk body."
after-clauses exp)))))
(loop-body (awk-loop-body lp-var rec-var else-var
rec-counter range-vars svars
clauses pats/vars r c))
;; Variables that have to be updated per-iteration, as a LET list.
;; Note that we are careful not to increment the record counter
;; until after we've verified the new record isn't EOF.
(per-iteration-updates
(append (if else-var `((,else-var #t)) '()) ; Else state.
(if rec-counter ; Record count.
`((,rec-counter (,%+ ,rec-counter 1)))
'())))
(loop-body (if (pair? per-iteration-updates)
`(,%let ,per-iteration-updates
. ,(deblock loop-body r c))
loop-body)))
`(,%let ((,reader (,%lambda () ,reader-exp))
. ,regexp-inits)
(,%let ,lp-var ,loop-var-init
,(mv-let r c rec/field-vars `(,reader)
`(,%if (,%eof-object? ,rec-var) ,after-exp
,loop-body))))))))
;;; Expand into the body of the awk loop -- the code that tests & executes
;;; each clause, and then jumps to the top of the loop.
(define (awk-loop-body lp-var rec-var else-var rec-counter
range-vars svars clauses pats/vars r c)
(let ((clause-vars (if else-var (cons else-var svars) svars))
(loop-vars (append (if rec-counter (list rec-counter) '())
range-vars
svars))
(range-clause? (lambda (clause) (range-keyword? (car clause) r c)))
(%after (r 'after))
(%else (r 'else)))
(let expand ((clauses clauses) (range-vars range-vars))
(if (pair? clauses)
(let* ((clause (car clauses))
(test (car clause)))
(cond ((range-keyword? test r c)
(let ((tail (expand (cdr clauses) (cdr range-vars))))
(expand-range-clause clause tail (car range-vars)
rec-var else-var rec-counter svars
pats/vars
r c)))
((c test %after) ; An AFTER clause. Skip it.
(expand (cdr clauses) range-vars))
((c test %else) ; An ELSE clause.
(let ((tail (expand (cdr clauses) range-vars)))
(expand-else-clause clause tail else-var svars r c)))
(else ; A simple clause.
(let ((tail (expand (cdr clauses) range-vars)))
(expand-simple-clause clause tail
rec-var else-var rec-counter svars
pats/vars r c)))))
;; No clauses -- just jump to top of loop.
`(,lp-var . ,loop-vars)))))
;;; Make a Scheme expression out of a test form.
;;; Integer i => (= i <record-counter>)
;;; String s => (regexp-exec s <record>)
;;; Expression e => e
(define (->simple-clause-test test-form rec-var rec-counter pats/vars r)
(cond ((integer? test-form) `(,(r '=) ,rec-counter ,test-form))
((string? test-form)
(let ((re-var (cond ((assoc test-form pats/vars) => cdr)
(else (error "Impossible AWK error -- unknown regexp"
test-form pats/vars)))))
`(,(r 'regexp-exec) ,re-var ,rec-var)))
(else test-form)))
(define (expand-simple-clause clause tail
rec-var else-var rec-counter svars
pats/vars r c)
(let* ((%let (r 'let))
(%= (r '=))
(%string-match (r 'string-match))
(%arrow (r '=>))
(%if (r 'if))
(test (car clause))
(test (->simple-clause-test test rec-var rec-counter pats/vars r))
;; Is clause of the form (test => proc)
(arrow? (and (= 3 (length clause))
(c (cadr clause) %arrow)))
(null-clause-list (null-clause-action else-var svars r))
;; The core form conditionally executes the body.
;; It returns the new else var and the new state vars, if any.
(core (if arrow?
(let* ((tv (r 'tval)) ; APP is the actual
(app `(,(caddr clause) ,tv))) ; body: (proc tv).
`(,%let ((,tv ,test))
(,%if ,tv
,(clause-action (list app) else-var svars r c)
. ,null-clause-list)))
`(,%if ,test ,(clause-action (cdr clause) else-var svars r c)
. ,null-clause-list)))
(loop-vars (if else-var (cons else-var svars) svars)))
;; Do the core computation, update the iteration vars,
;; and then do the tail in the scope of the updated environment.
(core-then-tail loop-vars core tail r c)))
(define (core-then-tail loop-vars core tail r c)
(mv-let r c loop-vars core tail))
(define (expand-range-clause clause tail range-var
rec-var else-var rec-counter svars
pats/vars r c)
(let* ((start-test (cadr clause))
(stop-test (caddr clause))
(body (cdddr clause))
(%receive (r 'receive))
(%if (r 'if))
(%lambda (r 'lambda))
(keyword (car clause)) ; range or :range or range: or :range:
(tester (r (cond ((c keyword (r 'range)) 'next-range)
((c keyword (r ':range)) 'next-:range)
((c keyword (r 'range:)) 'next-range:)
((c keyword (r ':range:)) 'next-:range:)
(else (error "Unrecognised range keyword!" clause)))))
;; Convert the start and stop test forms to code.
(start-test (->simple-clause-test start-test rec-var
rec-counter pats/vars r))
(stop-test (->simple-clause-test stop-test rec-var
rec-counter pats/vars r))
(start-thunk `(,%lambda () ,start-test)) ; ...and thunkate them.
(stop-thunk `(,%lambda () ,stop-test))
(loop-vars (if else-var (cons else-var svars) svars))
(this-rec (r 'this-record?))
(core `(,%if ,this-rec
,(clause-action body else-var svars r c)
. ,(null-clause-action else-var svars r))))
`(,%receive (,this-rec ,range-var)
(,tester ,start-thunk ,stop-thunk ,range-var)
,(core-then-tail loop-vars core tail r c))))
(define (expand-else-clause clause tail else-var svars r c)
(let* ((body (cdr clause))
(tail-exps (deblock tail r c))
(%if (r 'if))
(%receive (r 'receive))
(%let (r 'let))
;; We are hard-wiring the else var to #t after this, so the core
;; expression doesn't need to return it -- just the new values
;; of the user's state vars.
(core `(,%if ,else-var
,(clause-action body #f svars r c)
. ,(sloppy-mult-values svars r))))
(mv-let r c svars core `(,%let ((,else-var #t)) . ,tail-exps))))
;;; BODY is a list of expressions from a loop clause. We want to evaluate it,
;;; under some conditions.
;;; - The body evaluates to multiple values, one for each state variable.
;;; However, if there are no state variables, we want to *ignore* the
;;; values produced by the body, and explicitly return 0 values,
;;; not blow up if the body should happen not to return exactly zero values.
;;; - If we are tracking an else-variable, then the body firing will turn
;;; it off by returning its new #f value.
(define (clause-action body else-var svars r c)
(let ((%values (r 'values))
(%receive (r 'receive)))
(blockify (if (pair? svars)
(if else-var
(if (pair? (cdr svars)) ; state vars and an else var.
`((,%receive ,svars ,(blockify body r c)
(,%values #f . ,svars)))
`((,%values #f ,(blockify body r c)))) ; Gratuitous.
body) ; State vars, but no else var.
;; No state vars -- ignore value computed by BODY forms.
`(,@body . ,(if else-var '(#f) `())))
r c)))
;;; The clause didn't execute. Return the svars unchanged, and also
;;; return the current else-value if we are tracking one. We return
;;; a 0 or 1 element expression list -- if no values are being expected
;;; this returns the empty list.
(define (null-clause-action else-var svars r)
(sloppy-mult-values (if else-var (cons else-var svars) svars)
r))
;;; These procs are for handling RANGE clauses.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; First return value tells whether this line is active;
;;; next value tells whether region is active after this line.
;;;
;;; (:range 0 4) = 0 1 2 3 This is the most useful one.
;;; (range: 0 4) = 1 2 3 4
;;; (range 0 4) = 1 2 3
;;; (:range: 0 4) = 0 1 2 3 4
;;; If these were inlined and the test thunks substituted, it would
;;; be acceptably efficient. But who writes Scheme compilers that good
;;; in the 90's?
(define (next-:range start-test stop-test state)
(let ((new-state (if state
(or (not (stop-test)) ; Stop,
(start-test)) ; but restart.
(and (start-test) ; Start,
(not (stop-test)))))) ; but stop, too.
(values new-state new-state)))
(define (next-range: start-test stop-test state)
(values state
(if state
(or (not (stop-test)) ; Stop,
(start-test)) ; but restart.
(and (start-test) ; Start,
(not (stop-test)))))) ; but stop, too.
(define (next-range start-test stop-test state)
(if state
(let ((not-stop (not (stop-test))))
(values not-stop
(or not-stop ; Stop,
(start-test)))) ; but restart.
(values #f
(and (start-test) ; Start,
(not (stop-test)))))) ; but stop, too.
(define (next-:range: start-test stop-test state)
(if state
(values #t
(or (not (stop-test)) ; Stop
(start-test))) ; but restart.
(let ((start? (start-test)))
(values start?
(and start? ; Start,
(not (stop-test))))))) ; but stop, too.