scsh-0.6/scheme/big/lu-decomp.scm

145 lines
3.6 KiB
Scheme
Raw Permalink Normal View History

1999-09-14 08:45:02 -04:00
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; LU Decomposition (a rewriting of a Pascal program from `Numerical Recipes
; in Pascal'; look there for a detailed description of what is going on).
; A is an NxN matrix that is updated in place.
; This returns a row permutation vector and the sign of that vector.
(define *lu-decomposition-epsilon* 1.0e-20)
(define (lu-decomposition a)
(let* ((n (car (array-shape a)))
(indx (make-vector n))
(sign 1.0)
(vv (make-vector n)))
(do ((i 0 (+ i 1)))
((>= i n))
(do ((j 0 (+ j 1))
(big 0.0 (max big (abs (array-ref a i j)))))
((>= j n)
(if (= big 0.0)
(error "lu-decomposition matrix has a zero row" a i))
(vector-set! vv i (/ big)))))
(do ((j 0 (+ j 1)))
((>= j n))
(let ()
(define (sum-elts i end)
(do ((k 0 (+ k 1))
(sum (array-ref a i j)
(- sum (* (array-ref a i k)
(array-ref a k j)))))
((>= k end)
sum)))
(do ((i 0 (+ i 1)))
((>= i j))
(array-set! a (sum-elts i i) i j))
(receive (big imax)
(let loop ((i j) (big 0.0) (imax 0))
(if (>= i n)
(values big imax)
(let ((sum (sum-elts i j)))
(array-set! a sum i j)
(let ((temp (* (vector-ref vv i) (abs sum))))
(if (>= temp big)
(loop (+ i 1) temp i)
(loop (+ i 1) big imax))))))
(if (not (= j imax))
(begin
(do ((k 0 (+ k 1)))
((>= k n))
(let ((temp (array-ref a imax k)))
(array-set! a (array-ref a j k) imax k)
(array-set! a temp j k)))
(set! sign (- sign))
(vector-set! vv imax (vector-ref vv j))))
(vector-set! indx j imax)
(if (= (array-ref a j j) 0.0)
(array-set! a *lu-decomposition-epsilon* j j))
(if (not (= j (- n 1)))
(let ((temp (/ (array-ref a j j))))
(do ((i (+ j 1) (+ i 1)))
((>= i n))
(array-set! a (* (array-ref a i j) temp) i j)))))))
(values indx sign)))
(define (lu-back-substitute a indx b)
(let ((n (car (array-shape a))))
(let loop ((i 0) (ii #f))
(if (< i n)
(let* ((ip (vector-ref indx i))
(temp (vector-ref b ip)))
(vector-set! b ip (vector-ref b i))
(let ((new (if ii
(do ((j ii (+ j 1))
(sum temp (- sum (* (array-ref a i j)
(vector-ref b j)))))
((>= j i)
sum))
temp)))
(vector-set! b i new)
(loop (+ i 1)
(if (or ii (= temp 0.0)) ii i))))))
(do ((i (- n 1) (- i 1)))
((< i 0))
(do ((j (+ i 1) (+ j 1))
(sum (vector-ref b i) (- sum (* (array-ref a i j)
(vector-ref b j)))))
((>= j n)
(vector-set! b i (/ sum (array-ref a i i))))))))
;(define m
; (array '(4 4)
; 1.0 2.0 3.0 -2.0
; 8.0 -6.0 6.0 1.0
; 3.0 -2.0 0.0 -7.0
; 4.0 7.0 2.0 -1.0))
;
;(define b '#(2.0 1.0 3.0 -2.0))
;
;(define (test m b)
; (let* ((a (copy-array m))
; (n (car (array-shape m)))
; (x (make-vector n)))
;
; (do ((i 0 (+ i 1)))
; ((>= i n))
; (vector-set! x i (vector-ref b i)))
;
; (display "b = ")
; (display b)
; (newline)
;
; (call-with-values
; (lambda ()
; (lu-decomposition a))
; (lambda (indx sign)
; (lu-back-substitute a indx x)
;
; (display "x = ")
; (display x)
; (newline)
;
; (let ((y (make-vector (vector-length b))))
; (do ((i 0 (+ i 1)))
; ((>= i n))
; (do ((j 0 (+ j 1))
; (t 0.0 (+ t (* (array-ref m i j) (vector-ref x j)))))
; ((>= j n)
; (vector-set! y i t))))
;
; (display "a * x =")
; (display y)
; (newline))))))