scsh-0.5/scsh/stringlib.scm

1290 lines
45 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; String-hacking functions -*- Scheme -*-
;;; Some of this code had (extremely distant) origins in MIT Scheme's string
;;; lib, and was substantially reworked by Olin Shivers (shivers@ai.mit.edu)
;;; 9/98. As such, it is
;;; Copyright (c) 1988-1994 Massachusetts Institute of Technology.
;;; The copyright terms are essentially open-software terms;
;;; the precise terms are at the end of this file.
;;;
;;; The KMP string-search code was massively rehacked from Stephen Bevan's
;;; code, written for scmlib, and is thus covered by the GPL. If that's a
;;; problem, write one from scratch (there are citations to standard textbooks
;;; in the comments), or rip it out and use the ten-line doubly-nested loop
;;; that's commented out just above this code.
;;;
;;; I wish I could mark definitions in this code to be inlined.
;;; Certain functions could benefit from compiler support.
;;;
;;; My policy on checking start/end substring specs is not uniform.
;;; I avoided doing arg checks when the function directly calls another
;;; lower-level function that will check the start/end specs as well.
;;; This has the advantage of not doing redundant checks, but the disadvantage
;;; is that errors are not reported early, at the highest possible call.
;;; There's not much high-level error checking of the other args, anyway.
;;; -Olin
;;; Support for START/END substring specs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This macro parses optional start/end arguments from arg lists, defaulting
;;; them to 0/(string-length s), and checks them for correctness.
(define-syntax let-start+end
(syntax-rules ()
((let-start+end (start end) proc s-exp args-exp body ...)
(receive (start end) (parse-final-start+end proc s-exp args-exp)
body ...))))
;;; Returns three values: start end rest
(define (parse-start+end proc s args)
(let ((slen (string-length s)))
(if (pair? args)
(let ((start (car args))
(args (cdr args)))
(if (or (not (integer? start)) (< start 0))
(error "Illegal substring START spec" proc start s)
(receive (end args)
(if (pair? args)
(let ((end (car args))
(args (cdr args)))
(if (or (not (integer? end)) (< slen end))
(error "Illegal substring END spec" proc end s)
(values end args)))
(values slen args))
(if (<= start end) (values start end args)
(error "Illegal substring START/END spec"
proc start end s)))))
(values 0 (string-length s) '()))))
(define (parse-final-start+end proc s args)
(receive (start end rest) (parse-start+end proc s args)
(if (pair? rest) (error "Extra arguments to procedure" proc rest)
(values start end))))
(define (check-substring-spec proc s start end)
(if (or (< start 0)
(< (string-length s) end)
(< end start))
(error "Illegal substring START/END spec." proc s start end)))
;;; substring S START [END]
;;; string-copy S [START END]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Redefine SUBSTRING so that the END parameter is optional.
;;; SUBSTRINGX is the underlying R5RS SUBSTRING function. All
;;; the code in this file uses the simple SUBSTRINGX, so you can
;;; easily port this code.
(define substringx (structure-ref scheme substring)) ; Simple R5RS SUBSTRING
(define (substring s start . maybe-end) ; Our SUBSTRING
(substringx s start (:optional maybe-end (string-length s))))
(define (string-copy s . maybe-start+end)
(let-start+end (start end) string-copy s maybe-start+end
(substringx s start end)))
;;; Basic iterators and other higher-order abstractions
;;; (string-map proc s [start end])
;;; (string-map! proc s [start end])
;;; (string-fold kons knil s [start end])
;;; (string-fold-right kons knil s [start end])
;;; (string-unfold p f g seed)
;;; (string-for-each proc s [start end])
;;; (string-iter proc s [start end])
;;; (string-every? pred s [start end])
;;; (string-any pred s [start end])
;;; (string-tabulate proc len)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; No guarantees about order in MAP, FOR-EACH, EVERY, ANY procs.
;;;
;;; You want compiler support for high-level transforms on fold and unfold ops.
;;; You'd at least like a lot of inlining for clients of these procedures.
;;; Hold your breath.
(define (string-map proc s . maybe-start+end)
(let-start+end (start end) string-map s maybe-start+end
(let* ((len (- end start))
(ans (make-string len)))
(do ((i (- end 1) (- i 1))
(j (- len 1) (- j 1)))
((< j 0))
(string-set! ans j (proc (string-ref s i))))
ans)))
(define (string-map! proc s . maybe-start+end)
(let-start+end (start end) string-map! s maybe-start+end
(do ((i (- end 1) (- i 1)))
((< i start))
(string-set! s i (proc (string-ref s i))))))
(define (string-fold kons knil s . maybe-start+end)
(let-start+end (start end) string-fold s maybe-start+end
(let lp ((v knil) (i start))
(if (< i end) (lp (kons (string-ref s i) v) (+ i 1))
v))))
(define (string-fold-right kons knil s . maybe-start+end)
(let-start+end (start end) string-fold-right s maybe-start+end
(let lp ((v knil) (i (- end 1)))
(if (>= i start) (lp (kons (string-ref s i) v) (- i 1))
v))))
;;; (string-unfold p f g seed)
;;; This is the fundamental constructor for strings.
;;; - G is used to generate a series of "seed" values from the initial seed:
;;; SEED, (G SEED), (G^2 SEED), (G^3 SEED), ...
;;; - P tells us when to stop -- when it returns true when applied to one
;;; of these seed values.
;;; - F maps each seed value to the corresponding character
;;; in the result string.
;;;
;;; In other words, the following (simple, inefficient) definition holds:
;;; (string-unfold p f g seed) =
;;; (if (p seed) ""
;;; (string-append (string (f seed))
;;; (string-unfold p f g (g seed))))
;;;
;;; STRING-UNFOLD is a fairly powerful constructor -- you can use it to
;;; reverse a string, copy a string, convert a list to a string, read
;;; a port into a string, and so forth. Examples:
;;; (port->string port) =
;;; (string-unfold (compose eof-object? peek-char)
;;; read-char identity port)
;;;
;;; (list->string lis) = (string-unfold null? car cdr lis)
;;;
;;; (tabulate-string f size) = (string-unfold (lambda (i) (= i size)) f add1 0)
;;; A problem with the following simple formulation is that it pushes one
;;; stack frame for every char in the result string -- an issue if you are
;;; using it to read a 100kchar string. So we don't use it -- but I include
;;; it to give a clear, straightforward description of what the function
;;; does.
;(define (string-unfold p f g seed)
; (let recur ((seed seed) (i 0))
; (if (p seed) (make-string i)
; (let* ((c (f seed))
; (s (recur (g seed) (+ i 1))))
; (string-set! s i c)
; s))))
;;; This formulation chunks up the constructed string into 1024-char chunks,
;;; popping the stack frames. So it'll reduce stack growth by a factor of
;;; 1024. Marc Feeley alerted me to this issue and its general solution.
(define (string-unfold p f g seed)
(apply string-append
(let recur ((seed seed))
(receive (s seed done?)
(let recur2 ((seed seed) (i 0))
(cond ((p seed) (values (make-string i) seed #t))
((>= i 1024) (values (make-string i) seed #f))
(else (let ((c (f seed)))
(receive (s seed done?)
(recur2 (g seed) (+ i 1))
(string-set! s i c)
(values s seed done?))))))
(if done? (list s)
(cons s (recur seed)))))))
;;; This is the same as STRING-UNFOLD, but defined for multiple
;;; seed parameters. If you pass N seeds, then
;;; - P maps N parameters to a boolean.
;;; - F maps N parameters to a character.
;;; - G maps N parameters to N return values.
;;; This definition does a lot of consing; it would need a fair amount
;;; of compiler support to be efficient.
; Not released
;(define (string-unfoldn p f g . seeds)
; (apply string-append
; (let recur ((seeds seeds))
; (receive (s seeds done?)
; (let recur2 ((seeds seeds) (i 0))
; (cond ((apply p seeds) (values (make-string i) seeds #t))
; ((>= i 1024) (values (make-string i) seeds #f))
; (else (let ((c (apply f seeds)))
; (receive seeds (apply g seeds)
; (receive (s seeds done?)
; (recur2 seeds (+ i 1))
; (string-set! s i c)
; (values s seeds done?)))))))
;
; (if done? (list s)
; (cons s (recur seeds)))))))
(define (string-for-each proc s . maybe-start+end)
(let-start+end (start end) string-for-each s maybe-start+end
(do ((i (- end 1) (- i 1)))
((< i start))
(proc (string-ref s i)))))
(define (string-iter proc s . maybe-start+end)
(let-start+end (start end) string-iter s maybe-start+end
(do ((i start (+ i 1)))
((>= i end))
(proc (string-ref s i)))))
(define (string-every? pred s . maybe-start+end)
(let-start+end (start end) string-every? s maybe-start+end
(let lp ((i (- end 1)))
(or (< i start)
(and (pred (string-ref s i))
(lp (- i 1)))))))
(define (string-any pred s . maybe-start+end)
(let-start+end (start end) string-any s maybe-start+end
(let lp ((i (- end 1)))
(and (>= i start)
(or (pred (string-ref s i))
(lp (- i 1)))))))
(define (string-tabulate proc len)
(let ((s (make-string len)))
(do ((i (- len 1) (- i 1)))
((< i 0))
(string-set! s i (proc i)))
s))
;;; string-prefix-count[-ci] s1 s2
;;; string-suffix-count[-ci] s1 s2
;;; substring-prefix-count[-ci] s1 start1 end1 s2 start2 end2
;;; substring-suffix-count[-ci] s1 start1 end1 s2 start2 end2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Find the length of the common prefix/suffix.
;;; It is not required that the two substrings passed be of equal length.
;;; This was microcode in MIT Scheme -- a very tightly bummed primitive.
(define (substring-prefix-count s1 start1 end1 s2 start2 end2)
(check-substring-spec substring-prefix-count s1 start1 end1)
(check-substring-spec substring-prefix-count s2 start2 end2)
(let* ((delta (min (- end1 start1) (- end2 start2)))
(end1 (+ start1 delta)))
(let lp ((i start1) (j start2))
(if (or (>= i end1)
(not (char=? (string-ref s1 i)
(string-ref s2 j))))
(- i start1)
(lp (+ i 1) (+ j 1))))))
(define (substring-suffix-count s1 start1 end1 s2 start2 end2)
(check-substring-spec substring-suffix-count s1 start1 end1)
(check-substring-spec substring-suffix-count s2 start2 end2)
(let* ((delta (min (- end1 start1) (- end2 start2)))
(start1 (- end1 delta)))
(let lp ((i (- end1 1)) (j (- end2 1)))
(if (or (< i start1)
(not (char=? (string-ref s1 i)
(string-ref s2 j))))
(- (- end1 i) 1)
(lp (- i 1) (- j 1))))))
(define (substring-prefix-count-ci s1 start1 end1 s2 start2 end2)
(check-substring-spec substring-prefix-count-ci s1 start1 end1)
(check-substring-spec substring-prefix-count-ci s2 start2 end2)
(let* ((delta (min (- end1 start1) (- end2 start2)))
(end1 (+ start1 delta)))
(let lp ((i start1) (j start2))
(if (or (>= i end1)
(not (char-ci=? (string-ref s1 i)
(string-ref s2 j))))
(- i start1)
(lp (+ i 1) (+ j 1))))))
(define (substring-suffix-count-ci s1 start1 end1 s2 start2 end2)
(check-substring-spec substring-suffix-count-ci s1 start1 end1)
(check-substring-spec substring-suffix-count-ci s2 start2 end2)
(let* ((delta (min (- end1 start1) (- end2 start2)))
(start1 (- end1 delta)))
(let lp ((i (- end1 1)) (j (- end2 1)))
(if (or (< i start1)
(not (char-ci=? (string-ref s1 i)
(string-ref s2 j))))
(- (- end1 i) 1)
(lp (- i 1) (- j 1))))))
(define (string-prefix-count s1 s2)
(substring-prefix-count s1 0 (string-length s1) s2 0 (string-length s2)))
(define (string-suffix-count s1 s2)
(substring-suffix-count s1 0 (string-length s1) s2 0 (string-length s2)))
(define (string-prefix-count-ci s1 s2)
(substring-prefix-count-ci s1 0 (string-length s1) s2 0 (string-length s2)))
(define (string-suffix-count-ci s1 s2)
(substring-suffix-count-ci s1 0 (string-length s1) s2 0 (string-length s2)))
;;; string-prefix? s1 s2
;;; string-suffix? s1 s2
;;; string-prefix-ci? s1 s2
;;; string-suffix-ci? s1 s2
;;;
;;; substring-prefix? s1 start1 end1 s2 start2 end2
;;; substring-suffix? s1 start1 end1 s2 start2 end2
;;; substring-prefix-ci? s1 start1 end1 s2 start2 end2
;;; substring-suffix-ci? s1 start1 end1 s2 start2 end2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; These are all simple derivatives of the previous counting funs.
(define (string-prefix? s1 s2)
(substring-prefix? s1 0 (string-length s1) s2 0 (string-length s2)))
(define (string-suffix? s1 s2)
(substring-suffix-ci? s1 0 (string-length s1) s2 0 (string-length s2)))
(define (string-prefix-ci? s1 s2)
(substring-prefix-ci? s1 0 (string-length s1) s2 0 (string-length s2)))
(define (string-suffix-ci? s1 s2)
(substring-suffix-ci? s1 0 (string-length s1) s2 0 (string-length s2)))
(define (substring-prefix? s1 start1 end1 s2 start2 end2)
(let ((len1 (- end1 start1)))
(and (<= len1 (- end2 start2)) ; Quick check
(= (substring-prefix-count s1 start1 end1
s2 start2 end2)
len1))))
(define (substring-suffix? s1 start1 end1 s2 start2 end2)
(let ((len1 (- end1 start1)))
(and (<= len1 (- end2 start2)) ; Quick check
(= len1 (substring-suffix-count s1 start1 end1
s2 start2 end2)))))
(define (substring-prefix-ci? s1 start1 end1 s2 start2 end2)
(let ((len1 (- end1 start1)))
(and (<= len1 (- end2 start2)) ; Quick check
(= len1 (substring-prefix-count-ci s1 start1 end1
s2 start2 end2)))))
(define (substring-suffix-ci? s1 start1 end1 s2 start2 end2)
(let ((len1 (- end1 start1)))
(and (<= len1 (- end2 start2)) ; Quick check
(= len1 (substring-suffix-count-ci s1 start1 end1
s2 start2 end2)))))
;;; string-compare s1 s2 lt-proc eq-proc gt-proc
;;; string-compare-ci s1 s2 eq-proc lt-proc gt-proc
;;; substring-compare s1 start1 end1 s2 start2 end2
;;; lt-proc eq-proc gt-proc
;;; substring-compare-ci s1 start1 end1 s2 start2 end2
;;; lt-proc eq-proc gt-proc
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Primitive string-comparison functions.
;;; Continuation order is different from MIT Scheme.
;;; Continuations are applied to s1's mismatch index;
;;; in the case of equality, this is END1.
(define (substring-compare s1 start1 end1 s2 start2 end2
proc< proc= proc>)
(let ((size1 (- end1 start1))
(size2 (- end2 start2)))
(let ((match (substring-prefix-count s1 start1 end1 s2 start2 end2)))
(if (= match size1)
((if (= match size2) proc= proc<) end1)
((if (= match size2)
proc>
(if (char<? (string-ref s1 (+ start1 match))
(string-ref s2 (+ start2 match)))
proc< proc>))
(+ match start1))))))
(define (substring-compare-ci s1 start1 end1 s2 start2 end2
proc< proc= proc>)
(let ((size1 (- end1 start1))
(size2 (- end2 start2)))
(let ((match (substring-prefix-count-ci s1 start1 end1 s2 start2 end2)))
(if (= match size1)
((if (= match size2) proc= proc<) end1)
((if (= match size2) proc>
(if (char-ci<? (string-ref s1 (+ start1 match))
(string-ref s2 (+ start2 match)))
proc< proc>))
(+ start1 match))))))
(define (string-compare s1 s2 proc< proc= proc>)
(substring-compare s1 0 (string-length s1)
s2 0 (string-length s2)
proc< proc= proc>))
(define (string-compare-ci s1 s2 proc< proc= proc>)
(substring-compare-ci s1 0 (string-length s1)
s2 0 (string-length s2)
proc< proc= proc>))
;;; string= string<> string-ci= string-ci<>
;;; string< string> string-ci< string-ci>
;;; string<= string>= string-ci<= string-ci>=
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Simple definitions in terms of the previous comparison funs.
;;; Inequality predicates return #f or mismatch index.
;;; I sure hope these defns get integrated.
(define (string= s1 s2)
(string-compare s1 s2 (lambda (i) #f) (lambda (i) i) (lambda (i) #f)))
(define (string< s1 s2)
(string-compare s1 s2 (lambda (i) i) (lambda (i) #f) (lambda (i) #f)))
(define (string> s1 s2)
(string-compare s1 s2 (lambda (i) #f) (lambda (i) #f) (lambda (i) i)))
(define (string<= s1 s2)
(string-compare s1 s2 (lambda (i) i) (lambda (i) i) (lambda (i) #f)))
(define (string>= s1 s2)
(string-compare s1 s2 (lambda (i) #f) (lambda (i) i) (lambda (i) i)))
(define (string<> s1 s2)
(string-compare s1 s2 (lambda (i) i) (lambda (i) #f) (lambda (i) i)))
(define (string-ci= s1 s2)
(string-compare-ci s1 s2 (lambda (i) #f) (lambda (i) i) (lambda (i) #f)))
(define (string-ci< s1 s2)
(string-compare-ci s1 s2 (lambda (i) i) (lambda (i) #f) (lambda (i) #f)))
(define (string-ci> s1 s2)
(string-compare-ci s1 s2 (lambda (i) #f) (lambda (i) #f) (lambda (i) i)))
(define (string-ci<= s1 s2)
(string-compare-ci s1 s2 (lambda (i) i) (lambda (i) i) (lambda (i) #f)))
(define (string-ci>= s1 s2)
(string-compare-ci s1 s2 (lambda (i) #f) (lambda (i) i) (lambda (i) i)))
(define (string-ci<> s1 s2)
(string-compare-ci s1 s2 (lambda (i) i) (lambda (i) #f) (lambda (i) i)))
(define (substring= s1 start1 end1 s2 start2 end2)
(substring-compare s1 start1 end1
s2 start2 end2
(lambda (i) #f)
(lambda (i) i)
(lambda (i) #f)))
(define (substring<> s1 start1 end1 s2 start2 end2)
(substring-compare s1 start1 end1
s2 start2 end2
(lambda (i) i)
(lambda (i) #f)
(lambda (i) i)))
(define (substring< s1 start1 end1 s2 start2 end2)
(substring-compare s1 start1 end1
s2 start2 end2
(lambda (i) i)
(lambda (i) #f)
(lambda (i) #f)))
(define (substring> s1 start1 end1 s2 start2 end2)
(substring< s2 start2 end2 s1 start1 end1))
(define (substring<= s1 start1 end1 s2 start2 end2)
(substring-compare s1 start1 end1
s2 start2 end2
(lambda (i) i)
(lambda (i) i)
(lambda (i) #f)))
(define (substring>= s1 start1 end1 s2 start2 end2)
(substring<= s2 start2 end2 s1 start1 end1))
(define (substring-ci= s1 start1 end1 s2 start2 end2)
(substring-compare-ci s1 start1 end1
s2 start2 end2
(lambda (i) #f)
(lambda (i) i)
(lambda (i) #f)))
(define (substring-ci<> s1 start1 end1 s2 start2 end2)
(substring-compare-ci s1 start1 end1
s2 start2 end2
(lambda (i) i)
(lambda (i) #f)
(lambda (i) i)))
(define (substring-ci< s1 start1 end1 s2 start2 end2)
(substring-compare-ci s1 start1 end1
s2 start2 end2
(lambda (i) i)
(lambda (i) #f)
(lambda (i) #f)))
(define (substring-ci> s1 start1 end1 s2 start2 end2)
(substring-ci< s2 start2 end2 s1 start1 end1))
(define (substring-ci<= s1 start1 end1 s2 start2 end2)
(substring-compare-ci s1 start1 end1
s2 start2 end2
(lambda (i) i)
(lambda (i) i)
(lambda (i) #f)))
(define (substring-ci>= s1 start1 end1 s2 start2 end2)
(substring-ci<= s2 start2 end2 s1 start1 end1))
;;; Case hacking
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-upper-case?
;;; string-lower-case?
;;;
;;; string-upcase s [start end]
;;; string-upcase! s [start end]
;;; string-downcase s [start end]
;;; string-downcase! s [start end]
;;;
;;; capitalize-string s [start end]
;;; capitalize-string! s [start end]
;;; Uppercase first alphanum char, lowercase rest.
;;;
;;; capitalize-words s [start end]
;;; capitalize-words! s [start end]
;;; Capitalize every contiguous alphanum sequence: uppercase
;;; first char, lowercase rest.
;;; These two use a different definition of an "upper-/lower-case string"
;;; than MIT Scheme uses:
(define (string-upper-case? s . maybe-start+end)
(not (apply string-any char-lower-case? s maybe-start+end)))
(define (string-lower-case? s . maybe-start+end)
(not (apply string-any char-upper-case? s maybe-start+end)))
(define (string-upcase s . maybe-start+end)
(apply string-map char-upcase s maybe-start+end))
(define (string-upcase! s . maybe-start+end)
(apply string-map! char-upcase s maybe-start+end))
(define (string-downcase s . maybe-start+end)
(apply string-map char-downcase s maybe-start+end))
(define (string-downcase! s . maybe-start+end)
(apply string-map! char-downcase s maybe-start+end))
;;; capitalize-string s [start end]
;;; capitalize-string! s [start end]
;;; Uppercase first alphanum char, lowercase rest.
(define (really-capitalize-string! s start end)
(cond ((string-index s char-set:alphanumeric start end) =>
(lambda (i)
(string-set! s i (char-upcase (string-ref s i)))
(string-downcase! s i)))))
(define (capitalize-string! s . maybe-start+end)
(let-start+end (start end) capitalize-string! s maybe-start+end
(really-capitalize-string! s start end)))
(define (capitalize-string s . maybe-start+end)
(let-start+end (start end) capitalize-string s maybe-start+end
(let ((ans (substringx s start end)))
(really-capitalize-string! ans 0 (- end start))
ans)))
;;; capitalize-words s [start end]
;;; capitalize-words! s [start end]
;;; Capitalize every contiguous alphanum sequence: uppercase
;;; first char, lowercase rest.
(define (really-capitalize-words! s start end)
(let lp ((i start))
(cond ((string-index s char-set:alphanumeric i end) =>
(lambda (i)
(string-set! s i (char-upcase (string-ref s i)))
(let ((i1 (+ i 1)))
(cond ((string-skip s char-set:alphanumeric i1 end) =>
(lambda (j)
(string-downcase! s i1 j)
(lp (+ j 1))))
(else (string-downcase! s i1 end)))))))))
(define (capitalize-words! s . maybe-start+end)
(let-start+end (start end) capitalize-string! s maybe-start+end
(really-capitalize-words! s start end)))
(define (capitalize-words s . maybe-start+end)
(let-start+end (start end) capitalize-string! s maybe-start+end
(let ((ans (substringx s start end)))
(really-capitalize-words! ans 0 (- end start))
ans)))
;;; Cutting & pasting strings
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-take string nchars
;;; string-drop string nchars
;;;
;;; string-padl string k [char start end]
;;; string-padr string k [char start end]
;;;
;;; string-trim string [char/char-set/pred start end]
;;; string-triml string [char/char-set/pred start end]
;;; string-trimr string [char/char-set/pred start end]
;;;
;;; These trimmers invert the char-set meaning from MIT Scheme -- you
;;; say what you want to trim.
(define (string-take s n)
(if (> n 0)
(substringx s 0 n)
(let ((len (string-length s)))
(substringx s (+ len n) len))))
(define (string-drop s n)
(let ((len (string-length s)))
(if (> n 0)
(substringx s n len)
(substringx s 0 (+ len n)))))
(define (string-triml s . args)
(let-optionals args ((criteria char-set:whitespace)
(start 0)
(end (string-length s)))
(cond ((string-skip s criteria start end) =>
(lambda (i) (substringx s i end)))
(else ""))))
(define (string-trimr s . args)
(let-optionals args ((criteria char-set:whitespace)
(start 0)
(end (string-length s)))
(cond ((string-skip-right s criteria end start) =>
(lambda (i) (substringx s 0 (+ 1 i))))
(else ""))))
(define (string-trim s . args)
(let-optionals args ((criteria char-set:whitespace)
(start 0)
(end (string-length s)))
(cond ((string-skip s criteria start end) =>
(lambda (i) (substringx s i (+ 1 (string-skip-right s criteria end)))))
(else ""))))
(define (string-padr s n . args)
(let-optionals args ((char #\space) (start 0) (end (string-length s)))
(check-substring-spec string-padr s start end)
(let ((len (- end start)))
(cond ((= n len) ; No pad.
(if (zero? start) s (substringx s start end)))
((< n len) (substringx s start (+ start n))) ; Trim.
(else (let ((ans (make-string n char)))
(string-copy! ans 0 s start end)
ans))))))
(define (string-padl s n . args)
(let-optionals args ((char #\space) (start 0) (end (string-length s)))
(check-substring-spec string-padl s start end)
(let ((len (- end start)))
(cond ((= n len) ; No pad.
(if (zero? start) s (substringx s start end)))
((< n len) (substringx s (- end n) end)) ; Trim.
(else (let ((ans (make-string n char)))
(string-copy! ans (- n len) s start end)
ans))))))
;;; Filtering strings
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-delete char/char-set/pred string [start end]
;;; string-filter char/char-set/pred string [start end]
;;;
;;; If the filter criteria is a char or char-set, we scan the string twice
;;; with string-fold -- once to determine the length of the result string,
;;; and once to do the filtered copy.
;;; If the filter criteria is a predicate, we don't do this double-scan
;;; strategy, because the predicate might have side-effects or be very
;;; expensive to compute. So we preallocate a temp buffer pessimistically,
;;; and only do one scan over S. This is likely to be faster and more
;;; space-efficient that consing a list.
(define (string-delete criteria s . maybe-start+end)
(let-start+end (start end) string-delete s maybe-start+end
(if (procedure? criteria)
(let* ((slen (- end start))
(temp (make-string slen))
(ans-len (string-fold (lambda (c i)
(if (criteria c) i
(begin (string-set! temp i c)
(+ i 1))))
0 s start end)))
(if (= ans-len slen) temp (substringx temp 0 ans-len)))
(let* ((cset (cond ((char-set? criteria) criteria)
((char? criteria) (char-set criteria))
(else (error "string-delete criteria not predicate, char or char-set" criteria))))
(len (string-fold (lambda (c i) (if (char-set-contains? cset c)
i
(+ i 1)))
0 s start end))
(ans (make-string len)))
(string-fold (lambda (c i) (if (char-set-contains? cset c)
i
(begin (string-set! ans i c)
(+ i 1))))
0 s start end)
ans))))
(define (string-filter criteria s . maybe-start+end)
(let-start+end (start end) string-filter s maybe-start+end
(if (procedure? criteria)
(let* ((slen (- end start))
(temp (make-string slen))
(ans-len (string-fold (lambda (c i)
(if (criteria c)
(begin (string-set! temp i c)
(+ i 1))
i))
0 s start end)))
(if (= ans-len slen) temp (substringx temp 0 ans-len)))
(let* ((cset (cond ((char-set? criteria) criteria)
((char? criteria) (char-set criteria))
(else (error "string-delete criteria not predicate, char or char-set" criteria))))
(len (string-fold (lambda (c i) (if (char-set-contains? cset c)
(+ i 1)
i))
0 s start end))
(ans (make-string len)))
(string-fold (lambda (c i) (if (char-set-contains? cset c)
(begin (string-set! ans i c)
(+ i 1))
i))
0 s start end)
ans))))
;;; String search
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-index string char/char-set/pred [start end]
;;; string-index-right string char/char-set/pred [end start]
;;; string-skip string char/char-set/pred [start end]
;;; string-skip-right string char/char-set/pred [end start]
;;; Note the odd start/end ordering of index-right and skip-right params.
;;; There's a lot of replicated code here for efficiency.
;;; For example, the char/char-set/pred discrimination has
;;; been lifted above the inner loop of each proc.
(define (string-index str criteria . maybe-start+end)
(let-start+end (start end) string-index str maybe-start+end
(cond ((char? criteria)
(let lp ((i start))
(and (< i end)
(if (char=? criteria (string-ref str i)) i
(lp (+ i 1))))))
((char-set? criteria)
(let lp ((i start))
(and (< i end)
(if (char-set-contains? criteria (string-ref str i)) i
(lp (+ i 1))))))
((procedure? criteria)
(let lp ((i start))
(and (< i end)
(if (criteria (string-ref str i)) i
(lp (+ i 1))))))
(else (error "Second param is neither char-set, char, or predicate procedure."
string-index criteria)))))
(define (string-index-right str criteria . maybe-end+start)
(let-optionals maybe-end+start ((start 0) (end (string-length str)))
(check-substring-spec string-index-right str start end)
(cond ((char? criteria)
(let lp ((i (- end 1)))
(and (>= i 0)
(if (char=? criteria (string-ref str i)) i
(lp (- i 1))))))
((char-set? criteria)
(let lp ((i (- end 1)))
(and (>= i 0)
(if (char-set-contains? criteria (string-ref str i)) i
(lp (- i 1))))))
((procedure? criteria)
(let lp ((i (- end 1)))
(and (>= i 0)
(if (criteria (string-ref str i)) i
(lp (- i 1))))))
(else (error "Second param is neither char-set, char, or predicate procedure."
string-index-right criteria)))))
(define (string-skip str criteria . maybe-start+end)
(let-start+end (start end) string-skip str maybe-start+end
(cond ((char? criteria)
(let lp ((i start))
(and (< i end)
(if (char=? criteria (string-ref str i))
(lp (+ i 1))
i))))
((char-set? criteria)
(let lp ((i start))
(and (< i end)
(if (char-set-contains? criteria (string-ref str i))
(lp (+ i 1))
i))))
((char-set? criteria)
(let lp ((i start))
(and (< i end)
(if (criteria (string-ref str i)) (lp (+ i 1))
i))))
(else (error "Second param is neither char-set, char, or predicate procedure."
string-skip criteria)))))
(define (string-skip-right str criteria . maybe-end+start)
(let-optionals maybe-end+start ((start 0) (end (string-length str)))
(check-substring-spec string-index-right str start end)
(cond ((char? criteria)
(let lp ((i (- end 1)))
(and (>= i 0)
(if (char=? criteria (string-ref str i))
(lp (- i 1))
i))))
((char-set? criteria)
(let lp ((i (- end 1)))
(and (>= i 0)
(if (char-set-contains? criteria (string-ref str i))
(lp (- i 1))
i))))
((procedure? criteria)
(let lp ((i (- end 1)))
(and (>= i 0)
(if (criteria (string-ref str i)) (lp (- i 1))
i))))
(else (error "CRITERIA param is neither char-set or char." string-skip-right criteria)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; string-fill! string char [start end]
;;;
;;; string-copy! to tstart from [fstart fend]
;;; Guaranteed to work, even if s1 eq s2.
(define (string-fill! s char . maybe-start+end)
(let-start+end (start end) string-fill! s maybe-start+end
(do ((i (- end 1) (- i 1)))
((< i start))
(string-set! s i char))))
(define (string-copy! to tstart from . maybe-fstart+fend)
(let-start+end (fstart fend) string-copy! from maybe-fstart+fend
(let ((tend (+ tstart (- fend fstart))))
(check-substring-spec string-copy! to tstart tend)
(if (> fstart tstart)
(do ((i fstart (+ i 1))
(j tstart (+ j 1)))
((>= i fend))
(string-set! to j (string-ref from i)))
(do ((i (- fend 1) (- i 1))
(j (- tend 1) (- j 1)))
((< i fstart))
(string-set! to j (string-ref from i)))))))
;;; Returns starting-position or #f if not true.
;;; This implementation is slow & simple. See below for KMP.
;;; Boyer-Moore would be nice.
;(define (substring? substring string . maybe-start+end)
; (let-start+end (start end) string substring? maybe-start+end
; (if (string-null? substring) start
; (let* ((len (string-length substring))
; (i-bound (- end len))
; (char1 (string-ref substring start)))
; (let lp ((i 0))
; (cond ((string-index string char1 i i-bound) =>
; (lambda (i)
; (if (substring= substring 0 len string i (+ i len))
; i
; (lp (+ i 1)))))
; (else #f)))))))
;;; Searching for an occurence of a substring
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This uses the KMP algorithm
;;; "Fast Pattern Matching in Strings"
;;; SIAM J. Computing 6(2):323-350 1977
;;; D. E. Knuth, J. H. Morris and V. R. Pratt
;;; also described in
;;; "Pattern Matching in Strings"
;;; Alfred V. Aho
;;; Formal Language Theory - Perspectives and Open Problems
;;; Ronald V. Brook (editor)
;;; This algorithm is O(m + n) where m and n are the
;;; lengths of the pattern and string respectively
;;; Original version of this code by bevan; I have substantially rehacked it.
(define (substring? pattern source . maybe-start+end)
(let-start+end (start end) substring? source maybe-start+end
(really-substring? char=? pattern source start end)))
(define (substring-ci? pattern source . maybe-start+end)
(let-start+end (start end) substring-ci? source maybe-start+end
(really-substring? char-ci=? pattern source start end)))
;;; Compute the Knuth-Morris-Pratt restart vector RV for string PATTERN. If
;;; we have matched chars 0..i-1 of PATTERN against a search string S, and
;;; PATTERN[i] doesn't match S[k], then reset i := RV[i], and try again to
;;; match S[k]. If RV[i] = -1, then punt S[k] completely, and move on to
;;; S[k+1] and PATTERN[0].
;;;
;;; In other words, if you have matched the first i chars of PATTERN, but
;;; the i+1'th char doesn't match, RV[i] tells you what the next-longest
;;; prefix of PATTERN is that you have matched.
;;;
;;; C= is the character comparator -- usefully CHAR= or CHAR-CI=.
;;;
;;; I've split this out as a separate function in case other constant-string
;;; searchers might want to use it.
(define (make-kmp-restart-vector pattern c=)
(let* ((plen (string-length pattern))
(rv (make-vector plen)))
(if (> plen 0)
(let ((plen-1 (- plen 1)))
(vector-set! rv 0 -1)
(let lp ((i 0) (j -1))
(if (< i plen-1)
(if (or (= j -1)
(c= (string-ref pattern i)
(string-ref pattern j)))
(let ((i (+ 1 i))
(j (+ 1 j)))
(vector-set! rv i j)
(lp i j))
(lp i (vector-ref rv j)))))))
rv))
(define (really-substring? c= pattern source start end)
(let ((plen (string-length pattern))
(rv (make-kmp-restart-vector pattern c=)))
;; The search loop. SJ & PJ are redundant state.
(let lp ((si start) (pi 0)
(sj (- end start)) ; (- end si) -- how many chars left.
(pj plen)) ; (- plen pi) -- how many chars left.
(if (= pi plen) (- si plen) ; Win.
(and (<= pj sj) ; Lose.
(if (c= (string-ref source si) ; Search.
(string-ref pattern pi))
(lp (+ 1 si) (+ 1 pi) (- sj 1) (- pj 1)) ; Advance.
(let ((pi (vector-ref rv pi))) ; Retreat.
(if (= pi -1)
(lp (+ si 1) 0 (- sj 1) plen) ; Punt.
(lp si pi sj (- plen pi))))))))))
;;; Misc
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (string-reverse s [start end])
;;; (string-reverse! s [start end])
;;; (string-null? s)
(define (string-null? s) (zero? (string-length s)))
(define (string-reverse s . maybe-start+end)
(let-start+end (start end) string-reverse s maybe-start+end
(let ((ans (make-string (- end start))))
(do ((i (- end 1) (- i 1))
(j start (+ j 1)))
((< i j))
(string-set! ans i (string-ref s j))
(string-set! ans j (string-ref s i)))
ans)))
(define (string-reverse! s . maybe-start+end)
(let-start+end (start end) string-reverse! s maybe-start+end
(do ((i (- end 1) (- i 1))
(j start (+ j 1)))
((<= i j))
(let ((ci (string-ref s i)))
(string-set! s i (string-ref s j))
(string-set! s j ci)))))
; This is a perfectly good definition of REVERSE-LIST->STRING,
; but S48 has it as a machine op.
;(define (reverse-list->string clist)
; (let* ((len (length clist))
; (s (make-string len)))
; (do ((i (- len 1) (- i 1)) (clist clist (cdr clist)))
; ((not (pair? clist)))
; (string-set! s i (car clist)))
; s))
(define reverse-list->string (structure-ref silly reverse-list->string))
;(define (string->list s . maybe-start+end)
; (let-start+end (start end) string->list s maybe-start+end
; (do ((i (- end 1) (- i 1))
; (ans '() (cons (string-ref s i) ans)))
; ((< i start) ans))))
(define (string->list s . maybe-start+end)
(apply string-fold-right s cons '() maybe-start+end))
;;; string-concat string-list -> string
;;; string-concat/shared string-list -> string
;;; string-append/shared s ... -> string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; STRING-APPEND/SHARED has license to return a string that shares storage
;;; with any of its arguments. In particular, if there is only one non-empty
;;; string amongst its parameters, it is permitted to return that string as
;;; its result. STRING-APPEND, by contrast, always allocates new storage.
;;;
;;; STRING-CONCAT & STRING-CONCAT/SHARED are passed a list of strings,
;;; which they concatenate into a result string. STRING-CONCAT always
;;; allocates a fresh string; STRING-CONCAT/SHARED may (or may not) return
;;; a result that shares storage with any of its arguments. In particular,
;;; if it is applied to a singleton list, it is permitted to return the
;;; car of that list as its value.
;;;
;;; This is portable code, but could be much more efficient w/compiler
;;; support. Especially the n-ary guys.
;;; We delete the empty strings from the parameter list before handing
;;; off to string-concat/shared.
(define (string-append/shared . strings)
(string-concat/shared (fold-right (lambda (s lis)
(if (string-null? s) lis (cons s lis)))
'()
strings)))
(define (string-concat/shared strings)
(cond ((not (pair? strings)) "") ; () => "".
((not (pair? (cdr strings))) (car strings)) ; (s) => s.
(else (apply string-append strings)))) ; Allocate & concat.
(define (string-concat strings) (apply string-append strings))
;;; xsubstring s from [to start end] -> string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; S is a string; START and END are optional arguments that demarcate
;;; a substring of S, defaulting to 0 and the length of S (e.g., the whole
;;; string). Replicate this substring up and down index space, in both the
;; positive and negative directions. For example, if S = "abcdefg", START=3,
;;; and END=6, then we have the conceptual bidirectionally-infinite string
;;; ... d e f d e f d e f d e f d e f d e f d e f ...
;;; ... -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ...
;;; XSUBSTRING returns the substring of this string beginning at index FROM,
;;; and ending at TO (which defaults to FROM+(END-START)).
;;;
;;; You can use XSUBSTRING in many ways:
;;; - To rotate a string left: (xsubstring "abcdef" 2) => "cdefab"
;;; - To rotate a string right: (xsubstring "abcdef" -2) => "efabcd"
;;; - To replicate a string: (xsubstring "abc" 0 7) => "abcabca"
;;;
;;; Note that
;;; - The FROM/TO indices give a half-open range -- the characters from
;;; index FROM up to, but not including index TO.
;;; - The FROM/TO indices are not in terms of the index space for string S.
;;; They are in terms of the replicated index space of the substring
;;; defined by S, START, and END.
;;;
;;; It is an error if START=END -- although this is allowed by special
;;; dispensation when FROM=TO.
(define (xsubstring s from . maybe-to+start+end)
(receive (to start end)
(if (pair? maybe-to+start+end)
(let-start+end (start end) xsubstring s (cdr maybe-to+start+end)
(values (car maybe-to+start+end) start end))
(let ((slen (string-length s)))
(values (+ from slen) 0 slen)))
(let ((slen (- end start))
(anslen (- to from)))
(cond ((< anslen 0)
(error "Illegal FROM/TO spec passed to xsubstring -- FROM > TO."
s from to start end))
((zero? anslen) "")
((zero? slen) (error "Empty (sub)string passed to xsubstring"
s from to start end))
((= 1 slen) ; Fast path for 1-char replication.
(make-string anslen (string-ref s start)))
;; Selected text falls entirely within one span.
((= (floor (/ from slen)) (floor (/ to slen)))
(substringx s (+ start (modulo from slen))
(+ start (modulo to slen))))
;; Selected text requires multiple spans.
(else (let ((ans (make-string anslen)))
(multispan-repcopy! ans 0 s from to start end)
ans))))))
;;; string-xcopy! target tstart s sfrom [sto start end] -> unspecific
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Exactly the same as xsubstring, but the extracted text is written
;;; into the string TARGET starting at index TSTART.
;;; This operation is not defined if (EQ? TARGET S) -- you cannot copy
;;; a string on top of itself.
(define (string-xcopy! target tstart s sfrom . maybe-sto+start+end)
(receive (sto start end)
(if (pair? maybe-sto+start+end)
(let-start+end (start end) string-xcopy! s (cdr maybe-sto+start+end)
(values (car maybe-sto+start+end) start end))
(let ((slen (string-length s)))
(values (+ sfrom slen) 0 slen)))
(let* ((tocopy (- sto sfrom))
(tend (+ tstart tocopy))
(slen (- end start)))
(check-substring-spec string-xcopy! target tstart tend)
(cond ((< tocopy 0)
(error "Illegal FROM/TO spec passed to string-xcopy! -- FROM > TO."
target tstart s sfrom sto start end))
((zero? tocopy))
((zero? slen) (error "Empty (sub)string passed to string-xcopy!"
target tstart s sfrom sto start end))
((= 1 slen) ; Fast path for 1-char replication.
(string-fill! target (string-ref s start) tstart tend))
;; Selected text falls entirely within one span.
((= (floor (/ sfrom slen)) (floor (/ sto slen)))
(string-copy! target tstart s
(+ start (modulo sfrom slen))
(+ start (modulo sto slen))))
;; Multi-span copy.
(else (multispan-repcopy! target tstart s sfrom sto start end))))))
;;; This is the core copying loop for XSUBSTRING and STRING-XCOPY!
;;; Internal -- not exported, no careful arg checking.
(define (multispan-repcopy! target tstart s sfrom sto start end)
(let* ((slen (- end start))
(i0 (+ start (modulo sfrom slen)))
(total-chars (- sto sfrom)))
;; Copy the partial span @ the beginning
(string-copy! target tstart s i0 end)
(let* ((ncopied (- end i0)) ; We've copied this many.
(nleft (- total-chars ncopied)) ; # chars left to copy.
(nspans (quotient nleft slen))) ; # whole spans to copy
;; Copy the whole spans in the middle.
(do ((i (+ tstart ncopied) (+ i slen)) ; Current target index.
(nspans nspans (- nspans 1))) ; # spans to copy
((zero? nspans)
;; Copy the partial-span @ the end & we're done.
(string-copy! target i s start (+ start (- total-chars (- i tstart)))))
(string-copy! target i s start end))))) ; Copy a whole span.
;;; (join-strings string-list [delimiter grammar]) => string
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Paste strings together using the delimiter string.
;;;
;;; (join-strings '("foo" "bar" "baz") ":") => "foo:bar:baz"
;;;
;;; DELIMITER defaults to a single space " "
;;; GRAMMAR is one of the symbols {infix, suffix} and defaults to 'infix.
;;; (join-strings strings [delim grammar])
(define (join-strings strings . args)
(if (pair? strings)
(let-optionals args ((delim " ") (grammar 'infix))
(let ((strings (reverse strings)))
(let lp ((strings (cdr strings))
(ans (case grammar
((infix) (list (car strings)))
((suffix) (list (car strings) delim))
(else (error "Illegal join-strings grammar" grammar)))))
(if (pair? strings)
(lp (cdr strings)
(cons (car strings) (cons delim ans)))
; All done
(apply string-append ans)))))
"")) ; Special-cased for infix grammar.
;;; MIT Scheme copyright terms
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This material was developed by the Scheme project at the Massachusetts
;;; Institute of Technology, Department of Electrical Engineering and
;;; Computer Science. Permission to copy and modify this software, to
;;; redistribute either the original software or a modified version, and
;;; to use this software for any purpose is granted, subject to the
;;; following restrictions and understandings.
;;;
;;; 1. Any copy made of this software must include this copyright notice
;;; in full.
;;;
;;; 2. Users of this software agree to make their best efforts (a) to
;;; return to the MIT Scheme project any improvements or extensions that
;;; they make, so that these may be included in future releases; and (b)
;;; to inform MIT of noteworthy uses of this software.
;;;
;;; 3. All materials developed as a consequence of the use of this
;;; software shall duly acknowledge such use, in accordance with the usual
;;; standards of acknowledging credit in academic research.
;;;
;;; 4. MIT has made no warrantee or representation that the operation of
;;; this software will be error-free, and MIT is under no obligation to
;;; provide any services, by way of maintenance, update, or otherwise.
;;;
;;; 5. In conjunction with products arising from the use of this material,
;;; there shall be no use of the name of the Massachusetts Institute of
;;; Technology nor of any adaptation thereof in any advertising,
;;; promotional, or sales literature without prior written consent from
;;; MIT in each case.