scsh-0.5/scsh/procobj.scm

292 lines
10 KiB
Scheme

;;; Unix wait & process objects for scsh
;;; Copyright (c) 1993, 1994, 1995 by Olin Shivers.
;;; This is a GC'd abstraction for Unix process id's.
;;; The problem with Unix pids is (a) they clutter up the kernel
;;; process table until you wait(2) them, and (b) you can only
;;; wait(2) them once. Scsh's process objects are similar, but
;;; allow the storage to be allocated in the scsh address space,
;;; and out of the kernel process table, and they can be waited on
;;; multiple times.
;;; Process objects
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define-record proc ; A process object
pid ; Proc's pid.
(%status #f) ; The cached exit status of the process;
; #f if we haven't wait(2)'d the process yet.
;; Make proc objects print like #{proc 2318}.
((disclose p) (list "proc" (proc:pid p))))
;;; Indexing this table by pid requires a linear scan.
;;; Probably not an important op, tho.
(define process-table (make-population))
(define (maybe-pid->proc pid)
(call/cc (lambda (quit)
;; Search the table.
(walk-population (lambda (p)
(if (= (proc:pid p) pid) (quit p)))
process-table)
#f)))
(define (pid->proc pid . maybe-probe?)
(let ((probe? (:optional maybe-probe? #f)))
(or (maybe-pid->proc pid)
(case probe?
((#f) (error "Pid has no corresponding process object" pid))
((create) (let ((p (make-proc pid))) ; Install a new one.
(add-to-population! p process-table)
p))
(else #f)))))
;;; Coerce pids and procs to procs.
(define (->proc proc/pid)
(cond ((proc? proc/pid) proc/pid)
((and (integer? proc/pid) (>= proc/pid 0))
(pid->proc proc/pid))
(else (error "Illegal parameter" ->proc proc/pid))))
;;; Is X a pid or a proc?
(define (pid/proc? x) (or (proc? x) (and (integer? x) (>= pid 0))))
;;; Process reaping
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; "Reaping" a process means using wait(2) to move its exit status from the
;;; kernel's process table into scsh, thus cleaning up the kernel's process
;;; table and saving the value in a gc'd data structure, where it can be
;;; referenced multiple times.
;;;
;;; - Stopped processes are never reaped, only dead ones.
;;;
;;; - Stopped process status codes are never cached in proc objects,
;;; only status codes for dead processes. So you can wait for a
;;; dead process multiple times, but only once per process-stop.
;;;
;;; - Unfortunately, reaping a process loses the information specifying its
;;; process group, so if a process is reaped into scsh, it cannot be
;;; waited for by WAIT-PROCESS-GROUP. Notice that only dead processes are
;;; reaped, not suspended ones. Programs almost never use WAIT-PROCESS-GROUP
;;; to wait for dead processes, so this is not likely to be a problem. If
;;; it is, turn autoreaping off with (autoreap-policy #f).
;;;
;;; - Reaping can be encouraged by calling (REAP-ZOMBIES).
;;; (autoreap-policy [new-policy])
(define *autoreap-policy* 'early) ; Not exported from this module.
(define (autoreap-policy . maybe-policy)
(let ((old-policy *autoreap-policy*))
(if (pair? maybe-policy)
(let ((new-policy (car maybe-policy)))
(cond ((pair? (cdr maybe-policy))
(error "Too many args to autoreap-policy" maybe-policy))
((not (memq new-policy '(early #f)))
(error "Illegal autoreap policy." new-policy))
(else (set! *autoreap-policy* new-policy)))))
old-policy))
;;; (reap-zombies) => bool
;;; Move any zombies from the kernel process table into scsh.
;;; Return true if no more outstanding children; #f if some still live.
(define (reap-zombies)
(let lp ()
(receive (pid status) (%wait-any wait/poll)
(if pid
(begin (add-reaped-proc! pid status)
(lp))
status))))
;;; This list contains procs that haven't exited yet. FORK adds new
;;; procs to the list. When a proc exits, it is removed from the list.
;;; Being on this list keeps live children's proc objects from being gc'd.
(define unexited-procs '())
(define (new-child-proc pid)
(let ((proc (make-proc pid)))
(add-to-population! proc process-table)
(set! unexited-procs (cons proc unexited-procs))
proc))
(define (mark-proc-exited proc)
(set! unexited-procs (del proc unexited-procs)))
;;; (WAIT proc/pid [flags])
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (wait proc/pid [flags]) => status or #f
;;;
;;; FLAGS (default 0) is the exclusive or of the following:
;;; wait/poll
;;; Return #f immediately if there are no
;;; unwaited children available.
;;; wait/stopped-children
;;; Report on suspended children as well.
;;;
;;; If the process hasn't terminated (or suspended, if wait/stopped
;;; is set) and wait/poll is set, return #f.
;;; WAIT waits for a specific process. Currently, if the autoreap policy is
;;; 'early, it also does a (reap-zombies) Before performing a waitpid(2)
;;; systcall, wait first consults the proc object to see if a/the process has
;;; been reaped already. If so, its saved status is returned immediately.
;;;
;;; (wait-any [flags]) => [proc status]
;;; [#f #f] => non-blocking, none ready.
;;; [#f #t] => no more.
;;; (wait-process-group [pid/proc flags]) => [proc status]
;;; [#f #f] => non-blocking, none ready.
;;; [#f #t] => no more.
(define (wait pid/proc . maybe-flags)
(if (not *autoreap-policy*) (reap-zombies))
(let ((flags (:optional maybe-flags 0))
(proc (->proc pid/proc)))
(cond ((proc:%status proc) => ; Already reaped.
(lambda (status)
(mark-proc-waited! proc) ; Not eligible for a WAIT-ANY.
status))
(else ; Really wait.
(cache-wait-status proc (%wait-pid (proc:pid proc)
flags))))))
(define (cache-wait-status proc status)
(cond ((and (integer? status)
(not (status:stop-sig status))) ; He's dead, Jim.
(set-proc:%status proc status) ; Cache exit status.
(mark-proc-exited proc))) ; We're now gc'able.
status)
;;; (wait-any [flags]) -> [proc status]
(define (wait-any . maybe-flags)
(if (not *autoreap-policy*) (reap-zombies))
(cond ((get-reaped-proc!) => ; Check internal table.
(lambda (proc) (values proc (proc:%status proc)))) ; Hit.
(else
(receive (pid status) (%wait-any (:optional maybe-flags 0)) ; Wait.
(if pid
(let ((proc (pid->proc pid)))
(cache-wait-status proc status)
(values proc status))
(values pid status)))))) ; pid = #f -- Empty poll.
;;; (wait-process-group [proc-group flags])
;;;
;;; If you are doing process-group waits, you do *not* want to use
;;; early autoreaping, since the reaper loses process-group information.
(define (wait-process-group . args)
(let-optionals args ((proc-group 0) (flags 0))
(if (not *autoreap-policy*) (reap-zombies))
(let ((proc-group (cond ((integer? proc-group) proc-group)
((proc? proc-group) (proc:pid proc-group))
(else (error "Illegal argument" wait-process-group
proc-group)))))
(receive (pid status) (%wait-process-group proc-group flags)
(if pid
(let ((proc (pid->proc pid)))
(cache-wait-status proc status)
(values proc status))
(values pid status)))))) ; pid = #f -- Empty poll.
;;; (%wait-any flags) (%wait-pid pid flags) (%wait-process-group pgrp flags)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Direct interfaces to waitpid(2) call.
;;; [#f #f] means no processes ready on a non-blocking wait.
;;; [#f #t] means no waitable process on wait-any.
(define (%wait-pid pid flags)
(let lp ()
(receive (err pid status) (%wait-pid/errno pid flags)
(cond ((not err) (and (not (zero? pid)) status)) ; pid=0 => none ready.
((= err errno/intr) (lp))
(else (errno-error err %wait-pid pid flags))))))
(define (%wait-any flags)
(let lp ()
(receive (err pid status) (%wait-pid/errno -1 flags)
(cond (err (cond ((= err errno/child) (values #f #t)) ; No more.
((= err errno/intr) (lp))
(else (errno-error err %wait-any flags))))
((zero? pid) (values #f #f)) ; None ready.
(else (values pid status))))))
(define (%wait-process-group pgrp flags)
(let lp ()
(receive (err pid status) (%wait-pid/errno (- pgrp) flags)
(cond (err (cond ((= err errno/child) (values #f #t)) ; No more.
((= err errno/intr) (lp))
(else (errno-error err %wait-process-group pgrp flags))))
((zero? pid) (values #f #f)) ; None ready.
(else (values pid status))))))
;;; Reaped process table
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; We keep track of procs that have been reaped but not yet waited on by
;;; the user's code. These proces are eligible for return by WAIT-ANY.
;;; We keep track of these so that WAIT-ANY will hand them out exactly once.
;;; Whenever WAIT, WAIT-ANY, WAIT-PROCESS-GROUP waits on a process to exit,
;;; it removes the process from this table if it's in it.
;;; This code is bogus -- we use weak pointers. We need populations that
;;; support deletion or filtering.
(define reaped-procs '()) ; Reaped, but not yet waited.
(define (filter-weak-ptr-list pred lis)
(reverse (reduce (lambda (wptr result)
(let ((val (weak-pointer-ref wptr)))
(if (and val (pred val))
(cons wptr result)
result)))
'()
lis)))
;;; Add a newly-reaped proc to the list.
(define (add-reaped-proc! pid status)
(cond ((maybe-pid->proc pid) =>
(lambda (proc)
(set-proc:%status proc status)
(set! reaped-procs (cons (make-weak-pointer proc)
reaped-procs))))
(else (error "Child pid mysteriously missing proc object." pid))))
;;; Pop one off the list.
(define (get-reaped-proc!)
(and (pair? reaped-procs)
(let ((proc (weak-pointer-ref (car reaped-procs))))
(set! reaped-procs (cdr reaped-procs))
(or proc (get-reaped-proc!)))))
;;; PROC no longer eligible to be in the list. Delete it.
(define (mark-proc-waited! proc)
(set! reaped-procs (filter-weak-ptr-list (lambda (elt) (not (eq? proc elt)))
reaped-procs)))
;;; The mark-proc-waited! machinery above is a crock. It is inefficient --
;;; we should have a flag in the proc saying if it's eligible for a WAIT-ANY.
;;; Starts off #t, changes to #f after a wait. On a #t->#f transition, we
;;; delete it from the WAIT-ANY population. Right now, every time the user
;;; waits on the proc, we re-delete it from the population -- which is
;;; a no-op after the first time.