186 lines
6.5 KiB
Scheme
186 lines
6.5 KiB
Scheme
|
;;; The SRFI-32 sort package -- delete neighboring duplicate elts
|
||
|
;;; Copyright (c) 1998 by Olin Shivers.
|
||
|
;;; This code is open-source; see the end of the file for porting and
|
||
|
;;; more copyright information.
|
||
|
;;; Olin Shivers 11/98.
|
||
|
|
||
|
;;; Problem:
|
||
|
;;; vector-delete-neighbor-dups pushes N stack frames, where N is the number
|
||
|
;;; of elements in the answer vector. This is arguably a very efficient thing
|
||
|
;;; to do, but it might blow out on a system with a limited stack but a big
|
||
|
;;; heap. We could rewrite this to "chunk" up answers in temp vectors if we
|
||
|
;;; push more than a certain number of frames, then allocate a final answer,
|
||
|
;;; copying all the chunks into the answer. But it's much more complex code.
|
||
|
|
||
|
;;; Exports:
|
||
|
;;; (list-delete-neighbor-dups = lis) -> list
|
||
|
;;; (list-delete-neighbor-dups! = lis) -> list
|
||
|
;;; (vector-delete-neighbor-dups = v [start end]) -> vector
|
||
|
;;; (vector-delete-neighbor-dups! = v [start end]) -> end'
|
||
|
|
||
|
;;; These procedures delete adjacent duplicate elements from a list or
|
||
|
;;; a vector, using a given element equality procedure. The first or leftmost
|
||
|
;;; element of a run of equal elements is the one that survives. The list
|
||
|
;;; or vector is not otherwise disordered.
|
||
|
;;;
|
||
|
;;; These procedures are linear time -- much faster than the O(n^2) general
|
||
|
;;; duplicate-elt deletors that do not assume any "bunching" of elements.
|
||
|
;;; If you want to delete duplicate elements from a large list or vector,
|
||
|
;;; sort the elements to bring equal items together, then use one of these
|
||
|
;;; procedures -- for a total time of O(n lg n).
|
||
|
|
||
|
;;; LIST-DELETE-NEIGHBOR-DUPS
|
||
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
;;; Below are multiple versions of the LIST-DELETE-NEIGHBOR-DUPS procedure,
|
||
|
;;; from simple to complex. RECUR's contract: Strip off any leading X's from
|
||
|
;;; LIS, and return that list neighbor-dup-deleted.
|
||
|
;;;
|
||
|
;;; The final version
|
||
|
;;; - shares a common subtail between the input & output list, up to 1024
|
||
|
;;; elements;
|
||
|
;;; - Needs no more than 1024 stack frames.
|
||
|
|
||
|
;;; Simplest version.
|
||
|
;;; - Always allocates a fresh list / never shares storage.
|
||
|
;;; - Needs N stack frames, if answer is length N.
|
||
|
(define (list-delete-neighbor-dups = lis)
|
||
|
(if (pair? lis)
|
||
|
(let ((x0 (car lis)))
|
||
|
(cons x0 (let recur ((x0 x0) (xs (cdr lis)))
|
||
|
(if (pair? xs)
|
||
|
(let ((x1 (car xs))
|
||
|
(x2+ (cdr xs)))
|
||
|
(if (= x0 x1)
|
||
|
(recur x0 x2+) ; Loop, actually.
|
||
|
(cons x1 (recur x1 x2+))))
|
||
|
xs))))
|
||
|
lis))
|
||
|
|
||
|
;;; This version tries to use cons cells from input by sharing longest
|
||
|
;;; common tail between input & output. Still needs N stack frames, for ans
|
||
|
;;; of length N.
|
||
|
(define (list-delete-neighbor-dups = lis)
|
||
|
(if (pair? lis)
|
||
|
(let* ((x0 (car lis))
|
||
|
(xs (cdr lis))
|
||
|
(ans (let recur ((x0 x0) (xs xs))
|
||
|
(if (pair? xs)
|
||
|
(let ((x1 (car xs))
|
||
|
(x2+ (cdr xs)))
|
||
|
(if (= x0 x1)
|
||
|
(recur x0 x2+)
|
||
|
(let ((ans-tail (recur x1 x2+)))
|
||
|
(if (eq? ans-tail x2+) xs
|
||
|
(cons x1 ans-tail)))))
|
||
|
xs))))
|
||
|
(if (eq? ans xs) lis (cons x0 ans)))
|
||
|
|
||
|
lis))
|
||
|
|
||
|
;;; LIST-DELETE-NEIGHBOR-DUPS!
|
||
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
;;; This code runs in constant list space, constant stack, and also
|
||
|
;;; does only the minimum SET-CDR!'s necessary.
|
||
|
|
||
|
(define (list-delete-neighbor-dups! = lis)
|
||
|
(if (pair? lis)
|
||
|
(let lp1 ((prev lis) (prev-elt (car lis)) (lis (cdr lis)))
|
||
|
(if (pair? lis)
|
||
|
(let ((lis-elt (car lis))
|
||
|
(next (cdr lis)))
|
||
|
(if (= prev-elt lis-elt)
|
||
|
|
||
|
;; We found the first elts of a run of dups, so we know
|
||
|
;; we're going to have to do a SET-CDR!. Scan to the end of
|
||
|
;; the run, do the SET-CDR!, and loop on LP1.
|
||
|
(let lp2 ((lis next))
|
||
|
(if (pair? lis)
|
||
|
(let ((lis-elt (car lis))
|
||
|
(next (cdr lis)))
|
||
|
(if (= prev-elt lis-elt)
|
||
|
(lp2 next)
|
||
|
(begin (set-cdr! prev lis)
|
||
|
(lp1 lis lis-elt next))))
|
||
|
(set-cdr! prev lis))) ; Ran off end => quit.
|
||
|
|
||
|
(lp1 lis lis-elt next))))))
|
||
|
lis)
|
||
|
|
||
|
|
||
|
(define (vector-delete-neighbor-dups elt= v . maybe-start+end)
|
||
|
(call-with-values
|
||
|
(lambda () (vector-start+end v maybe-start+end))
|
||
|
(lambda (start end)
|
||
|
(if (< start end)
|
||
|
(let* ((x (vector-ref v start))
|
||
|
(ans (let recur ((x x) (i start) (j 1))
|
||
|
(if (< i end)
|
||
|
(let ((y (vector-ref v i))
|
||
|
(nexti (+ i 1)))
|
||
|
(if (elt= x y)
|
||
|
(recur x nexti j)
|
||
|
(let ((ansvec (recur y nexti (+ j 1))))
|
||
|
(vector-set! ansvec j y)
|
||
|
ansvec)))
|
||
|
(make-vector j)))))
|
||
|
(vector-set! ans 0 x)
|
||
|
ans)
|
||
|
'#()))))
|
||
|
|
||
|
|
||
|
;;; Packs the surviving elements to the left, in range [start,end'),
|
||
|
;;; and returns END'.
|
||
|
(define (vector-delete-neighbor-dups! elt= v . maybe-start+end)
|
||
|
(call-with-values
|
||
|
(lambda () (vector-start+end v maybe-start+end))
|
||
|
(lambda (start end)
|
||
|
|
||
|
(if (>= start end)
|
||
|
end
|
||
|
;; To eliminate unnecessary copying (read elt i then write the value
|
||
|
;; back at index i), we scan until we find the first dup.
|
||
|
(let skip ((j start) (vj (vector-ref v start)))
|
||
|
(let ((j+1 (+ j 1)))
|
||
|
(if (>= j+1 end)
|
||
|
end
|
||
|
(let ((vj+1 (vector-ref v j+1)))
|
||
|
(if (not (elt= vj vj+1))
|
||
|
(skip j+1 vj+1)
|
||
|
|
||
|
;; OK -- j & j+1 are dups, so we're committed to moving
|
||
|
;; data around. In lp2, v[start,j] is what we've done;
|
||
|
;; v[k,end) is what we have yet to handle.
|
||
|
(let lp2 ((j j) (vj vj) (k (+ j 2)))
|
||
|
(let lp3 ((k k))
|
||
|
(if (>= k end)
|
||
|
(+ j 1) ; Done.
|
||
|
(let ((vk (vector-ref v k))
|
||
|
(k+1 (+ k 1)))
|
||
|
(if (elt= vj vk)
|
||
|
(lp3 k+1)
|
||
|
(let ((j+1 (+ j 1)))
|
||
|
(vector-set! v j+1 vk)
|
||
|
(lp2 j+1 vk k+1))))))))))))))))
|
||
|
|
||
|
;;; Copyright
|
||
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
;;; This code is
|
||
|
;;; Copyright (c) 1998 by Olin Shivers.
|
||
|
;;; The terms are: You may do as you please with this code, as long as
|
||
|
;;; you do not delete this notice or hold me responsible for any outcome
|
||
|
;;; related to its use.
|
||
|
;;;
|
||
|
;;; Blah blah blah. Don't you think source files should contain more lines
|
||
|
;;; of code than copyright notice?
|
||
|
;;;
|
||
|
;;; Code porting
|
||
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
;;;
|
||
|
;;; If your Scheme has a faster mechanism for handling optional arguments
|
||
|
;;; (e.g., Chez), you should definitely port over to it. Note that argument
|
||
|
;;; defaulting and error-checking are interleaved -- you don't have to
|
||
|
;;; error-check defaulted START/END args to see if they are fixnums that are
|
||
|
;;; legal vector indices for the corresponding vector, etc.
|
||
|
|
||
|
|