1657 lines
46 KiB
C
1657 lines
46 KiB
C
/*
|
|
femtoLisp
|
|
|
|
a minimal interpreter for a minimal lisp dialect
|
|
|
|
this lisp dialect uses lexical scope and self-evaluating lambda.
|
|
it supports 30-bit integers, symbols, conses, and full macros.
|
|
it is case-sensitive.
|
|
it features a simple compacting copying garbage collector.
|
|
it uses a Scheme-style evaluation rule where any expression may appear in
|
|
head position as long as it evaluates to a function.
|
|
it uses Scheme-style varargs (dotted formal argument lists)
|
|
lambdas can have only 1 body expression; use (begin ...) for multiple
|
|
expressions. this is due to the closure representation
|
|
(lambda args body . env)
|
|
|
|
This is a fully fleshed-out lisp built up from femtoLisp. It has all the
|
|
remaining features needed to be taken seriously:
|
|
* circular structure can be printed and read
|
|
* #. read macro for eval-when-read and correctly printing builtins
|
|
* read macros for backquote
|
|
* symbol character-escaping printer
|
|
* vectors
|
|
* exceptions
|
|
* gensyms (can be usefully read back in, too)
|
|
* #| multiline comments |#
|
|
* generic compare function, cyclic equal
|
|
* cvalues system providing C data types and a C FFI
|
|
* constructor notation for nicely printing arbitrary values
|
|
* strings
|
|
* hash tables
|
|
* I/O streams
|
|
|
|
by Jeff Bezanson (C) 2009
|
|
Distributed under the BSD License
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <setjmp.h>
|
|
#include <stdarg.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <wctype.h>
|
|
#include <sys/types.h>
|
|
#include <locale.h>
|
|
#include <limits.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include "llt.h"
|
|
#include "flisp.h"
|
|
#include "opcodes.h"
|
|
|
|
static char *builtin_names[] =
|
|
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL,
|
|
// predicates
|
|
"eq?", "eqv?", "equal?", "atom?", "not", "null?", "boolean?", "symbol?",
|
|
"number?", "bound?", "pair?", "builtin?", "vector?", "fixnum?",
|
|
"function?",
|
|
|
|
// lists
|
|
"cons", "list", "car", "cdr", "set-car!", "set-cdr!",
|
|
|
|
// execution
|
|
"apply",
|
|
|
|
// arithmetic
|
|
"+", "-", "*", "/", "=", "<", "compare",
|
|
|
|
// sequences
|
|
"vector", "aref", "aset!",
|
|
"", "", "" };
|
|
|
|
#define ANYARGS -10000
|
|
|
|
static short builtin_arg_counts[] =
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, ANYARGS, 1, 1, 2, 2,
|
|
-2,
|
|
ANYARGS, -1, ANYARGS, -1, 2, 2, 2,
|
|
ANYARGS, 2, 3 };
|
|
|
|
#define N_STACK 262144
|
|
value_t StaticStack[N_STACK];
|
|
value_t *Stack = StaticStack;
|
|
uint32_t SP = 0;
|
|
|
|
value_t NIL, FL_T, FL_F, LAMBDA, QUOTE, IF, TRYCATCH;
|
|
value_t BACKQUOTE, COMMA, COMMAAT, COMMADOT, FUNCTION;
|
|
value_t IOError, ParseError, TypeError, ArgError, UnboundError, MemoryError;
|
|
value_t DivideError, BoundsError, Error, KeyError, EnumerationError;
|
|
value_t conssym, symbolsym, fixnumsym, vectorsym, builtinsym, vu8sym;
|
|
value_t definesym, defmacrosym, forsym, labelsym, printprettysym, setqsym;
|
|
value_t printwidthsym, printreadablysym;
|
|
value_t tsym, Tsym, fsym, Fsym, booleansym, nullsym, evalsym;
|
|
|
|
static value_t apply_cl(uint32_t nargs);
|
|
static value_t *alloc_words(int n);
|
|
static value_t relocate(value_t v);
|
|
|
|
typedef struct _readstate_t {
|
|
htable_t backrefs;
|
|
htable_t gensyms;
|
|
value_t source;
|
|
struct _readstate_t *prev;
|
|
} readstate_t;
|
|
static readstate_t *readstate = NULL;
|
|
|
|
static void free_readstate(readstate_t *rs)
|
|
{
|
|
htable_free(&rs->backrefs);
|
|
htable_free(&rs->gensyms);
|
|
}
|
|
|
|
static unsigned char *fromspace;
|
|
static unsigned char *tospace;
|
|
static unsigned char *curheap;
|
|
static unsigned char *lim;
|
|
static uint32_t heapsize = 512*1024;//bytes
|
|
static uint32_t *consflags;
|
|
|
|
// error utilities ------------------------------------------------------------
|
|
|
|
// saved execution state for an unwind target
|
|
typedef struct _ectx_t {
|
|
jmp_buf buf;
|
|
uint32_t sp;
|
|
readstate_t *rdst;
|
|
struct _ectx_t *prev;
|
|
} exception_context_t;
|
|
|
|
static exception_context_t *ctx = NULL;
|
|
static value_t lasterror;
|
|
|
|
#define FL_TRY \
|
|
exception_context_t _ctx; int l__tr, l__ca; \
|
|
_ctx.sp=SP; _ctx.rdst=readstate; _ctx.prev=ctx; \
|
|
ctx = &_ctx; \
|
|
if (!setjmp(_ctx.buf)) \
|
|
for (l__tr=1; l__tr; l__tr=0, (void)(ctx->prev && (ctx=ctx->prev)))
|
|
|
|
#define FL_CATCH \
|
|
else \
|
|
for (l__ca=1; l__ca; l__ca=0, lasterror=NIL)
|
|
|
|
void raise(value_t e)
|
|
{
|
|
lasterror = e;
|
|
// unwind read state
|
|
while (readstate != ctx->rdst) {
|
|
free_readstate(readstate);
|
|
readstate = readstate->prev;
|
|
}
|
|
SP = ctx->sp;
|
|
exception_context_t *thisctx = ctx;
|
|
if (ctx->prev) // don't throw past toplevel
|
|
ctx = ctx->prev;
|
|
longjmp(thisctx->buf, 1);
|
|
}
|
|
|
|
static value_t make_error_msg(char *format, va_list args)
|
|
{
|
|
char msgbuf[512];
|
|
vsnprintf(msgbuf, sizeof(msgbuf), format, args);
|
|
return string_from_cstr(msgbuf);
|
|
}
|
|
|
|
void lerrorf(value_t e, char *format, ...)
|
|
{
|
|
va_list args;
|
|
PUSH(e);
|
|
va_start(args, format);
|
|
value_t msg = make_error_msg(format, args);
|
|
va_end(args);
|
|
|
|
e = POP();
|
|
raise(list2(e, msg));
|
|
}
|
|
|
|
void lerror(value_t e, const char *msg)
|
|
{
|
|
PUSH(e);
|
|
value_t m = cvalue_static_cstring(msg);
|
|
e = POP();
|
|
raise(list2(e, m));
|
|
}
|
|
|
|
void type_error(char *fname, char *expected, value_t got)
|
|
{
|
|
raise(listn(4, TypeError, symbol(fname), symbol(expected), got));
|
|
}
|
|
|
|
void bounds_error(char *fname, value_t arr, value_t ind)
|
|
{
|
|
lerrorf(listn(3, BoundsError, arr, ind), "%s: index out of bounds", fname);
|
|
}
|
|
|
|
// safe cast operators --------------------------------------------------------
|
|
|
|
#define SAFECAST_OP(type,ctype,cnvt) \
|
|
ctype to##type(value_t v, char *fname) \
|
|
{ \
|
|
if (is##type(v)) \
|
|
return (ctype)cnvt(v); \
|
|
type_error(fname, #type, v); \
|
|
}
|
|
SAFECAST_OP(cons, cons_t*, ptr)
|
|
SAFECAST_OP(symbol,symbol_t*,ptr)
|
|
SAFECAST_OP(fixnum,fixnum_t, numval)
|
|
SAFECAST_OP(cvalue,cvalue_t*,ptr)
|
|
SAFECAST_OP(string,char*, cvalue_data)
|
|
|
|
// symbol table ---------------------------------------------------------------
|
|
|
|
symbol_t *symtab = NULL;
|
|
|
|
static symbol_t *mk_symbol(char *str)
|
|
{
|
|
symbol_t *sym;
|
|
size_t len = strlen(str);
|
|
|
|
sym = (symbol_t*)malloc(sizeof(symbol_t)-sizeof(void*) + len + 1);
|
|
assert(((uptrint_t)sym & 0x7) == 0); // make sure malloc aligns 8
|
|
sym->left = sym->right = NULL;
|
|
if (str[0] == ':') {
|
|
value_t s = tagptr(sym, TAG_SYM);
|
|
setc(s, s);
|
|
}
|
|
else {
|
|
sym->binding = UNBOUND;
|
|
sym->syntax = 0;
|
|
}
|
|
sym->type = sym->dlcache = NULL;
|
|
sym->hash = memhash32(str, len)^0xAAAAAAAA;
|
|
strcpy(&sym->name[0], str);
|
|
return sym;
|
|
}
|
|
|
|
static symbol_t **symtab_lookup(symbol_t **ptree, char *str)
|
|
{
|
|
int x;
|
|
|
|
while(*ptree != NULL) {
|
|
x = strcmp(str, (*ptree)->name);
|
|
if (x == 0)
|
|
return ptree;
|
|
if (x < 0)
|
|
ptree = &(*ptree)->left;
|
|
else
|
|
ptree = &(*ptree)->right;
|
|
}
|
|
return ptree;
|
|
}
|
|
|
|
value_t symbol(char *str)
|
|
{
|
|
symbol_t **pnode;
|
|
|
|
pnode = symtab_lookup(&symtab, str);
|
|
if (*pnode == NULL)
|
|
*pnode = mk_symbol(str);
|
|
return tagptr(*pnode, TAG_SYM);
|
|
}
|
|
|
|
typedef struct {
|
|
value_t syntax; // syntax environment entry
|
|
value_t binding; // global value binding
|
|
fltype_t *type;
|
|
uint32_t id;
|
|
} gensym_t;
|
|
|
|
static uint32_t _gensym_ctr=0;
|
|
// two static buffers for gensym printing so there can be two
|
|
// gensym names available at a time, mostly for compare()
|
|
static char gsname[2][16];
|
|
static int gsnameno=0;
|
|
value_t gensym(value_t *args, uint32_t nargs)
|
|
{
|
|
(void)args;
|
|
(void)nargs;
|
|
gensym_t *gs = (gensym_t*)alloc_words(sizeof(gensym_t)/sizeof(void*));
|
|
gs->id = _gensym_ctr++;
|
|
gs->binding = UNBOUND;
|
|
gs->syntax = 0;
|
|
gs->type = NULL;
|
|
return tagptr(gs, TAG_SYM);
|
|
}
|
|
|
|
value_t fl_gensym()
|
|
{
|
|
return gensym(NULL, 0);
|
|
}
|
|
|
|
char *symbol_name(value_t v)
|
|
{
|
|
if (ismanaged(v)) {
|
|
gensym_t *gs = (gensym_t*)ptr(v);
|
|
gsnameno = 1-gsnameno;
|
|
char *n = uint2str(gsname[gsnameno]+1, sizeof(gsname[0])-1, gs->id, 10);
|
|
*(--n) = 'g';
|
|
return n;
|
|
}
|
|
return ((symbol_t*)ptr(v))->name;
|
|
}
|
|
|
|
// conses ---------------------------------------------------------------------
|
|
|
|
void gc(int mustgrow);
|
|
|
|
static value_t mk_cons(void)
|
|
{
|
|
cons_t *c;
|
|
|
|
if (__unlikely(curheap > lim))
|
|
gc(0);
|
|
c = (cons_t*)curheap;
|
|
curheap += sizeof(cons_t);
|
|
return tagptr(c, TAG_CONS);
|
|
}
|
|
|
|
static value_t *alloc_words(int n)
|
|
{
|
|
value_t *first;
|
|
|
|
assert(n > 0);
|
|
n = ALIGN(n, 2); // only allocate multiples of 2 words
|
|
if (__unlikely((value_t*)curheap > ((value_t*)lim)+2-n)) {
|
|
gc(0);
|
|
while ((value_t*)curheap > ((value_t*)lim)+2-n) {
|
|
gc(1);
|
|
}
|
|
}
|
|
first = (value_t*)curheap;
|
|
curheap += (n*sizeof(value_t));
|
|
return first;
|
|
}
|
|
|
|
// allocate n consecutive conses
|
|
#define cons_reserve(n) tagptr(alloc_words((n)*2), TAG_CONS)
|
|
|
|
#define cons_index(c) (((cons_t*)ptr(c))-((cons_t*)fromspace))
|
|
#define ismarked(c) bitvector_get(consflags, cons_index(c))
|
|
#define mark_cons(c) bitvector_set(consflags, cons_index(c), 1)
|
|
#define unmark_cons(c) bitvector_set(consflags, cons_index(c), 0)
|
|
|
|
static value_t the_empty_vector;
|
|
|
|
value_t alloc_vector(size_t n, int init)
|
|
{
|
|
if (n == 0) return the_empty_vector;
|
|
value_t *c = alloc_words(n+1);
|
|
value_t v = tagptr(c, TAG_VECTOR);
|
|
vector_setsize(v, n);
|
|
if (init) {
|
|
unsigned int i;
|
|
for(i=0; i < n; i++)
|
|
vector_elt(v, i) = NIL;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
// cvalues --------------------------------------------------------------------
|
|
|
|
#include "cvalues.c"
|
|
#include "types.c"
|
|
|
|
// print ----------------------------------------------------------------------
|
|
|
|
static int isnumtok(char *tok, value_t *pval);
|
|
static int symchar(char c);
|
|
|
|
#include "print.c"
|
|
|
|
// collector ------------------------------------------------------------------
|
|
|
|
static value_t relocate(value_t v)
|
|
{
|
|
value_t a, d, nc, first, *pcdr;
|
|
uptrint_t t = tag(v);
|
|
|
|
if (t == TAG_CONS) {
|
|
// iterative implementation allows arbitrarily long cons chains
|
|
pcdr = &first;
|
|
do {
|
|
if ((a=car_(v)) == TAG_FWD) {
|
|
*pcdr = cdr_(v);
|
|
return first;
|
|
}
|
|
*pcdr = nc = mk_cons();
|
|
d = cdr_(v);
|
|
car_(v) = TAG_FWD; cdr_(v) = nc;
|
|
car_(nc) = relocate(a);
|
|
pcdr = &cdr_(nc);
|
|
v = d;
|
|
} while (iscons(v));
|
|
*pcdr = (d==NIL) ? NIL : relocate(d);
|
|
return first;
|
|
}
|
|
|
|
if ((t&3) == 0) return v;
|
|
if (!ismanaged(v)) return v;
|
|
if (isforwarded(v)) return forwardloc(v);
|
|
|
|
if (t == TAG_VECTOR) {
|
|
// N.B.: 0-length vectors secretly have space for a first element
|
|
size_t i, newsz, sz = vector_size(v);
|
|
newsz = sz;
|
|
if (vector_elt(v,-1) & 0x1)
|
|
newsz += vector_grow_amt(sz);
|
|
nc = tagptr(alloc_words(newsz+1), TAG_VECTOR);
|
|
vector_setsize(nc, newsz);
|
|
a = vector_elt(v,0);
|
|
forward(v, nc);
|
|
i = 0;
|
|
if (sz > 0) {
|
|
vector_elt(nc,0) = relocate(a); i++;
|
|
for(; i < sz; i++)
|
|
vector_elt(nc,i) = relocate(vector_elt(v,i));
|
|
}
|
|
for(; i < newsz; i++)
|
|
vector_elt(nc,i) = NIL;
|
|
return nc;
|
|
}
|
|
else if (t == TAG_CPRIM) {
|
|
cprim_t *pcp = (cprim_t*)ptr(v);
|
|
size_t nw = CPRIM_NWORDS-1+NWORDS(cp_class(pcp)->size);
|
|
cprim_t *ncp = (cprim_t*)alloc_words(nw);
|
|
while (nw--)
|
|
((value_t*)ncp)[nw] = ((value_t*)pcp)[nw];
|
|
nc = tagptr(ncp, TAG_CPRIM);
|
|
forward(v, nc);
|
|
return nc;
|
|
}
|
|
else if (t == TAG_CVALUE) {
|
|
return cvalue_relocate(v);
|
|
}
|
|
else if (t == TAG_FUNCTION) {
|
|
function_t *fn = (function_t*)ptr(v);
|
|
function_t *nfn = (function_t*)alloc_words(4);
|
|
nfn->bcode = fn->bcode;
|
|
nfn->vals = fn->vals;
|
|
nc = tagptr(nfn, TAG_FUNCTION);
|
|
forward(v, nc);
|
|
nfn->env = relocate(fn->env);
|
|
nfn->vals = relocate(nfn->vals);
|
|
nfn->bcode = relocate(nfn->bcode);
|
|
return nc;
|
|
}
|
|
else if (t == TAG_SYM) {
|
|
gensym_t *gs = (gensym_t*)ptr(v);
|
|
gensym_t *ng = (gensym_t*)alloc_words(sizeof(gensym_t)/sizeof(void*));
|
|
ng->id = gs->id;
|
|
ng->binding = gs->binding;
|
|
ng->syntax = gs->syntax;
|
|
nc = tagptr(ng, TAG_SYM);
|
|
forward(v, nc);
|
|
if (ng->binding != UNBOUND)
|
|
ng->binding = relocate(ng->binding);
|
|
if (iscons(ng->syntax))
|
|
ng->syntax = relocate(ng->syntax);
|
|
return nc;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
value_t relocate_lispvalue(value_t v)
|
|
{
|
|
return relocate(v);
|
|
}
|
|
|
|
static void trace_globals(symbol_t *root)
|
|
{
|
|
while (root != NULL) {
|
|
if (root->binding != UNBOUND)
|
|
root->binding = relocate(root->binding);
|
|
if (iscons(root->syntax) || iscvalue(root->syntax))
|
|
root->syntax = relocate(root->syntax);
|
|
trace_globals(root->left);
|
|
root = root->right;
|
|
}
|
|
}
|
|
|
|
static value_t memory_exception_value;
|
|
|
|
void gc(int mustgrow)
|
|
{
|
|
static int grew = 0;
|
|
void *temp;
|
|
uint32_t i;
|
|
readstate_t *rs;
|
|
|
|
curheap = tospace;
|
|
lim = curheap+heapsize-sizeof(cons_t);
|
|
|
|
for (i=0; i < SP; i++)
|
|
Stack[i] = relocate(Stack[i]);
|
|
trace_globals(symtab);
|
|
relocate_typetable();
|
|
rs = readstate;
|
|
while (rs) {
|
|
for(i=0; i < rs->backrefs.size; i++)
|
|
rs->backrefs.table[i] = (void*)relocate((value_t)rs->backrefs.table[i]);
|
|
for(i=0; i < rs->gensyms.size; i++)
|
|
rs->gensyms.table[i] = (void*)relocate((value_t)rs->gensyms.table[i]);
|
|
rs->source = relocate(rs->source);
|
|
rs = rs->prev;
|
|
}
|
|
lasterror = relocate(lasterror);
|
|
memory_exception_value = relocate(memory_exception_value);
|
|
the_empty_vector = relocate(the_empty_vector);
|
|
|
|
sweep_finalizers();
|
|
|
|
#ifdef VERBOSEGC
|
|
printf("GC: found %d/%d live conses\n",
|
|
(curheap-tospace)/sizeof(cons_t), heapsize/sizeof(cons_t));
|
|
#endif
|
|
temp = tospace;
|
|
tospace = fromspace;
|
|
fromspace = temp;
|
|
|
|
// if we're using > 80% of the space, resize tospace so we have
|
|
// more space to fill next time. if we grew tospace last time,
|
|
// grow the other half of the heap this time to catch up.
|
|
if (grew || ((lim-curheap) < (int)(heapsize/5)) || mustgrow) {
|
|
temp = realloc(tospace, grew ? heapsize : heapsize*2);
|
|
if (temp == NULL)
|
|
raise(memory_exception_value);
|
|
tospace = temp;
|
|
if (!grew) {
|
|
heapsize*=2;
|
|
}
|
|
else {
|
|
temp = bitvector_resize(consflags, heapsize/sizeof(cons_t), 1);
|
|
if (temp == NULL)
|
|
raise(memory_exception_value);
|
|
consflags = (uint32_t*)temp;
|
|
}
|
|
grew = !grew;
|
|
}
|
|
if (curheap > lim) // all data was live
|
|
gc(0);
|
|
}
|
|
|
|
// utils ----------------------------------------------------------------------
|
|
|
|
// apply function with n args on the stack
|
|
static value_t _applyn(uint32_t n)
|
|
{
|
|
value_t f = Stack[SP-n-1];
|
|
uint32_t saveSP = SP;
|
|
value_t v;
|
|
if (iscbuiltin(f)) {
|
|
v = ((builtin_t*)ptr(f))[3](&Stack[SP-n], n);
|
|
}
|
|
else if (isfunction(f)) {
|
|
v = apply_cl(n);
|
|
}
|
|
else {
|
|
type_error("apply", "function", f);
|
|
}
|
|
SP = saveSP;
|
|
return v;
|
|
}
|
|
|
|
value_t apply(value_t f, value_t l)
|
|
{
|
|
value_t v = l;
|
|
uint32_t n = SP;
|
|
|
|
PUSH(f);
|
|
while (iscons(v)) {
|
|
if ((SP-n-1) == MAX_ARGS) {
|
|
PUSH(v);
|
|
break;
|
|
}
|
|
PUSH(car_(v));
|
|
v = cdr_(v);
|
|
}
|
|
n = SP - n - 1;
|
|
assert(n <= MAX_ARGS+1);
|
|
v = _applyn(n);
|
|
POPN(n+1);
|
|
return v;
|
|
}
|
|
|
|
value_t applyn(uint32_t n, value_t f, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, f);
|
|
size_t i;
|
|
|
|
PUSH(f);
|
|
for(i=0; i < n; i++) {
|
|
value_t a = va_arg(ap, value_t);
|
|
PUSH(a);
|
|
}
|
|
value_t v = _applyn(n);
|
|
POPN(n+1);
|
|
return v;
|
|
}
|
|
|
|
value_t listn(size_t n, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, n);
|
|
uint32_t si = SP;
|
|
size_t i;
|
|
|
|
for(i=0; i < n; i++) {
|
|
value_t a = va_arg(ap, value_t);
|
|
PUSH(a);
|
|
}
|
|
cons_t *c = (cons_t*)alloc_words(n*2);
|
|
cons_t *l = c;
|
|
for(i=0; i < n; i++) {
|
|
c->car = Stack[si++];
|
|
c->cdr = tagptr(c+1, TAG_CONS);
|
|
c++;
|
|
}
|
|
(c-1)->cdr = NIL;
|
|
|
|
POPN(n);
|
|
va_end(ap);
|
|
return tagptr(l, TAG_CONS);
|
|
}
|
|
|
|
value_t list2(value_t a, value_t b)
|
|
{
|
|
PUSH(a);
|
|
PUSH(b);
|
|
cons_t *c = (cons_t*)alloc_words(4);
|
|
b = POP();
|
|
a = POP();
|
|
c[0].car = a;
|
|
c[0].cdr = tagptr(c+1, TAG_CONS);
|
|
c[1].car = b;
|
|
c[1].cdr = NIL;
|
|
return tagptr(c, TAG_CONS);
|
|
}
|
|
|
|
value_t fl_cons(value_t a, value_t b)
|
|
{
|
|
PUSH(a);
|
|
PUSH(b);
|
|
value_t c = mk_cons();
|
|
cdr_(c) = POP();
|
|
car_(c) = POP();
|
|
return c;
|
|
}
|
|
|
|
// NOTE: this is NOT an efficient operation. it is only used by the
|
|
// reader; vectors should not generally be resized.
|
|
// vector_grow requires at least 1 and up to 3 garbage collections!
|
|
static value_t vector_grow(value_t v)
|
|
{
|
|
size_t s = vector_size(v);
|
|
size_t d = vector_grow_amt(s);
|
|
PUSH(v);
|
|
// first allocate enough space to guarantee the heap will be big enough
|
|
// for the new vector
|
|
alloc_words(d);
|
|
// setting low bit of vector's size acts as a flag to the collector
|
|
// to grow this vector as it is relocated
|
|
((size_t*)ptr(Stack[SP-1]))[0] |= 0x1;
|
|
gc(0);
|
|
return POP();
|
|
}
|
|
|
|
int isnumber(value_t v)
|
|
{
|
|
return (isfixnum(v) || iscprim(v));
|
|
}
|
|
|
|
// read -----------------------------------------------------------------------
|
|
|
|
#include "read.c"
|
|
|
|
// eval -----------------------------------------------------------------------
|
|
|
|
/*
|
|
there is one interesting difference between this and (lambda x x).
|
|
(eq a (apply list a)) is always false for nonempty a, while
|
|
(eq a (apply (lambda x x) a)) is always true. the justification for this
|
|
is that a vararg lambda often needs to recur by applying itself to the
|
|
tail of its argument list, so copying the list would be unacceptable.
|
|
*/
|
|
static value_t list(value_t *args, uint32_t nargs)
|
|
{
|
|
cons_t *c;
|
|
uint32_t i;
|
|
value_t v;
|
|
v = cons_reserve(nargs);
|
|
c = (cons_t*)ptr(v);
|
|
for(i=0; i < nargs; i++) {
|
|
c->car = args[i];
|
|
c->cdr = tagptr(c+1, TAG_CONS);
|
|
c++;
|
|
}
|
|
if (nargs > MAX_ARGS)
|
|
(c-2)->cdr = (c-1)->car;
|
|
else
|
|
(c-1)->cdr = NIL;
|
|
return v;
|
|
}
|
|
|
|
// perform (apply list* L)
|
|
// like the function list() above, but takes arguments from a list
|
|
// rather than from an array (the stack)
|
|
static value_t apply_liststar(value_t L)
|
|
{
|
|
PUSH(NIL);
|
|
PUSH(NIL);
|
|
PUSH(L);
|
|
value_t *pfirst = &Stack[SP-3];
|
|
value_t *plcons = &Stack[SP-2];
|
|
value_t *pL = &Stack[SP-1];
|
|
value_t c;
|
|
while (iscons(*pL)) {
|
|
if (iscons(cdr_(*pL))) {
|
|
c = mk_cons();
|
|
car_(c) = car_(*pL);
|
|
cdr_(c) = NIL;
|
|
}
|
|
else {
|
|
// last element; becomes final CDR
|
|
c = car_(*pL);
|
|
}
|
|
if (*pfirst == NIL)
|
|
*pfirst = c;
|
|
else
|
|
cdr_(*plcons) = c;
|
|
*plcons = c;
|
|
*pL = cdr_(*pL);
|
|
}
|
|
POPN(2);
|
|
return POP();
|
|
}
|
|
|
|
static value_t do_trycatch()
|
|
{
|
|
uint32_t saveSP = SP;
|
|
value_t v;
|
|
value_t thunk = Stack[SP-2];
|
|
Stack[SP-2] = Stack[SP-1];
|
|
Stack[SP-1] = thunk;
|
|
|
|
FL_TRY {
|
|
v = apply_cl(0);
|
|
}
|
|
FL_CATCH {
|
|
Stack[SP-1] = lasterror;
|
|
v = apply_cl(1);
|
|
}
|
|
SP = saveSP;
|
|
return v;
|
|
}
|
|
|
|
#define fn_bcode(f) (((value_t*)ptr(f))[0])
|
|
#define fn_vals(f) (((value_t*)ptr(f))[1])
|
|
#define fn_env(f) (((value_t*)ptr(f))[2])
|
|
|
|
/*
|
|
stack on entry: <func> <args...>
|
|
caller's responsibility:
|
|
- put the stack in this state
|
|
- provide arg count
|
|
- respect tail position
|
|
- call correct entry point (either eval_sexpr or apply_cl)
|
|
- restore SP
|
|
|
|
callee's responsibility:
|
|
- check arg counts
|
|
- allocate vararg array
|
|
- push closed env, set up new environment
|
|
|
|
** need 'copyenv' instruction that moves env to heap, installs
|
|
heap version as the current env, and pushes the result vector.
|
|
this can be used to implement the copy-closure op in terms of
|
|
other ops. and it can be the first instruction in lambdas in
|
|
head position (let optimization).
|
|
*/
|
|
static value_t apply_cl(uint32_t nargs)
|
|
{
|
|
uint32_t i, n, ip, bp, envsz, captured, op;
|
|
fixnum_t s, lo, hi;
|
|
int64_t accum;
|
|
uint8_t *code;
|
|
value_t func, v, x, e;
|
|
value_t *lenv, *pv;
|
|
symbol_t *sym;
|
|
cons_t *c;
|
|
|
|
apply_cl_top:
|
|
captured = 0;
|
|
func = Stack[SP-nargs-1];
|
|
code = cv_data((cvalue_t*)ptr(fn_bcode(func)));
|
|
assert(!ismanaged((uptrint_t)code));
|
|
assert(ismanaged(func));
|
|
|
|
bp = SP-nargs;
|
|
PUSH(fn_env(func));
|
|
|
|
ip = 0;
|
|
{
|
|
next_op:
|
|
op = code[ip++];
|
|
dispatch:
|
|
switch (op) {
|
|
case OP_ARGC:
|
|
n = code[ip++];
|
|
if (nargs != n) {
|
|
if (nargs > n)
|
|
lerror(ArgError, "apply: too many arguments");
|
|
else
|
|
lerror(ArgError, "apply: too few arguments");
|
|
}
|
|
goto next_op;
|
|
case OP_VARGC:
|
|
i = code[ip++];
|
|
s = (fixnum_t)nargs - (fixnum_t)i;
|
|
v = NIL;
|
|
if (s > 0) {
|
|
v = list(&Stack[bp+i], s);
|
|
if (nargs > MAX_ARGS) {
|
|
c = (cons_t*)curheap;
|
|
(c-2)->cdr = (c-1)->car;
|
|
}
|
|
Stack[bp+i] = v;
|
|
Stack[bp+i+1] = Stack[bp+nargs];
|
|
}
|
|
else if (s < 0) {
|
|
lerror(ArgError, "apply: too few arguments");
|
|
}
|
|
else {
|
|
PUSH(NIL);
|
|
Stack[SP-1] = Stack[SP-2];
|
|
Stack[SP-2] = NIL;
|
|
}
|
|
nargs = i+1;
|
|
goto next_op;
|
|
case OP_LET:
|
|
// last arg is closure environment to use
|
|
nargs--;
|
|
POPN(1);
|
|
goto next_op;
|
|
case OP_NOP: goto next_op;
|
|
case OP_DUP: v = Stack[SP-1]; PUSH(v); goto next_op;
|
|
case OP_POP: POPN(1); goto next_op;
|
|
case OP_TCALL:
|
|
n = code[ip++]; // nargs
|
|
do_tcall:
|
|
if (isfunction(Stack[SP-n-1])) {
|
|
for(s=-1; s < (fixnum_t)n; s++)
|
|
Stack[bp+s] = Stack[SP-n+s];
|
|
SP = bp+n;
|
|
nargs = n;
|
|
goto apply_cl_top;
|
|
}
|
|
goto do_call;
|
|
case OP_CALL:
|
|
n = code[ip++]; // nargs
|
|
do_call:
|
|
func = Stack[SP-n-1];
|
|
s = SP;
|
|
if (tag(func) == TAG_FUNCTION) {
|
|
if (func > (N_BUILTINS<<3)) {
|
|
v = apply_cl(n);
|
|
}
|
|
else {
|
|
op = uintval(func);
|
|
if (op > OP_ASET)
|
|
type_error("apply", "function", func);
|
|
s = builtin_arg_counts[op];
|
|
if (s >= 0)
|
|
argcount(builtin_names[op], n, s);
|
|
else if (s != ANYARGS && (signed)n < -s)
|
|
argcount(builtin_names[op], n, -s);
|
|
// remove function arg
|
|
for(s=SP-n-1; s < (int)SP-1; s++)
|
|
Stack[s] = Stack[s+1];
|
|
SP--;
|
|
switch (op) {
|
|
case OP_LIST: goto apply_list;
|
|
case OP_VECTOR: goto apply_vector;
|
|
case OP_APPLY: goto apply_apply;
|
|
case OP_ADD: goto apply_add;
|
|
case OP_SUB: goto apply_sub;
|
|
case OP_MUL: goto apply_mul;
|
|
case OP_DIV: goto apply_div;
|
|
default:
|
|
goto dispatch;
|
|
}
|
|
}
|
|
}
|
|
else if (iscbuiltin(func)) {
|
|
v = (((builtin_t*)ptr(func))[3])(&Stack[SP-n], n);
|
|
}
|
|
else {
|
|
type_error("apply", "function", func);
|
|
}
|
|
SP = s-n;
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_JMP: ip = (uint32_t)*(uint16_t*)&code[ip]; goto next_op;
|
|
case OP_BRF:
|
|
v = POP();
|
|
if (v == FL_F) ip = (uint32_t)*(uint16_t*)&code[ip];
|
|
else ip += 2;
|
|
goto next_op;
|
|
case OP_BRT:
|
|
v = POP();
|
|
if (v != FL_F) ip = (uint32_t)*(uint16_t*)&code[ip];
|
|
else ip += 2;
|
|
goto next_op;
|
|
case OP_JMPL: ip = *(uint32_t*)&code[ip]; goto next_op;
|
|
case OP_BRFL:
|
|
v = POP();
|
|
if (v == FL_F) ip = *(uint32_t*)&code[ip];
|
|
else ip += 4;
|
|
goto next_op;
|
|
case OP_BRTL:
|
|
v = POP();
|
|
if (v != FL_F) ip = *(uint32_t*)&code[ip];
|
|
else ip += 4;
|
|
goto next_op;
|
|
case OP_RET: v = POP(); return v;
|
|
|
|
case OP_EQ:
|
|
Stack[SP-2] = ((Stack[SP-2] == Stack[SP-1]) ? FL_T : FL_F);
|
|
POPN(1); goto next_op;
|
|
case OP_EQV:
|
|
if (Stack[SP-2] == Stack[SP-1]) {
|
|
v = FL_T;
|
|
}
|
|
else if (!leafp(Stack[SP-2]) || !leafp(Stack[SP-1])) {
|
|
v = FL_F;
|
|
}
|
|
else {
|
|
v = equal(Stack[SP-2], Stack[SP-1]);
|
|
}
|
|
Stack[SP-2] = v; POPN(1);
|
|
goto next_op;
|
|
case OP_EQUAL:
|
|
if (Stack[SP-2] == Stack[SP-1]) {
|
|
v = FL_T;
|
|
}
|
|
else {
|
|
v = equal(Stack[SP-2], Stack[SP-1]);
|
|
}
|
|
Stack[SP-2] = v; POPN(1);
|
|
goto next_op;
|
|
case OP_PAIRP:
|
|
Stack[SP-1] = (iscons(Stack[SP-1]) ? FL_T : FL_F); goto next_op;
|
|
case OP_ATOMP:
|
|
Stack[SP-1] = (iscons(Stack[SP-1]) ? FL_F : FL_T); goto next_op;
|
|
case OP_NOT:
|
|
Stack[SP-1] = ((Stack[SP-1]==FL_F) ? FL_T : FL_F); goto next_op;
|
|
case OP_NULLP:
|
|
Stack[SP-1] = ((Stack[SP-1]==NIL) ? FL_T : FL_F); goto next_op;
|
|
case OP_BOOLEANP:
|
|
v = Stack[SP-1];
|
|
Stack[SP-1] = ((v == FL_T || v == FL_F) ? FL_T:FL_F); goto next_op;
|
|
case OP_SYMBOLP:
|
|
Stack[SP-1] = (issymbol(Stack[SP-1]) ? FL_T : FL_F); goto next_op;
|
|
case OP_NUMBERP:
|
|
v = Stack[SP-1];
|
|
Stack[SP-1] = (isfixnum(v) || iscprim(v) ? FL_T:FL_F); goto next_op;
|
|
case OP_FIXNUMP:
|
|
Stack[SP-1] = (isfixnum(Stack[SP-1]) ? FL_T : FL_F); goto next_op;
|
|
case OP_BOUNDP:
|
|
sym = tosymbol(Stack[SP-1], "bound?");
|
|
Stack[SP-1] = ((sym->binding == UNBOUND) ? FL_F : FL_T);
|
|
goto next_op;
|
|
case OP_BUILTINP:
|
|
v = Stack[SP-1];
|
|
Stack[SP-1] = (isbuiltin(v) || iscbuiltin(v)) ? FL_T : FL_F;
|
|
goto next_op;
|
|
case OP_FUNCTIONP:
|
|
v = Stack[SP-1];
|
|
Stack[SP-1] = ((tag(v)==TAG_FUNCTION &&v!=FL_F&&v!=FL_T&&v!=NIL) ||
|
|
iscbuiltin(v)) ? FL_T : FL_F;
|
|
goto next_op;
|
|
case OP_VECTORP:
|
|
Stack[SP-1] = (isvector(Stack[SP-1]) ? FL_T : FL_F); goto next_op;
|
|
|
|
case OP_CONS:
|
|
if (curheap > lim)
|
|
gc(0);
|
|
c = (cons_t*)curheap;
|
|
curheap += sizeof(cons_t);
|
|
c->car = Stack[SP-2];
|
|
c->cdr = Stack[SP-1];
|
|
Stack[SP-2] = tagptr(c, TAG_CONS);
|
|
POPN(1); goto next_op;
|
|
case OP_CAR:
|
|
v = Stack[SP-1];
|
|
if (!iscons(v)) type_error("car", "cons", v);
|
|
Stack[SP-1] = car_(v);
|
|
goto next_op;
|
|
case OP_CDR:
|
|
v = Stack[SP-1];
|
|
if (!iscons(v)) type_error("cdr", "cons", v);
|
|
Stack[SP-1] = cdr_(v);
|
|
goto next_op;
|
|
case OP_SETCAR:
|
|
car(Stack[SP-2]) = Stack[SP-1];
|
|
POPN(1); goto next_op;
|
|
case OP_SETCDR:
|
|
cdr(Stack[SP-2]) = Stack[SP-1];
|
|
POPN(1); goto next_op;
|
|
case OP_LIST:
|
|
n = code[ip++];
|
|
apply_list:
|
|
if (n > 0) {
|
|
v = list(&Stack[SP-n], n);
|
|
POPN(n);
|
|
PUSH(v);
|
|
}
|
|
else {
|
|
PUSH(NIL);
|
|
}
|
|
goto next_op;
|
|
|
|
case OP_TAPPLY:
|
|
case OP_APPLY:
|
|
n = code[ip++];
|
|
apply_apply:
|
|
v = POP(); // arglist
|
|
if (n > MAX_ARGS) {
|
|
v = apply_liststar(v);
|
|
}
|
|
n = SP-(n-2); // n-2 == # leading arguments not in the list
|
|
while (iscons(v)) {
|
|
if (SP-n == MAX_ARGS) {
|
|
PUSH(v);
|
|
break;
|
|
}
|
|
PUSH(car_(v));
|
|
v = cdr_(v);
|
|
}
|
|
n = SP-n;
|
|
if (op==OP_TAPPLY) goto do_tcall;
|
|
else goto do_call;
|
|
|
|
case OP_ADD:
|
|
n = code[ip++];
|
|
apply_add:
|
|
s = 0;
|
|
i = SP-n;
|
|
if (n > MAX_ARGS) goto add_ovf;
|
|
for (; i < SP; i++) {
|
|
if (isfixnum(Stack[i])) {
|
|
s += numval(Stack[i]);
|
|
if (!fits_fixnum(s)) {
|
|
i++;
|
|
goto add_ovf;
|
|
}
|
|
}
|
|
else {
|
|
add_ovf:
|
|
v = fl_add_any(&Stack[i], SP-i, s);
|
|
break;
|
|
}
|
|
}
|
|
if (i==SP)
|
|
v = fixnum(s);
|
|
POPN(n);
|
|
PUSH(v);
|
|
goto next_op;
|
|
case OP_ADD2:
|
|
if (bothfixnums(Stack[SP-1], Stack[SP-2])) {
|
|
s = numval(Stack[SP-1]) + numval(Stack[SP-2]);
|
|
if (fits_fixnum(s))
|
|
v = fixnum(s);
|
|
else
|
|
v = mk_long(s);
|
|
}
|
|
else {
|
|
v = fl_add_any(&Stack[SP-2], 2, 0);
|
|
}
|
|
POPN(1);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_SUB:
|
|
n = code[ip++];
|
|
apply_sub:
|
|
if (n == 2) goto do_sub2;
|
|
if (n == 1) goto do_neg;
|
|
i = SP-n;
|
|
// we need to pass the full arglist on to fl_add_any
|
|
// so it can handle rest args properly
|
|
PUSH(Stack[i]);
|
|
Stack[i] = fixnum(0);
|
|
Stack[i+1] = fl_neg(fl_add_any(&Stack[i], n, 0));
|
|
Stack[i] = POP();
|
|
v = fl_add_any(&Stack[i], 2, 0);
|
|
POPN(n);
|
|
PUSH(v);
|
|
goto next_op;
|
|
case OP_NEG:
|
|
do_neg:
|
|
if (isfixnum(Stack[SP-1]))
|
|
Stack[SP-1] = fixnum(-numval(Stack[SP-1]));
|
|
else
|
|
Stack[SP-1] = fl_neg(Stack[SP-1]);
|
|
goto next_op;
|
|
case OP_SUB2:
|
|
do_sub2:
|
|
if (bothfixnums(Stack[SP-2], Stack[SP-1])) {
|
|
s = numval(Stack[SP-2]) - numval(Stack[SP-1]);
|
|
if (fits_fixnum(s))
|
|
v = fixnum(s);
|
|
else
|
|
v = mk_long(s);
|
|
}
|
|
else {
|
|
Stack[SP-1] = fl_neg(Stack[SP-1]);
|
|
v = fl_add_any(&Stack[SP-2], 2, 0);
|
|
}
|
|
POPN(1);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_MUL:
|
|
n = code[ip++];
|
|
apply_mul:
|
|
accum = 1;
|
|
i = SP-n;
|
|
if (n > MAX_ARGS) goto mul_ovf;
|
|
for (; i < SP; i++) {
|
|
if (isfixnum(Stack[i])) {
|
|
accum *= numval(Stack[i]);
|
|
}
|
|
else {
|
|
mul_ovf:
|
|
v = fl_mul_any(&Stack[i], SP-i, accum);
|
|
break;
|
|
}
|
|
}
|
|
if (i == SP) {
|
|
if (fits_fixnum(accum))
|
|
v = fixnum(accum);
|
|
else
|
|
v = return_from_int64(accum);
|
|
}
|
|
POPN(n);
|
|
PUSH(v);
|
|
goto next_op;
|
|
case OP_DIV:
|
|
n = code[ip++];
|
|
apply_div:
|
|
i = SP-n;
|
|
if (n == 1) {
|
|
Stack[SP-1] = fl_div2(fixnum(1), Stack[i]);
|
|
}
|
|
else {
|
|
if (n > 2) {
|
|
PUSH(Stack[i]);
|
|
Stack[i] = fixnum(1);
|
|
Stack[i+1] = fl_mul_any(&Stack[i], n, 1);
|
|
Stack[i] = POP();
|
|
}
|
|
v = fl_div2(Stack[i], Stack[i+1]);
|
|
POPN(n);
|
|
PUSH(v);
|
|
}
|
|
goto next_op;
|
|
case OP_NUMEQ:
|
|
v = Stack[SP-2]; e = Stack[SP-1];
|
|
if (bothfixnums(v, e)) {
|
|
v = (v == e) ? FL_T : FL_F;
|
|
}
|
|
else {
|
|
v = (!numeric_compare(v,e,1,0,"=")) ? FL_T : FL_F;
|
|
}
|
|
POPN(1);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_LT:
|
|
if (bothfixnums(Stack[SP-2], Stack[SP-1])) {
|
|
v = (numval(Stack[SP-2]) < numval(Stack[SP-1])) ? FL_T : FL_F;
|
|
}
|
|
else {
|
|
v = (numval(compare(Stack[SP-2], Stack[SP-1])) < 0) ?
|
|
FL_T : FL_F;
|
|
}
|
|
POPN(1);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_COMPARE:
|
|
Stack[SP-2] = compare(Stack[SP-2], Stack[SP-1]);
|
|
POPN(1);
|
|
goto next_op;
|
|
|
|
case OP_VECTOR:
|
|
n = code[ip++];
|
|
apply_vector:
|
|
if (n > MAX_ARGS) {
|
|
i = llength(Stack[SP-1])-1;
|
|
}
|
|
else i = 0;
|
|
v = alloc_vector(n+i, 0);
|
|
if (n) {
|
|
memcpy(&vector_elt(v,0), &Stack[SP-n], n*sizeof(value_t));
|
|
e = POP();
|
|
POPN(n-1);
|
|
}
|
|
if (n > MAX_ARGS) {
|
|
i = n-1;
|
|
while (iscons(e)) {
|
|
vector_elt(v,i) = car_(e);
|
|
i++;
|
|
e = cdr_(e);
|
|
}
|
|
}
|
|
PUSH(v);
|
|
goto next_op;
|
|
|
|
case OP_AREF:
|
|
v = Stack[SP-2];
|
|
if (isvector(v)) {
|
|
i = tofixnum(Stack[SP-1], "aref");
|
|
if ((unsigned)i >= vector_size(v))
|
|
bounds_error("aref", v, Stack[SP-1]);
|
|
v = vector_elt(v, i);
|
|
}
|
|
else if (isarray(v)) {
|
|
v = cvalue_array_aref(&Stack[SP-2]);
|
|
}
|
|
else {
|
|
type_error("aref", "sequence", v);
|
|
}
|
|
POPN(1);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_ASET:
|
|
e = Stack[SP-3];
|
|
if (isvector(e)) {
|
|
i = tofixnum(Stack[SP-2], "aset!");
|
|
if ((unsigned)i >= vector_size(e))
|
|
bounds_error("aset!", v, Stack[SP-1]);
|
|
vector_elt(e, i) = (v=Stack[SP-1]);
|
|
}
|
|
else if (isarray(e)) {
|
|
v = cvalue_array_aset(&Stack[SP-3]);
|
|
}
|
|
else {
|
|
type_error("aset!", "sequence", e);
|
|
}
|
|
POPN(2);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
case OP_FOR:
|
|
lo = tofixnum(Stack[SP-3], "for");
|
|
hi = tofixnum(Stack[SP-2], "for");
|
|
//f = Stack[SP-1];
|
|
v = FL_F;
|
|
SP += 2;
|
|
i = SP;
|
|
for(s=lo; s <= hi; s++) {
|
|
Stack[SP-2] = Stack[SP-3];
|
|
Stack[SP-1] = fixnum(s);
|
|
v = apply_cl(1);
|
|
SP = i;
|
|
}
|
|
POPN(4);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
|
|
case OP_LOADT: PUSH(FL_T); goto next_op;
|
|
case OP_LOADF: PUSH(FL_F); goto next_op;
|
|
case OP_LOADNIL: PUSH(NIL); goto next_op;
|
|
case OP_LOAD0: PUSH(fixnum(0)); goto next_op;
|
|
case OP_LOAD1: PUSH(fixnum(1)); goto next_op;
|
|
case OP_LOADI8: s = (int8_t)code[ip++]; PUSH(fixnum(s)); goto next_op;
|
|
case OP_LOADV:
|
|
v = fn_vals(Stack[bp-1]);
|
|
assert(code[ip] < vector_size(v));
|
|
v = vector_elt(v, code[ip]); ip++;
|
|
PUSH(v);
|
|
goto next_op;
|
|
case OP_LOADVL:
|
|
v = fn_vals(Stack[bp-1]);
|
|
v = vector_elt(v, *(uint32_t*)&code[ip]); ip+=4;
|
|
PUSH(v);
|
|
goto next_op;
|
|
case OP_LOADGL:
|
|
v = fn_vals(Stack[bp-1]);
|
|
v = vector_elt(v, *(uint32_t*)&code[ip]); ip+=4;
|
|
goto do_loadg;
|
|
case OP_LOADG:
|
|
v = fn_vals(Stack[bp-1]);
|
|
assert(code[ip] < vector_size(v));
|
|
v = vector_elt(v, code[ip]); ip++;
|
|
do_loadg:
|
|
assert(issymbol(v));
|
|
sym = (symbol_t*)ptr(v);
|
|
if (sym->binding == UNBOUND)
|
|
raise(list2(UnboundError, v));
|
|
PUSH(sym->binding);
|
|
goto next_op;
|
|
|
|
case OP_SETGL:
|
|
v = fn_vals(Stack[bp-1]);
|
|
v = vector_elt(v, *(uint32_t*)&code[ip]); ip+=4;
|
|
goto do_setg;
|
|
case OP_SETG:
|
|
v = fn_vals(Stack[bp-1]);
|
|
assert(code[ip] < vector_size(v));
|
|
v = vector_elt(v, code[ip]); ip++;
|
|
do_setg:
|
|
assert(issymbol(v));
|
|
sym = (symbol_t*)ptr(v);
|
|
v = Stack[SP-1];
|
|
if (sym->syntax != TAG_CONST)
|
|
sym->binding = v;
|
|
goto next_op;
|
|
|
|
case OP_LOADA:
|
|
assert(nargs > 0);
|
|
i = code[ip++];
|
|
if (captured) {
|
|
x = Stack[bp];
|
|
assert(isvector(x));
|
|
assert(i < vector_size(x));
|
|
v = vector_elt(x, i);
|
|
}
|
|
else {
|
|
assert(bp+i < SP);
|
|
v = Stack[bp+i];
|
|
}
|
|
PUSH(v);
|
|
goto next_op;
|
|
case OP_SETA:
|
|
assert(nargs > 0);
|
|
v = Stack[SP-1];
|
|
i = code[ip++];
|
|
if (captured) {
|
|
x = Stack[bp];
|
|
assert(isvector(x));
|
|
assert(i < vector_size(x));
|
|
vector_elt(x, i) = v;
|
|
}
|
|
else {
|
|
assert(bp+i < SP);
|
|
Stack[bp+i] = v;
|
|
}
|
|
goto next_op;
|
|
case OP_LOADC:
|
|
case OP_SETC:
|
|
s = code[ip++];
|
|
i = code[ip++];
|
|
v = Stack[bp+nargs];
|
|
while (s--)
|
|
v = vector_elt(v, vector_size(v)-1);
|
|
assert(isvector(v));
|
|
assert(i < vector_size(v));
|
|
if (op == OP_SETC)
|
|
vector_elt(v, i) = Stack[SP-1];
|
|
else
|
|
PUSH(vector_elt(v, i));
|
|
goto next_op;
|
|
|
|
case OP_CLOSURE:
|
|
case OP_COPYENV:
|
|
// build a closure (lambda args body . env)
|
|
if (nargs > 0 && !captured) {
|
|
// save temporary environment to the heap
|
|
lenv = &Stack[bp];
|
|
envsz = nargs+1;
|
|
pv = alloc_words(envsz + 1);
|
|
PUSH(tagptr(pv, TAG_VECTOR));
|
|
pv[0] = fixnum(envsz);
|
|
pv++;
|
|
while (envsz--)
|
|
*pv++ = *lenv++;
|
|
// environment representation changed; install
|
|
// the new representation so everybody can see it
|
|
captured = 1;
|
|
Stack[bp] = Stack[SP-1];
|
|
}
|
|
else {
|
|
PUSH(Stack[bp]); // env has already been captured; share
|
|
}
|
|
if (op == OP_CLOSURE) {
|
|
pv = alloc_words(4);
|
|
x = Stack[SP-2]; // closure to copy
|
|
assert(isfunction(x));
|
|
pv[0] = ((value_t*)ptr(x))[0];
|
|
pv[1] = ((value_t*)ptr(x))[1];
|
|
pv[2] = Stack[SP-1]; // env
|
|
POPN(1);
|
|
Stack[SP-1] = tagptr(pv, TAG_FUNCTION);
|
|
}
|
|
goto next_op;
|
|
|
|
case OP_TRYCATCH:
|
|
v = do_trycatch();
|
|
POPN(1);
|
|
Stack[SP-1] = v;
|
|
goto next_op;
|
|
}
|
|
}
|
|
assert(0);
|
|
return UNBOUND;
|
|
}
|
|
|
|
// initialization -------------------------------------------------------------
|
|
|
|
extern void builtins_init();
|
|
extern void comparehash_init();
|
|
|
|
static char *EXEDIR = NULL;
|
|
|
|
void assign_global_builtins(builtinspec_t *b)
|
|
{
|
|
while (b->name != NULL) {
|
|
set(symbol(b->name), cbuiltin(b->name, b->fptr));
|
|
b++;
|
|
}
|
|
}
|
|
|
|
static value_t fl_function(value_t *args, uint32_t nargs)
|
|
{
|
|
if (nargs != 3)
|
|
argcount("function", nargs, 2);
|
|
if (!isstring(args[0]))
|
|
type_error("function", "string", args[0]);
|
|
if (!isvector(args[1]))
|
|
type_error("function", "vector", args[1]);
|
|
cvalue_t *arr = (cvalue_t*)ptr(args[0]);
|
|
cv_pin(arr);
|
|
char *data = cv_data(arr);
|
|
if (data[0] >= N_OPCODES) {
|
|
// read syntax, shifted 48 for compact text representation
|
|
size_t i, sz = cv_len(arr);
|
|
for(i=0; i < sz; i++)
|
|
data[i] -= 48;
|
|
}
|
|
function_t *fn = (function_t*)alloc_words(4);
|
|
value_t fv = tagptr(fn, TAG_FUNCTION);
|
|
fn->bcode = args[0];
|
|
fn->vals = args[1];
|
|
if (nargs == 3)
|
|
fn->env = args[2];
|
|
else
|
|
fn->env = NIL;
|
|
return fv;
|
|
}
|
|
|
|
static value_t fl_function2vector(value_t *args, uint32_t nargs)
|
|
{
|
|
argcount("function->vector", nargs, 1);
|
|
value_t v = args[0];
|
|
if (!isclosure(v))
|
|
type_error("function->vector", "function", v);
|
|
value_t vec = alloc_vector(3, 0);
|
|
function_t *fn = (function_t*)ptr(args[0]);
|
|
vector_elt(vec,0) = fn->bcode;
|
|
vector_elt(vec,1) = fn->vals;
|
|
vector_elt(vec,2) = fn->env;
|
|
return vec;
|
|
}
|
|
|
|
static builtinspec_t core_builtin_info[] = {
|
|
{ "function", fl_function },
|
|
{ "function->vector", fl_function2vector },
|
|
{ "gensym", gensym },
|
|
{ "hash", fl_hash },
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
static void lisp_init(void)
|
|
{
|
|
int i;
|
|
|
|
llt_init();
|
|
|
|
fromspace = malloc(heapsize);
|
|
tospace = malloc(heapsize);
|
|
curheap = fromspace;
|
|
lim = curheap+heapsize-sizeof(cons_t);
|
|
consflags = bitvector_new(heapsize/sizeof(cons_t), 1);
|
|
htable_new(&printconses, 32);
|
|
comparehash_init();
|
|
|
|
NIL = builtin(OP_THE_EMPTY_LIST);
|
|
FL_T = builtin(OP_BOOL_CONST_T);
|
|
FL_F = builtin(OP_BOOL_CONST_F);
|
|
LAMBDA = symbol("lambda");
|
|
FUNCTION = symbol("function");
|
|
QUOTE = symbol("quote");
|
|
TRYCATCH = symbol("trycatch");
|
|
BACKQUOTE = symbol("backquote");
|
|
COMMA = symbol("*comma*");
|
|
COMMAAT = symbol("*comma-at*");
|
|
COMMADOT = symbol("*comma-dot*");
|
|
IOError = symbol("io-error");
|
|
ParseError = symbol("parse-error");
|
|
TypeError = symbol("type-error");
|
|
ArgError = symbol("arg-error");
|
|
UnboundError = symbol("unbound-error");
|
|
KeyError = symbol("key-error");
|
|
MemoryError = symbol("memory-error");
|
|
BoundsError = symbol("bounds-error");
|
|
DivideError = symbol("divide-error");
|
|
EnumerationError = symbol("enumeration-error");
|
|
Error = symbol("error");
|
|
conssym = symbol("cons");
|
|
symbolsym = symbol("symbol");
|
|
fixnumsym = symbol("fixnum");
|
|
vectorsym = symbol("vector");
|
|
builtinsym = symbol("builtin");
|
|
booleansym = symbol("boolean");
|
|
nullsym = symbol("null");
|
|
definesym = symbol("define");
|
|
defmacrosym = symbol("define-macro");
|
|
forsym = symbol("for");
|
|
labelsym = symbol("label");
|
|
setqsym = symbol("set!");
|
|
evalsym = symbol("eval");
|
|
vu8sym = symbol("vu8");
|
|
tsym = symbol("t"); Tsym = symbol("T");
|
|
fsym = symbol("f"); Fsym = symbol("F");
|
|
set(printprettysym=symbol("*print-pretty*"), FL_T);
|
|
set(printreadablysym=symbol("*print-readably*"), FL_T);
|
|
set(printwidthsym=symbol("*print-width*"), fixnum(SCR_WIDTH));
|
|
lasterror = NIL;
|
|
i = 0;
|
|
for (i=OP_EQ; i <= OP_ASET; i++) {
|
|
setc(symbol(builtin_names[i]), builtin(i));
|
|
}
|
|
setc(symbol("eq"), builtin(OP_EQ));
|
|
setc(symbol("equal"), builtin(OP_EQUAL));
|
|
setc(symbol("procedure?"), builtin(OP_FUNCTIONP));
|
|
|
|
#ifdef LINUX
|
|
setc(symbol("*os-name*"), symbol("linux"));
|
|
#elif defined(WIN32) || defined(WIN64)
|
|
setc(symbol("*os-name*"), symbol("win32"));
|
|
#elif defined(MACOSX)
|
|
setc(symbol("*os-name*"), symbol("macos"));
|
|
#else
|
|
setc(symbol("*os-name*"), symbol("unknown"));
|
|
#endif
|
|
|
|
cvalues_init();
|
|
|
|
char buf[1024];
|
|
char *exename = get_exename(buf, sizeof(buf));
|
|
if (exename != NULL) {
|
|
path_to_dirname(exename);
|
|
EXEDIR = strdup(exename);
|
|
setc(symbol("*install-dir*"), cvalue_static_cstring(EXEDIR));
|
|
}
|
|
|
|
memory_exception_value = list2(MemoryError,
|
|
cvalue_static_cstring("out of memory"));
|
|
|
|
the_empty_vector = tagptr(alloc_words(1), TAG_VECTOR);
|
|
vector_setsize(the_empty_vector, 0);
|
|
|
|
assign_global_builtins(core_builtin_info);
|
|
|
|
builtins_init();
|
|
}
|
|
|
|
// repl -----------------------------------------------------------------------
|
|
|
|
value_t toplevel_eval(value_t expr)
|
|
{
|
|
value_t v;
|
|
uint32_t saveSP = SP;
|
|
PUSH(symbol_value(evalsym));
|
|
PUSH(expr);
|
|
v = apply_cl(1);
|
|
SP = saveSP;
|
|
return v;
|
|
}
|
|
|
|
static value_t argv_list(int argc, char *argv[])
|
|
{
|
|
int i;
|
|
PUSH(NIL);
|
|
for(i=argc-1; i >= 0; i--) {
|
|
PUSH(cvalue_static_cstring(argv[i]));
|
|
Stack[SP-2] = fl_cons(Stack[SP-1], Stack[SP-2]);
|
|
POPN(1);
|
|
}
|
|
return POP();
|
|
}
|
|
|
|
int locale_is_utf8;
|
|
|
|
extern value_t fl_file(value_t *args, uint32_t nargs);
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
value_t e, v;
|
|
int saveSP;
|
|
symbol_t *sym;
|
|
char fname_buf[1024];
|
|
|
|
locale_is_utf8 = u8_is_locale_utf8(setlocale(LC_ALL, ""));
|
|
|
|
lisp_init();
|
|
|
|
fname_buf[0] = '\0';
|
|
if (EXEDIR != NULL) {
|
|
strcat(fname_buf, EXEDIR);
|
|
strcat(fname_buf, PATHSEPSTRING);
|
|
}
|
|
strcat(fname_buf, "flisp.boot");
|
|
|
|
FL_TRY {
|
|
// install toplevel exception handler
|
|
PUSH(cvalue_static_cstring(fname_buf));
|
|
PUSH(symbol(":read"));
|
|
value_t f = fl_file(&Stack[SP-2], 2);
|
|
POPN(2);
|
|
PUSH(f); saveSP = SP;
|
|
while (1) {
|
|
e = read_sexpr(Stack[SP-1]);
|
|
if (ios_eof(value2c(ios_t*,Stack[SP-1]))) break;
|
|
if (isfunction(e)) {
|
|
// stage 0 format: series of thunks
|
|
PUSH(e);
|
|
(void)_applyn(0);
|
|
SP = saveSP;
|
|
}
|
|
else {
|
|
// stage 1 format: symbol/value pairs
|
|
sym = tosymbol(e, "bootstrap");
|
|
v = read_sexpr(Stack[SP-1]);
|
|
sym->binding = v;
|
|
}
|
|
}
|
|
ios_close(value2c(ios_t*,Stack[SP-1]));
|
|
POPN(1);
|
|
|
|
PUSH(symbol_value(symbol("__start")));
|
|
PUSH(argv_list(argc, argv));
|
|
(void)_applyn(1);
|
|
}
|
|
FL_CATCH {
|
|
ios_puts("fatal error during bootstrap:\n", ios_stderr);
|
|
print(ios_stderr, lasterror);
|
|
ios_putc('\n', ios_stderr);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|