scsh-0.5/rts/ratnum.scm

142 lines
3.7 KiB
Scheme
Raw Permalink Normal View History

1995-10-13 23:34:21 -04:00
; Copyright (c) 1993, 1994 Richard Kelsey and Jonathan Rees. See file COPYING.
; This is file ratnum.scm.
; Rational arithmetic
; Assumes that +, -, etc. perform integer arithmetic.
(define-simple-type :exact-rational (:rational :exact)
(lambda (n) (and (rational? n) (exact? n))))
(define-extended-number-type :ratnum (:exact-rational :exact) ;?
(make-ratnum num den)
ratnum?
(num ratnum-numerator)
(den ratnum-denominator))
(define (integer/ m n)
(cond ((< n 0)
(integer/ (- 0 m) (- 0 n)))
((= n 0)
(error "rational division by zero" m))
((and (exact? m) (exact? n))
(let ((g (gcd m n)))
(let ((m (quotient m g))
(n (quotient n g)))
(if (= n 1)
m
(make-ratnum m n)))))
(else (/ m n)))) ;In case we get flonums
(define (rational-numerator p)
(if (ratnum? p)
(ratnum-numerator p)
(numerator p)))
(define (rational-denominator p)
(if (ratnum? p)
(ratnum-denominator p)
(denominator p)))
; a/b * c/d = a*c / b*d
(define (rational* p q)
(integer/ (* (rational-numerator p) (rational-numerator q))
(* (rational-denominator p) (rational-denominator q))))
; a/b / c/d = a*d / b*c
(define (rational/ p q)
(integer/ (* (rational-numerator p) (rational-denominator q))
(* (rational-denominator p) (rational-numerator q))))
; a/b + c/d = (a*d + b*c)/(b*d)
(define (rational+ p q)
(let ((b (rational-denominator p))
(d (rational-denominator q)))
(integer/ (+ (* (rational-numerator p) d)
(* b (rational-numerator q)))
(* b d))))
; a/b - c/d = (a*d - b*c)/(b*d)
(define (rational- p q)
(let ((b (rational-denominator p))
(d (rational-denominator q)))
(integer/ (- (* (rational-numerator p) d)
(* b (rational-numerator q)))
(* b d))))
; a/b < c/d when a*d < b*c
(define (rational< p q)
(< (* (rational-numerator p) (rational-denominator q))
(* (rational-denominator p) (rational-numerator q))))
; a/b = c/d when a = b and c = d (always lowest terms)
(define (rational= p q)
(and (= (rational-numerator p) (rational-numerator q))
(= (rational-denominator p) (rational-denominator q))))
; (rational-truncate p) = integer of largest magnitude <= (abs p)
(define (rational-truncate p)
(quotient (rational-numerator p) (rational-denominator p)))
; (floor p) = greatest integer <= p
(define (rational-floor p)
(let* ((n (numerator p))
(q (quotient n (denominator p))))
(if (>= n 0)
q
(- q 1))))
; Extend the generic number procedures
(define-method &rational? ((n :ratnum)) #t)
(define-method &numerator ((n :ratnum)) (ratnum-numerator n))
(define-method &denominator ((n :ratnum)) (ratnum-denominator n))
(define-method &exact? ((n :ratnum)) #t)
;(define-method &exact->inexact ((n :ratnum))
; (/ (exact->inexact (numerator n))
; (exact->inexact (denominator n))))
;(define-method &inexact->exact ((n :rational)) ;?
; (/ (inexact->exact (numerator n))
; (inexact->exact (denominator n))))
(define-method &/ ((m :exact-integer) (n :exact-integer))
(integer/ m n))
(define (define-ratnum-method mtable proc)
(define-method mtable ((m :ratnum) (n :exact-rational)) (proc m n))
(define-method mtable ((m :exact-rational) (n :ratnum)) (proc m n)))
(define-ratnum-method &+ rational+)
(define-ratnum-method &- rational-)
(define-ratnum-method &* rational*)
(define-ratnum-method &/ rational/)
(define-ratnum-method &= rational=)
(define-ratnum-method &< rational<)
(define-method &floor ((m :ratnum)) (rational-floor m))
;(define-method &sqrt ((p :ratnum))
; (if (< p 0)
; (next-method)
; (integer/ (sqrt (numerator p))
; (sqrt (denominator p)))))
(define-method &number->string ((p :ratnum) radix)
(string-append (number->string (ratnum-numerator p) radix)
"/"
(number->string (ratnum-denominator p) radix)))