scsh-0.5/rts/number.scm

79 lines
1.5 KiB
Scheme
Raw Permalink Normal View History

; Copyright (c) 1993, 1994 Richard Kelsey and Jonathan Rees. See file COPYING.
; This is file number.scm.
;;;; Numbers
(define (inexact? n) (not (exact? n)))
(define (modulo x y)
(let ((r (remainder x y)))
(if (eq? (< r 0) (< y 0))
r
(+ r y))))
(define (ceiling x)
(- 0 (floor (- 0 x)))) ;floor is primitive
(define (truncate x)
(if (< x 0)
(ceiling x)
(floor x)))
(define (round x)
(let* ((x+1/2 (+ x (/ 1 2)))
(r (floor x+1/2)))
(if (and (= r x+1/2)
(odd? r))
(- r 1)
r)))
; GCD
(define (gcd . integers)
(reduce (lambda (x y)
(cond ((< x 0) (gcd (- 0 x) y))
((< y 0) (gcd x (- 0 y)))
((< x y) (euclid y x))
(else (euclid x y))))
0
integers))
(define (euclid x y)
(if (= y 0)
(if (and (inexact? y)
(exact? x))
(exact->inexact x)
x)
(euclid y (remainder x y))))
; LCM
(define (lcm . integers)
(reduce (lambda (x y)
(let ((g (gcd x y)))
(cond ((= g 0) g)
(else (* (quotient (abs x) g) (abs y))))))
1
integers))
; Exponentiation.
(define (expt x n)
(if (and (integer? n) (exact? n))
(if (>= n 0)
(raise-to-integer-power x n)
(/ 1 (raise-to-integer-power x (- 0 n))))
(exp (* n (log x)))))
(define (raise-to-integer-power x n)
(if (= n 0)
1
(let loop ((s x) (i n) (a 1)) ;invariant: a * s^i = x^n
(let ((a (if (odd? i) (* a s) a))
(i (quotient i 2)))
(if (= i 0)
a
(loop (* s s) i a))))))