scsh-0.5/rts/bignum.scm

337 lines
9.9 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

; Copyright (c) 1993, 1994 Richard Kelsey and Jonathan Rees. See file COPYING.
; This is file bignum.scm.
; Integer arithmetic
(define-extended-number-type :bignum (:exact-integer)
(make-bignum sign magnitude)
bignum?
(sign bignum-sign)
(magnitude bignum-magnitude))
(define (integer->bignum m)
(if (bignum? m)
m
(cond ((>= m 0)
(make-bignum 1 (integer->magnitude m)))
((= m least-non-bignum)
(make-bignum -1 least-non-bignum-magnitude))
(else
(make-bignum -1 (integer->magnitude (- 0 m)))))))
;(define (bignum->integer n) ;For debugging
; (* (bignum-sign n)
; (reduce (lambda (d n) (+ d (* n radix)))
; 0
; (bignum-magnitude n))))
(define (make-integer sign mag)
(if (> sign 0)
(if (smaller-magnitude? greatest-non-bignum-magnitude mag)
(make-bignum sign mag)
(magnitude->integer mag))
(if (smaller-magnitude? least-non-bignum-magnitude mag)
(make-bignum sign mag)
(if (same-magnitude? mag least-non-bignum-magnitude)
least-non-bignum
(- 0 (magnitude->integer mag))))))
; Arithmetic
(define (integer+ m n)
(let ((m (integer->bignum m))
(n (integer->bignum n)))
(let ((m-sign (bignum-sign m))
(m-mag (bignum-magnitude m))
(n-sign (bignum-sign n))
(n-mag (bignum-magnitude n)))
(if (= m-sign n-sign)
(make-integer m-sign (add-magnitudes m-mag n-mag))
(if (smaller-magnitude? m-mag n-mag)
(make-integer (- 0 m-sign) (subtract-magnitudes n-mag m-mag))
(make-integer m-sign (subtract-magnitudes m-mag n-mag)))))))
(define (integer- m n)
(integer+ m (integer-negate n)))
(define (integer-negate m)
(cond ((bignum? m)
(make-integer (- 0 (bignum-sign m))
(bignum-magnitude m)))
((= m least-non-bignum)
(make-bignum 1 least-non-bignum-magnitude))
(else (- 0 m))))
(define (integer* m n)
(let ((m (integer->bignum m))
(n (integer->bignum n)))
(make-integer (* (bignum-sign m) (bignum-sign n))
(multiply-magnitudes
(bignum-magnitude m)
(bignum-magnitude n)))))
(define (integer-divide m n cont)
(let ((m (integer->bignum m))
(n (integer->bignum n)))
(divide-magnitudes
(bignum-magnitude m)
(bignum-magnitude n)
(lambda (q r)
(cont (make-integer (* (bignum-sign m) (bignum-sign n)) q)
(make-integer (bignum-sign m) r))))))
(define (integer-quotient m n)
(integer-divide m n (lambda (q r) q)))
(define (integer-remainder m n)
(integer-divide m n (lambda (q r) r)))
(define integer=
(lambda (m n)
(let ((m (integer->bignum m))
(n (integer->bignum n)))
(and (= (bignum-sign m) (bignum-sign n))
(same-magnitude? (bignum-magnitude m)
(bignum-magnitude n))))))
(define integer<
(lambda (m n)
(let ((m (integer->bignum m))
(n (integer->bignum n)))
(let ((m-sign (bignum-sign m))
(n-sign (bignum-sign n)))
(or (< m-sign n-sign)
(and (= m-sign n-sign)
(if (< m-sign 0)
(smaller-magnitude? (bignum-magnitude n)
(bignum-magnitude m))
(smaller-magnitude? (bignum-magnitude m)
(bignum-magnitude n)))))))))
; Magnitude (unsigned integer) arithmetic
(define log-radix 14) ;Cutting it close here...
(define radix (expt 2 log-radix))
(define greatest-non-bignum (+ (expt 2 28) (- (expt 2 28) 1)))
(define least-non-bignum (* (expt 2 28) -2))
(define zero-magnitude '())
(define zero-magnitude? null?)
(define (low-digit m)
(if (zero-magnitude? m)
0
(car m)))
(define (high-digits m)
(if (zero-magnitude? m)
m
(cdr m)))
(define (adjoin-digit d m)
(if (and (= d 0) (zero-magnitude? m))
m
(cons d m)))
(define (integer->magnitude n)
(if (= n 0)
zero-magnitude
(let ((digit (remainder n radix)))
(adjoin-digit digit
(integer->magnitude (quotient n radix))))))
(define (magnitude->integer m)
(if (zero-magnitude? m)
0
(+ (low-digit m)
(* radix (magnitude->integer (high-digits m))))))
(define greatest-non-bignum-magnitude
(integer->magnitude greatest-non-bignum))
(define least-non-bignum-magnitude
(adjoin-digit (- 0 (remainder least-non-bignum radix))
(integer->magnitude
(- 0 (quotient least-non-bignum radix)))))
; Combine two numbers digitwise using op.
(define (combine-magnitudes m n op)
(let recur ((m m) (n n) (carry 0))
(if (and (zero-magnitude? m) (zero-magnitude? n))
(integer->magnitude carry)
(let ((result (+ carry (op (low-digit m) (low-digit n)))))
(let ((q (quotient result radix))
(r (remainder result radix)))
(if (< r 0)
(adjoin-digit (+ r radix)
(recur (high-digits m)
(high-digits n)
(- q 1)))
(adjoin-digit r
(recur (high-digits m)
(high-digits n)
q))))))))
(define (add-magnitudes m n)
(combine-magnitudes m n +))
(define (subtract-magnitudes m n)
(combine-magnitudes m n -))
; Compare
(define same-magnitude? equal?)
(define (smaller-magnitude? m n)
(let loop ((m m) (n n) (a #f))
(cond ((zero-magnitude? m)
(or (not (zero-magnitude? n)) a))
((zero-magnitude? n) #f)
(else
(loop (high-digits m)
(high-digits n)
(or (< (low-digit m) (low-digit n))
(and (= (low-digit m) (low-digit n)) a)))))))
; Multiply
(define (multiply-magnitudes m n)
(let recur ((m m) (a zero-magnitude))
(if (zero-magnitude? m)
a
(let ((a (combine-magnitudes a n (lambda (d e)
(+ d (* e (low-digit m)))))))
(adjoin-digit (low-digit a)
(recur (high-digits m) (high-digits a)))))))
; Divide m/n: find q and r such that m = q*n + r, where 0 <= r < n.
; Oh no... time to get out Knuth...
; The main thing we don't do that Knuth does is to normalize the
; divisor (n) by shifting it left.
(define (divide-magnitudes m n cont)
(if (zero-magnitude? (high-digits n))
(divide-by-digit m (low-digit n)
(lambda (q r)
(cont q (adjoin-digit r zero-magnitude))))
(let recur ((m m) (cont cont))
(if (smaller-magnitude? m n)
(cont zero-magnitude m)
(recur
(high-digits m)
(lambda (q r)
;; 0 <= r < n and d < b
;; so b*r + d < b*n.
(divide-step (adjoin-digit (low-digit m) r)
n
(lambda (q1 r)
(cont (adjoin-digit q1 q) r)))))))))
; Divide m by n, where n <= m < b*n, i.e. 1 <= quotient < b.
; E.g. if n = 100 then 100 <= m <= 999
; if n = 999 then 999 <= m <= 9989
(define (divide-step m n cont)
(do ((m-high m (high-digits m-high))
(n-high n (high-digits n-high)))
((zero-magnitude? (high-digits (high-digits n-high)))
;; Occasionally q^ is one larger than the actual first digit.
;; This loop will never iterate more than once.
(let loop ((q^ (min (guess-quotient-digit m-high n-high)
(- radix 1))))
(let ((r (combine-magnitudes m n (lambda (d e)
(- d (* e q^))))))
(if (improper-magnitude? r)
;; (begin (write `(addback ,m ,n ,q^ ,r)) (newline) ...)
(loop (- q^ 1))
(cont q^ r)))))))
; Compute q such that [m1 m2 m3] = q*[n1 n2] + r with 0 <= r < [n1 n2]
; Can assume b <= [0 n1 n2] <= [m1 m2 m3] <= [n1 n2 b-1]
; Some examples:
; m / n : 100[1] / 10[02], 099 / 10, 099[1] / 99[0], 999[8] / 99[99]
; Various hacks are possible to improve performance. In particular, the
; second division can be eliminated if the divisor is normalized.
; See Knuth.
; [m1 m2] = q0*[n1] + r0
; [m1 m2 m3] = q0*[n1 n2] + r^
; r^ = b*r0 + m3 - q0*n2
(define (guess-quotient-digit m n)
(let ((n1 (low-digit (high-digits n)))
(n2 (low-digit n))
(m1 (low-digit (high-digits (high-digits m))))
(m2 (low-digit (high-digits m)))
(m3 (low-digit m)))
(let ((m12 (+ (* m1 radix) m2)))
(let ((q0 (quotient m12 n1))
(r0 (remainder m12 n1)))
(let ((r^ (- (+ (* radix r0) m3) (* q0 n2)))
(n12 (+ (* n1 radix) n2)))
(let ((q1 (quotient r^ n12))
(r1 (remainder r^ n12)))
(if (> q1 0)
(begin (display "This should never happen: q1 = ")
(write q1) (newline)))
(let ((q (+ q0 q1)))
(if (< r1 0) (- q 1) q))))))))
(define (improper-magnitude? m)
(and (not (zero-magnitude? m))
(or (< (low-digit m) 0)
(improper-magnitude? (high-digits m)))))
; Special case of division algorithm for single-digit divisor.
(define (divide-by-digit m d cont)
(if (= d 0)
(error "integer division by zero" m d)
(let recur ((m m) (cont cont))
(if (and (zero-magnitude? (high-digits m))
(< (low-digit m) d))
(cont zero-magnitude (low-digit m))
(recur (high-digits m)
(lambda (q r)
(let ((m1 (+ (low-digit m) (* radix r))))
(cont (adjoin-digit (quotient m1 d) q)
(remainder m1 d)))))))))
;(define (divide-test seed)
; (let ((random (make-random seed)))
; (let loop ()
; (let* ((z1 (integer+ (random) (integer* (random) 10000000)))
; (z2 (integer+ (random) (integer* (random) 10000000)))
; (n (max z1 z2))
; (r (min z1 z2))
; (q (random))
; (m (integer+ (integer* n q) r)))
; (if (not (= n r))
; (integer-divide m n
; (lambda (q1 r1)
; (if (and (= q q1) (= r r1))
; (begin (display ".")
; (force-output (current-output-port)))
; (error "division error" m n q q1 r r1)))))
; (loop)))))
; Extend the generic arithmetic operators.
(define-method &integer? ((n :bignum)) #t)
(define-method &exact? ((n :bignum)) #t)
(define-method &+ ((n1 :exact-integer) (n2 :exact-integer)) (integer+ n1 n2))
(define-method &- ((n1 :exact-integer) (n2 :exact-integer)) (integer- n1 n2))
(define-method &* ((n1 :exact-integer) (n2 :exact-integer)) (integer* n1 n2))
(define-method &= ((n1 :exact-integer) (n2 :exact-integer)) (integer= n1 n2))
(define-method &< ((n1 :exact-integer) (n2 :exact-integer)) (integer< n1 n2))
(define-method &quotient ((n1 :exact-integer) (n2 :exact-integer))
(integer-quotient n1 n2))
(define-method &remainder ((n1 :exact-integer) (n2 :exact-integer))
(integer-remainder n1 n2))