upscheme/c/flisp.c

2718 lines
74 KiB
C

/*
femtoLisp
a compact interpreter for a minimal lisp/scheme dialect
characteristics:
* lexical scope, lisp-1
* unrestricted macros
* data types: 30-bit integer, symbol, pair, vector, char, string, table
iostream, procedure, low-level data types
* case-sensitive
* simple compacting copying garbage collector
* Scheme-style varargs (dotted formal argument lists)
* "human-readable" bytecode with self-hosted compiler
extra features:
* circular structure can be printed and read
* #. read macro for eval-when-read and readably printing builtins
* read macros for backquote
* symbol character-escaping printer
* exceptions
* gensyms (can be usefully read back in, too)
* #| multiline comments |#, lots of other lexical syntax
* generic compare function, cyclic equal
* cvalues system providing C data types and a C FFI
* constructor notation for nicely printing arbitrary values
by Jeff Bezanson (C) 2009
Distributed under the BSD License
*/
#include <sys/types.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <locale.h>
#include <math.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wctype.h>
#include "dtypes.h"
#include "utils.h"
#include "utf8.h"
#include "ios.h"
#include "socket.h"
#include "timefuncs.h"
#include "hashing.h"
#include "htable.h"
#include "htableh_inc.h"
#include "bitvector.h"
#include "os.h"
#include "random.h"
#include "llt.h"
#include "ieee754.h"
#include "flisp.h"
#include "error.h"
#include "argcount.h"
#include "env.h"
#include "opcodes.h"
#include "../scheme-boot/boot_image.h"
static char *builtin_names[] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
// predicates
"eq?", "eqv?", "equal?", "atom?", "not", "null?", "boolean?", "symbol?",
"number?", "bound?", "pair?", "builtin?", "vector?", "fixnum?",
"function?",
// lists
"cons", "list", "car", "cdr", "set-car!", "set-cdr!",
// execution
"apply",
// arithmetic
"+", "-", "*", "/", "div0", "=", "<", "compare",
// sequences
"vector", "aref", "aset!", "", "", ""
};
#define ANYARGS -10000
static short builtin_arg_counts[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, ANYARGS, 1,
1, 2, 2, -2, ANYARGS, -1, ANYARGS, -1, 2, 2, 2, 2, ANYARGS, 2, 3
};
static uint32_t N_STACK;
static value_t *Stack;
static uint32_t SP = 0;
static uint32_t curr_frame = 0;
#define PUSH(v) (Stack[SP++] = (v))
#define POP() (Stack[--SP])
#define POPN(n) (SP -= (n))
#define N_GC_HANDLES 1024
static value_t *GCHandleStack[N_GC_HANDLES];
static uint32_t N_GCHND = 0;
value_t FL_NIL, FL_T, FL_F, FL_EOF, QUOTE;
value_t IOError, ParseError, TypeError, ArgError, UnboundError, MemoryError;
value_t DivideError, BoundsError, Error, KeyError, EnumerationError;
value_t printwidthsym, printreadablysym, printprettysym, printlengthsym;
value_t printlevelsym, builtins_table_sym;
static value_t NIL, LAMBDA, IF, TRYCATCH;
static value_t BACKQUOTE, COMMA, COMMAAT, COMMADOT, FUNCTION;
static value_t pairsym, symbolsym, fixnumsym, vectorsym, builtinsym, vu8sym;
static value_t definesym, defmacrosym, forsym, setqsym;
static value_t tsym, Tsym, fsym, Fsym, booleansym, nullsym, evalsym, fnsym;
// for reading characters
static value_t nulsym, alarmsym, backspacesym, tabsym, linefeedsym,
newlinesym;
static value_t vtabsym, pagesym, returnsym, escsym, spacesym, deletesym;
static value_t apply_cl(uint32_t nargs);
static value_t *alloc_words(int n);
static value_t relocate(value_t v);
static struct fl_readstate *readstate = NULL;
static void free_readstate(struct fl_readstate *rs)
{
htable_free(&rs->backrefs);
htable_free(&rs->gensyms);
}
static unsigned char *fromspace;
static unsigned char *tospace;
static unsigned char *curheap;
static unsigned char *lim;
static uint32_t heapsize; // bytes
static uint32_t *consflags;
// error utilities
// ------------------------------------------------------------
// saved execution state for an unwind target
struct fl_exception_context *fl_ctx = NULL;
uint32_t fl_throwing_frame = 0; // active frame when exception was thrown
value_t fl_lasterror;
#define FL_TRY \
struct fl_exception_context _ctx; \
int l__tr, l__ca; \
_ctx.sp = SP; \
_ctx.frame = curr_frame; \
_ctx.rdst = readstate; \
_ctx.prev = fl_ctx; \
_ctx.ngchnd = N_GCHND; \
fl_ctx = &_ctx; \
if (!setjmp(_ctx.buf)) \
for (l__tr = 1; l__tr; l__tr = 0, (void)(fl_ctx = fl_ctx->prev))
#define FL_CATCH \
else for (l__ca = 1; l__ca; l__ca = 0, fl_lasterror = FL_NIL, \
fl_throwing_frame = 0, SP = _ctx.sp, \
curr_frame = _ctx.frame)
void fl_savestate(struct fl_exception_context *_ctx)
{
_ctx->sp = SP;
_ctx->frame = curr_frame;
_ctx->rdst = readstate;
_ctx->prev = fl_ctx;
_ctx->ngchnd = N_GCHND;
}
void fl_restorestate(struct fl_exception_context *_ctx)
{
fl_lasterror = FL_NIL;
fl_throwing_frame = 0;
SP = _ctx->sp;
curr_frame = _ctx->frame;
}
void fl_raise(value_t e)
{
struct fl_exception_context *thisctx;
fl_lasterror = e;
// unwind read state
while (readstate != fl_ctx->rdst) {
free_readstate(readstate);
readstate = readstate->prev;
}
if (fl_throwing_frame == 0)
fl_throwing_frame = curr_frame;
N_GCHND = fl_ctx->ngchnd;
thisctx = fl_ctx;
if (fl_ctx->prev) // don't throw past toplevel
fl_ctx = fl_ctx->prev;
longjmp(thisctx->buf, 1);
}
static value_t make_error_msg(char *format, va_list args)
{
char msgbuf[512];
vsnprintf(msgbuf, sizeof(msgbuf), format, args);
return string_from_cstr(msgbuf);
}
void lerrorf(value_t e, char *format, ...)
{
va_list args;
value_t msg;
PUSH(e);
va_start(args, format);
msg = make_error_msg(format, args);
va_end(args);
e = POP();
fl_raise(fl_list2(e, msg));
}
void lerror(value_t e, const char *msg)
{
value_t m;
PUSH(e);
m = cvalue_static_cstring(msg);
e = POP();
fl_raise(fl_list2(e, m));
}
void type_error(char *fname, char *expected, value_t got)
{
fl_raise(fl_listn(4, TypeError, symbol(fname), symbol(expected), got));
}
void bounds_error(char *fname, value_t arr, value_t ind)
{
fl_raise(fl_listn(4, BoundsError, symbol(fname), arr, ind));
}
void DivideByZeroError(void) { lerror(DivideError, "/: division by zero"); }
// safe cast operators
// --------------------------------------------------------
#define isstring fl_isstring
// TODO: Remove the spurious return statement.
#define SAFECAST_OP(type, ctype, cnvt) \
ctype to##type(value_t v, char *fname) \
{ \
if (is##type(v)) \
return (ctype)cnvt(v); \
type_error(fname, #type, v); \
return (ctype)FL_NIL; \
}
SAFECAST_OP(cons, struct cons *, ptr)
SAFECAST_OP(symbol, struct symbol *, ptr)
SAFECAST_OP(fixnum, fixnum_t, numval)
SAFECAST_OP(cvalue, struct cvalue *, ptr)
SAFECAST_OP(string, char *, cvalue_data)
#undef isstring
// symbol table
// ---------------------------------------------------------------
struct symbol *symtab = NULL;
int fl_is_keyword_name(const char *str, size_t len)
{
return ((str[0] == ':' || str[len - 1] == ':') && str[1] != '\0');
}
static struct symbol *mk_symbol(const char *str)
{
struct symbol *sym;
size_t len = strlen(str);
sym =
(struct symbol *)malloc(sizeof(struct symbol) - sizeof(void *) + len + 1);
assert(((uintptr_t)sym & 0x7) == 0); // make sure malloc aligns 8
sym->left = sym->right = NULL;
sym->flags = 0;
if (fl_is_keyword_name(str, len)) {
value_t s = tagptr(sym, TAG_SYM);
setc(s, s);
sym->flags |= 0x2;
} else {
sym->binding = UNBOUND;
}
sym->type = sym->dlcache = NULL;
sym->hash = memhash32(str, len) ^ 0xAAAAAAAA;
memcpy(&sym->name[0], str, len + 1);
return sym;
}
static struct symbol **symtab_lookup(struct symbol **ptree, const char *str)
{
int x;
while (*ptree != NULL) {
x = strcmp(str, (*ptree)->name);
if (x == 0)
return ptree;
if (x < 0)
ptree = &(*ptree)->left;
else
ptree = &(*ptree)->right;
}
return ptree;
}
value_t symbol(const char *str)
{
struct symbol **pnode;
pnode = symtab_lookup(&symtab, str);
if (*pnode == NULL)
*pnode = mk_symbol(str);
return tagptr(*pnode, TAG_SYM);
}
static uint32_t _gensym_ctr = 0;
// two static buffers for gensym printing so there can be two
// gensym names available at a time, mostly for compare()
static char gsname[2][16];
static int gsnameno = 0;
value_t fl_gensym(value_t *args, uint32_t nargs)
{
struct gensym *gs;
(void)args;
argcount("gensym", nargs, 0);
gs = (struct gensym *)alloc_words(sizeof(struct gensym) / sizeof(void *));
gs->id = _gensym_ctr++;
gs->binding = UNBOUND;
gs->isconst = 0;
gs->type = NULL;
return tagptr(gs, TAG_SYM);
}
int fl_isgensym(value_t v) { return isgensym(v); }
static value_t fl_gensymp(value_t *args, uint32_t nargs)
{
argcount("gensym?", nargs, 1);
return isgensym(args[0]) ? FL_T : FL_F;
}
char *symbol_name(value_t v)
{
struct gensym *gs;
char *n;
if (ismanaged(v)) {
gs = (struct gensym *)ptr(v);
gsnameno = 1 - gsnameno;
n = uint2str(gsname[gsnameno] + 1, sizeof(gsname[0]) - 1, gs->id, 10);
*(--n) = 'g';
return n;
}
return ((struct symbol *)ptr(v))->name;
}
// conses
// ---------------------------------------------------------------------
void gc(int mustgrow);
static value_t mk_cons(void)
{
struct cons *c;
if (__unlikely(curheap > lim))
gc(0);
c = (struct cons *)curheap;
curheap += sizeof(struct cons);
return tagptr(c, TAG_CONS);
}
static value_t *alloc_words(int n)
{
value_t *first;
assert(n > 0);
n = LLT_ALIGN(n, 2); // only allocate multiples of 2 words
if (__unlikely((value_t *)curheap > ((value_t *)lim) + 2 - n)) {
gc(0);
while ((value_t *)curheap > ((value_t *)lim) + 2 - n) {
gc(1);
}
}
first = (value_t *)curheap;
curheap += (n * sizeof(value_t));
return first;
}
// allocate n consecutive conses
#define cons_reserve(n) tagptr(alloc_words((n)*2), TAG_CONS)
#define cons_index(c) (((struct cons *)ptr(c)) - ((struct cons *)fromspace))
#define ismarked(c) bitvector_get(consflags, cons_index(c))
#define mark_cons(c) bitvector_set(consflags, cons_index(c), 1)
#define unmark_cons(c) bitvector_set(consflags, cons_index(c), 0)
static value_t the_empty_vector;
value_t alloc_vector(size_t n, int init)
{
value_t *c;
value_t v;
unsigned int i;
if (n == 0)
return the_empty_vector;
c = alloc_words(n + 1);
v = tagptr(c, TAG_VECTOR);
vector_setsize(v, n);
if (init) {
for (i = 0; i < n; i++)
vector_elt(v, i) = FL_UNSPECIFIED;
}
return v;
}
// cvalues
// --------------------------------------------------------------------
#include "ptrhash.h"
#include "operators.h"
#include "cvalues.h"
#include "equalhash.h"
#include "types.h"
// print
// ----------------------------------------------------------------------
static int isnumtok(char *tok, value_t *pval);
static int symchar(char c);
#include "print.h"
// collector
// ------------------------------------------------------------------
void fl_gc_handle(value_t *pv)
{
if (N_GCHND >= N_GC_HANDLES)
lerror(MemoryError, "out of gc handles");
GCHandleStack[N_GCHND++] = pv;
}
void fl_free_gc_handles(uint32_t n)
{
assert(N_GCHND >= n);
N_GCHND -= n;
}
static value_t relocate(value_t v)
{
value_t a, d, nc, first, *pcdr;
uintptr_t t;
t = tag(v);
if (t == TAG_CONS) {
// iterative implementation allows arbitrarily long cons chains
pcdr = &first;
do {
if ((a = car_(v)) == TAG_FWD) {
*pcdr = cdr_(v);
return first;
}
*pcdr = nc = tagptr((struct cons *)curheap, TAG_CONS);
curheap += sizeof(struct cons);
d = cdr_(v);
car_(v) = TAG_FWD;
cdr_(v) = nc;
car_(nc) = relocate(a);
pcdr = &cdr_(nc);
v = d;
} while (iscons(v));
*pcdr = (d == NIL) ? NIL : relocate(d);
return first;
}
if ((t & 3) == 0)
return v;
if (!ismanaged(v))
return v;
if (isforwarded(v))
return forwardloc(v);
if (t == TAG_VECTOR) {
// N.B.: 0-length vectors secretly have space for a first element
size_t i, sz = vector_size(v);
if (vector_elt(v, -1) & 0x1) {
// grown vector
nc = relocate(vector_elt(v, 0));
forward(v, nc);
} else {
nc = tagptr(alloc_words(sz + 1), TAG_VECTOR);
vector_setsize(nc, sz);
a = vector_elt(v, 0);
forward(v, nc);
if (sz > 0) {
vector_elt(nc, 0) = relocate(a);
for (i = 1; i < sz; i++)
vector_elt(nc, i) = relocate(vector_elt(v, i));
}
}
return nc;
} else if (t == TAG_CPRIM) {
struct cprim *pcp = (struct cprim *)ptr(v);
size_t nw = CPRIM_NWORDS - 1 + NWORDS(cp_class(pcp)->size);
struct cprim *ncp = (struct cprim *)alloc_words(nw);
while (nw--)
((value_t *)ncp)[nw] = ((value_t *)pcp)[nw];
nc = tagptr(ncp, TAG_CPRIM);
forward(v, nc);
return nc;
} else if (t == TAG_CVALUE) {
return cvalue_relocate(v);
} else if (t == TAG_FUNCTION) {
struct function *fn = (struct function *)ptr(v);
struct function *nfn = (struct function *)alloc_words(4);
nfn->bcode = fn->bcode;
nfn->vals = fn->vals;
nc = tagptr(nfn, TAG_FUNCTION);
forward(v, nc);
nfn->env = relocate(fn->env);
nfn->vals = relocate(nfn->vals);
nfn->bcode = relocate(nfn->bcode);
assert(!ismanaged(fn->name));
nfn->name = fn->name;
return nc;
} else if (t == TAG_SYM) {
struct gensym *gs = (struct gensym *)ptr(v);
struct gensym *ng =
(struct gensym *)alloc_words(sizeof(struct gensym) / sizeof(void *));
ng->id = gs->id;
ng->binding = gs->binding;
ng->isconst = 0;
nc = tagptr(ng, TAG_SYM);
forward(v, nc);
if (ng->binding != UNBOUND)
ng->binding = relocate(ng->binding);
return nc;
}
return v;
}
value_t relocate_lispvalue(value_t v) { return relocate(v); }
static void trace_globals(struct symbol *root)
{
while (root != NULL) {
if (root->binding != UNBOUND)
root->binding = relocate(root->binding);
trace_globals(root->left);
root = root->right;
}
}
static value_t memory_exception_value;
void gc(int mustgrow)
{
static int grew = 0;
void *temp;
uint32_t i, f, top;
struct fl_readstate *rs;
curheap = tospace;
if (grew)
lim = curheap + heapsize * 2 - sizeof(struct cons);
else
lim = curheap + heapsize - sizeof(struct cons);
if (fl_throwing_frame > curr_frame) {
top = fl_throwing_frame - 4;
f = Stack[fl_throwing_frame - 4];
} else {
top = SP;
f = curr_frame;
}
while (1) {
for (i = f; i < top; i++)
Stack[i] = relocate(Stack[i]);
if (f == 0)
break;
top = f - 4;
f = Stack[f - 4];
}
for (i = 0; i < N_GCHND; i++)
*GCHandleStack[i] = relocate(*GCHandleStack[i]);
trace_globals(symtab);
relocate_typetable();
rs = readstate;
while (rs) {
value_t ent;
for (i = 0; i < rs->backrefs.size; i++) {
ent = (value_t)rs->backrefs.table[i];
if (ent != (value_t)HT_NOTFOUND)
rs->backrefs.table[i] = (void *)relocate(ent);
}
for (i = 0; i < rs->gensyms.size; i++) {
ent = (value_t)rs->gensyms.table[i];
if (ent != (value_t)HT_NOTFOUND)
rs->gensyms.table[i] = (void *)relocate(ent);
}
rs->source = relocate(rs->source);
rs = rs->prev;
}
fl_lasterror = relocate(fl_lasterror);
memory_exception_value = relocate(memory_exception_value);
the_empty_vector = relocate(the_empty_vector);
sweep_finalizers();
#ifdef VERBOSEGC
printf("GC: found %d/%d live conses\n",
(curheap - tospace) / sizeof(struct cons),
heapsize / sizeof(struct cons));
#endif
temp = tospace;
tospace = fromspace;
fromspace = temp;
// if we're using > 80% of the space, resize tospace so we have
// more space to fill next time. if we grew tospace last time,
// grow the other half of the heap this time to catch up.
if (grew || ((lim - curheap) < (int)(heapsize / 5)) || mustgrow) {
temp = LLT_REALLOC(tospace, heapsize * 2);
if (temp == NULL)
fl_raise(memory_exception_value);
tospace = temp;
if (grew) {
heapsize *= 2;
temp =
bitvector_resize(consflags, 0, heapsize / sizeof(struct cons), 1);
if (temp == NULL)
fl_raise(memory_exception_value);
consflags = (uint32_t *)temp;
}
grew = !grew;
}
if (curheap > lim) // all data was live
gc(0);
}
static void grow_stack(void)
{
size_t newsz = N_STACK + (N_STACK >> 1);
value_t *ns = realloc(Stack, newsz * sizeof(value_t));
if (ns == NULL)
lerror(MemoryError, "stack overflow");
Stack = ns;
N_STACK = newsz;
}
// utils
// ----------------------------------------------------------------------
// apply function with n args on the stack
static value_t _applyn(uint32_t n)
{
value_t f = Stack[SP - n - 1];
uint32_t saveSP = SP;
value_t v;
if (iscbuiltin(f)) {
v = ((builtin_t *)ptr(f))[3](&Stack[SP - n], n);
} else if (isfunction(f)) {
v = apply_cl(n);
} else if (isbuiltin(f)) {
value_t tab = symbol_value(builtins_table_sym);
Stack[SP - n - 1] = vector_elt(tab, uintval(f));
v = apply_cl(n);
} else {
type_error("apply", "function", f);
}
SP = saveSP;
return v;
}
value_t fl_apply(value_t f, value_t l)
{
value_t v = l;
uint32_t n = SP;
PUSH(f);
while (iscons(v)) {
if (SP >= N_STACK)
grow_stack();
PUSH(car_(v));
v = cdr_(v);
}
n = SP - n - 1;
v = _applyn(n);
POPN(n + 1);
return v;
}
value_t fl_applyn(uint32_t n, value_t f, ...)
{
va_list ap;
value_t v;
size_t i;
va_start(ap, f);
PUSH(f);
while (SP + n > N_STACK)
grow_stack();
for (i = 0; i < n; i++) {
value_t a = va_arg(ap, value_t);
PUSH(a);
}
v = _applyn(n);
POPN(n + 1);
va_end(ap);
return v;
}
value_t fl_listn(size_t n, ...)
{
struct cons *c;
struct cons *l;
va_list ap;
uint32_t si;
size_t i;
si = SP;
va_start(ap, n);
while (SP + n > N_STACK)
grow_stack();
for (i = 0; i < n; i++) {
value_t a = va_arg(ap, value_t);
PUSH(a);
}
c = (struct cons *)alloc_words(n * 2);
l = c;
for (i = 0; i < n; i++) {
c->car = Stack[si++];
c->cdr = tagptr(c + 1, TAG_CONS);
c++;
}
(c - 1)->cdr = NIL;
POPN(n);
va_end(ap);
return tagptr(l, TAG_CONS);
}
value_t fl_list2(value_t a, value_t b)
{
struct cons *c;
PUSH(a);
PUSH(b);
c = (struct cons *)alloc_words(4);
b = POP();
a = POP();
c[0].car = a;
c[0].cdr = tagptr(c + 1, TAG_CONS);
c[1].car = b;
c[1].cdr = NIL;
return tagptr(c, TAG_CONS);
}
value_t fl_cons(value_t a, value_t b)
{
value_t c;
PUSH(a);
PUSH(b);
c = mk_cons();
cdr_(c) = POP();
car_(c) = POP();
return c;
}
int fl_isnumber(value_t v)
{
struct cprim *c;
if (isfixnum(v))
return 1;
if (iscprim(v)) {
c = (struct cprim *)ptr(v);
return c->type != wchartype;
}
return 0;
}
// read
// -----------------------------------------------------------------------
#include "read.h"
// equal
// ----------------------------------------------------------------------
#include "equal.h"
// eval
// -----------------------------------------------------------------------
#define list(a, n) _list((a), (n), 0)
static value_t _list(value_t *args, uint32_t nargs, int star)
{
struct cons *c;
uint32_t i;
value_t v;
v = cons_reserve(nargs);
c = (struct cons *)ptr(v);
for (i = 0; i < nargs; i++) {
c->car = args[i];
c->cdr = tagptr(c + 1, TAG_CONS);
c++;
}
if (star)
(c - 2)->cdr = (c - 1)->car;
else
(c - 1)->cdr = NIL;
return v;
}
static value_t copy_list(value_t L)
{
value_t *plcons;
value_t *pL;
value_t c;
if (!iscons(L))
return NIL;
PUSH(NIL);
PUSH(L);
plcons = &Stack[SP - 2];
pL = &Stack[SP - 1];
c = mk_cons();
PUSH(c); // save first cons
car_(c) = car_(*pL);
cdr_(c) = NIL;
*plcons = c;
*pL = cdr_(*pL);
while (iscons(*pL)) {
c = mk_cons();
car_(c) = car_(*pL);
cdr_(c) = NIL;
cdr_(*plcons) = c;
*plcons = c;
*pL = cdr_(*pL);
}
c = POP(); // first cons
POPN(2);
return c;
}
static value_t do_trycatch(void)
{
value_t v, thunk;
uint32_t saveSP;
saveSP = SP;
thunk = Stack[SP - 2];
Stack[SP - 2] = Stack[SP - 1];
Stack[SP - 1] = thunk;
{
FL_TRY { v = apply_cl(0); }
FL_CATCH
{
v = Stack[saveSP - 2];
PUSH(v);
PUSH(fl_lasterror);
v = apply_cl(1);
}
}
SP = saveSP;
return v;
}
/*
argument layout on stack is
|--required args--|--opt args--|--kw args--|--rest args...
*/
static uint32_t process_keys(value_t kwtable, uint32_t nreq, uint32_t nkw,
uint32_t nopt, uint32_t bp, uint32_t nargs,
int va)
{
value_t hv;
uintptr_t x;
uintptr_t idx;
uintptr_t n;
uint32_t ntot;
value_t v;
uint32_t extr;
value_t *args;
uint32_t nrestargs, i, a;
value_t s1, s2, s4, s5;
extr = nopt + nkw;
ntot = nreq + extr;
if (!(args = calloc(extr, sizeof(*args)))) {
lerror(MemoryError, "out of memory");
}
a = 0;
s1 = Stack[SP - 1];
s2 = Stack[SP - 2];
s4 = Stack[SP - 4];
s5 = Stack[SP - 5];
if (nargs < nreq)
lerror(ArgError, "apply: too few arguments");
for (i = 0; i < extr; i++)
args[i] = UNBOUND;
for (i = nreq; i < nargs; i++) {
v = Stack[bp + i];
if (issymbol(v) && iskeyword((struct symbol *)ptr(v)))
break;
if (a >= nopt)
goto no_kw;
args[a++] = v;
}
if (i >= nargs)
goto no_kw;
// now process keywords
n = vector_size(kwtable) / 2;
do {
i++;
if (i >= nargs)
lerrorf(ArgError, "keyword %s requires an argument",
symbol_name(v));
hv = fixnum(((struct symbol *)ptr(v))->hash);
x = 2 * (labs(numval(hv)) % n);
if (vector_elt(kwtable, x) == v) {
idx = numval(vector_elt(kwtable, x + 1));
assert(idx < nkw);
idx += nopt;
if (args[idx] == UNBOUND) {
// if duplicate key, keep first value
args[idx] = Stack[bp + i];
}
} else {
lerrorf(ArgError, "unsupported keyword %s", symbol_name(v));
}
i++;
if (i >= nargs)
break;
v = Stack[bp + i];
} while (issymbol(v) && iskeyword((struct symbol *)ptr(v)));
no_kw:
nrestargs = nargs - i;
if (!va && nrestargs > 0)
lerror(ArgError, "apply: too many arguments");
nargs = ntot + nrestargs;
if (nrestargs)
memmove(&Stack[bp + ntot], &Stack[bp + i],
nrestargs * sizeof(value_t));
memcpy(&Stack[bp + nreq], args, extr * sizeof(value_t));
SP = bp + nargs;
assert(SP < N_STACK - 5);
PUSH(s5);
PUSH(s4);
PUSH(nargs);
PUSH(s2);
PUSH(s1);
curr_frame = SP;
return nargs;
}
#define bswap_16(x) (((x)&0x00ff) << 8 | ((x)&0xff00) >> 8)
#ifdef __INTEL_COMPILER
#define bswap_32(x) _bswap(x)
#else
#define bswap_32(x) \
((((x)&0xff000000) >> 24) | (((x)&0x00ff0000) >> 8) | \
(((x)&0x0000ff00) << 8) | (((x)&0x000000ff) << 24))
#endif
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define GET_INT32(a) \
((int32_t)((((int32_t)a[0]) << 0) | (((int32_t)a[1]) << 8) | \
(((int32_t)a[2]) << 16) | (((int32_t)a[3]) << 24)))
#define GET_INT16(a) \
((int16_t)((((int16_t)a[0]) << 0) | (((int16_t)a[1]) << 8)))
#define PUT_INT32(a, i) (*(int32_t *)(a) = bswap_32((int32_t)(i)))
#endif
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define GET_INT32(a) (*(int32_t *)a)
#define GET_INT16(a) (*(int16_t *)a)
#define PUT_INT32(a, i) (*(int32_t *)(a) = (int32_t)(i))
#endif
#define SWAP_INT32(a) (*(int32_t *)(a) = bswap_32(*(int32_t *)(a)))
#define SWAP_INT16(a) (*(int16_t *)(a) = bswap_16(*(int16_t *)(a)))
#ifdef USE_COMPUTED_GOTO
#define OP(x) L_##x:
#define NEXT_OP goto *vm_labels[*ip++]
#else
#define OP(x) case x:
#define NEXT_OP goto next_op
#endif
/*
stack on entry: <func> <nargs args...>
caller's responsibility:
- put the stack in this state
- provide arg count
- respect tail position
- restore SP
callee's responsibility:
- check arg counts
- allocate vararg array
- push closed env, set up new environment
*/
static value_t apply_cl(uint32_t nargs)
{
VM_LABELS;
VM_APPLY_LABELS;
uint32_t top_frame = curr_frame;
// frame variables
uint32_t n = 0, captured;
uint32_t bp;
const uint8_t *ip;
fixnum_t s, hi;
// temporary variables (not necessary to preserve across calls)
#ifndef USE_COMPUTED_GOTO
uint32_t op;
#endif
uint32_t i;
struct symbol *sym;
static struct cons *c;
static value_t *pv;
static int64_t accum;
static value_t func, v, e;
apply_cl_top:
captured = 0;
func = Stack[SP - nargs - 1];
ip = cv_data((struct cvalue *)ptr(fn_bcode(func)));
assert(!ismanaged((uintptr_t)ip));
while (SP + GET_INT32(ip) > N_STACK) {
grow_stack();
}
ip += 4;
bp = SP - nargs;
PUSH(fn_env(func));
PUSH(curr_frame);
PUSH(nargs);
SP++; // PUSH(0); //ip
PUSH(0); // captured?
curr_frame = SP;
{
#ifdef USE_COMPUTED_GOTO
{
NEXT_OP;
#else
next_op:
op = *ip++;
dispatch:
switch (op) {
#endif
OP(OP_ARGC)
n = *ip++;
do_argc:
if (nargs != n) {
if (nargs > n)
lerror(ArgError, "apply: too many arguments");
else
lerror(ArgError, "apply: too few arguments");
}
NEXT_OP;
OP(OP_VARGC)
i = *ip++;
do_vargc:
s = (fixnum_t)nargs - (fixnum_t)i;
if (s > 0) {
v = list(&Stack[bp + i], s);
Stack[bp + i] = v;
if (s > 1) {
Stack[bp + i + 1] = Stack[bp + nargs + 0];
Stack[bp + i + 2] = Stack[bp + nargs + 1];
Stack[bp + i + 3] = i + 1;
// Stack[bp+i+4] = 0;
Stack[bp + i + 5] = 0;
SP = bp + i + 6;
curr_frame = SP;
}
} else if (s < 0) {
lerror(ArgError, "apply: too few arguments");
} else {
PUSH(0);
Stack[SP - 3] = i + 1;
Stack[SP - 4] = Stack[SP - 5];
Stack[SP - 5] = Stack[SP - 6];
Stack[SP - 6] = NIL;
curr_frame = SP;
}
nargs = i + 1;
NEXT_OP;
OP(OP_LARGC)
n = GET_INT32(ip);
ip += 4;
goto do_argc;
OP(OP_LVARGC)
i = GET_INT32(ip);
ip += 4;
goto do_vargc;
OP(OP_BRBOUND)
i = GET_INT32(ip);
ip += 4;
if (captured)
v = vector_elt(Stack[bp], i);
else
v = Stack[bp + i];
if (v != UNBOUND)
PUSH(FL_T);
else
PUSH(FL_F);
NEXT_OP;
OP(OP_DUP) SP++;
Stack[SP - 1] = Stack[SP - 2];
NEXT_OP;
OP(OP_POP) POPN(1);
NEXT_OP;
OP(OP_TCALL)
n = *ip++; // nargs
do_tcall:
func = Stack[SP - n - 1];
if (tag(func) == TAG_FUNCTION) {
if (func > (N_BUILTINS << 3)) {
curr_frame = Stack[curr_frame - 4];
for (s = -1; s < (fixnum_t)n; s++)
Stack[bp + s] = Stack[SP - n + s];
SP = bp + n;
nargs = n;
goto apply_cl_top;
} else {
i = uintval(func);
if (i <= OP_ASET) {
s = builtin_arg_counts[i];
if (s >= 0)
argcount(builtin_names[i], n, s);
else if (s != ANYARGS && (signed)n < -s)
argcount(builtin_names[i], n, -s);
// remove function arg
for (s = SP - n - 1; s < (int)SP - 1; s++)
Stack[s] = Stack[s + 1];
SP--;
#ifdef USE_COMPUTED_GOTO
if (i == OP_APPLY)
goto apply_tapply;
goto *vm_apply_labels[i];
#else
switch (i) {
case OP_LIST:
goto apply_list;
case OP_VECTOR:
goto apply_vector;
case OP_APPLY:
goto apply_tapply;
case OP_ADD:
goto apply_add;
case OP_SUB:
goto apply_sub;
case OP_MUL:
goto apply_mul;
case OP_DIV:
goto apply_div;
default:
op = (uint8_t)i;
goto dispatch;
}
#endif
}
}
} else if (iscbuiltin(func)) {
s = SP;
v = ((builtin_t)(((void **)ptr(func))[3]))(&Stack[SP - n], n);
SP = s - n;
Stack[SP - 1] = v;
NEXT_OP;
}
type_error("apply", "function", func);
// WARNING: repeated code ahead
OP(OP_CALL)
n = *ip++; // nargs
do_call:
func = Stack[SP - n - 1];
if (tag(func) == TAG_FUNCTION) {
if (func > (N_BUILTINS << 3)) {
Stack[curr_frame - 2] = (uintptr_t)ip;
nargs = n;
goto apply_cl_top;
} else {
i = uintval(func);
if (i <= OP_ASET) {
s = builtin_arg_counts[i];
if (s >= 0)
argcount(builtin_names[i], n, s);
else if (s != ANYARGS && (signed)n < -s)
argcount(builtin_names[i], n, -s);
// remove function arg
for (s = SP - n - 1; s < (int)SP - 1; s++)
Stack[s] = Stack[s + 1];
SP--;
#ifdef USE_COMPUTED_GOTO
goto *vm_apply_labels[i];
#else
switch (i) {
case OP_LIST:
goto apply_list;
case OP_VECTOR:
goto apply_vector;
case OP_APPLY:
goto apply_apply;
case OP_ADD:
goto apply_add;
case OP_SUB:
goto apply_sub;
case OP_MUL:
goto apply_mul;
case OP_DIV:
goto apply_div;
default:
op = (uint8_t)i;
goto dispatch;
}
#endif
}
}
} else if (iscbuiltin(func)) {
s = SP;
v = ((builtin_t)(((void **)ptr(func))[3]))(&Stack[SP - n], n);
SP = s - n;
Stack[SP - 1] = v;
NEXT_OP;
}
type_error("apply", "function", func);
OP(OP_TCALLL) n = GET_INT32(ip);
ip += 4;
goto do_tcall;
OP(OP_CALLL) n = GET_INT32(ip);
ip += 4;
goto do_call;
OP(OP_JMP) ip += (intptr_t)GET_INT16(ip);
NEXT_OP;
OP(OP_BRF)
v = POP();
if (v == FL_F)
ip += (intptr_t)GET_INT16(ip);
else
ip += 2;
NEXT_OP;
OP(OP_BRT)
v = POP();
if (v != FL_F)
ip += (intptr_t)GET_INT16(ip);
else
ip += 2;
NEXT_OP;
OP(OP_JMPL) ip += (intptr_t)GET_INT32(ip);
NEXT_OP;
OP(OP_BRFL)
v = POP();
if (v == FL_F)
ip += (intptr_t)GET_INT32(ip);
else
ip += 4;
NEXT_OP;
OP(OP_BRTL)
v = POP();
if (v != FL_F)
ip += (intptr_t)GET_INT32(ip);
else
ip += 4;
NEXT_OP;
OP(OP_BRNE)
if (Stack[SP - 2] != Stack[SP - 1])
ip += (intptr_t)GET_INT16(ip);
else
ip += 2;
POPN(2);
NEXT_OP;
OP(OP_BRNEL)
if (Stack[SP - 2] != Stack[SP - 1])
ip += (intptr_t)GET_INT32(ip);
else
ip += 4;
POPN(2);
NEXT_OP;
OP(OP_BRNN)
v = POP();
if (v != NIL)
ip += (intptr_t)GET_INT16(ip);
else
ip += 2;
NEXT_OP;
OP(OP_BRNNL)
v = POP();
if (v != NIL)
ip += (intptr_t)GET_INT32(ip);
else
ip += 4;
NEXT_OP;
OP(OP_BRN)
v = POP();
if (v == NIL)
ip += (intptr_t)GET_INT16(ip);
else
ip += 2;
NEXT_OP;
OP(OP_BRNL)
v = POP();
if (v == NIL)
ip += (intptr_t)GET_INT32(ip);
else
ip += 4;
NEXT_OP;
OP(OP_RET)
v = POP();
SP = curr_frame;
curr_frame = Stack[SP - 4];
if (curr_frame == top_frame)
return v;
SP -= (5 + nargs);
captured = Stack[curr_frame - 1];
ip = (uint8_t *)Stack[curr_frame - 2];
nargs = Stack[curr_frame - 3];
bp = curr_frame - 5 - nargs;
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_EQ)
Stack[SP - 2] = ((Stack[SP - 2] == Stack[SP - 1]) ? FL_T : FL_F);
POPN(1);
NEXT_OP;
OP(OP_EQV)
if (Stack[SP - 2] == Stack[SP - 1]) {
v = FL_T;
} else if (!leafp(Stack[SP - 2]) || !leafp(Stack[SP - 1])) {
v = FL_F;
} else {
v = (compare_(Stack[SP - 2], Stack[SP - 1], 1) == 0 ? FL_T
: FL_F);
}
Stack[SP - 2] = v;
POPN(1);
NEXT_OP;
OP(OP_EQUAL)
if (Stack[SP - 2] == Stack[SP - 1]) {
v = FL_T;
} else {
v = (compare_(Stack[SP - 2], Stack[SP - 1], 1) == 0 ? FL_T
: FL_F);
}
Stack[SP - 2] = v;
POPN(1);
NEXT_OP;
OP(OP_PAIRP)
Stack[SP - 1] = (iscons(Stack[SP - 1]) ? FL_T : FL_F);
NEXT_OP;
OP(OP_ATOMP)
Stack[SP - 1] = (iscons(Stack[SP - 1]) ? FL_F : FL_T);
NEXT_OP;
OP(OP_NOT)
Stack[SP - 1] = ((Stack[SP - 1] == FL_F) ? FL_T : FL_F);
NEXT_OP;
OP(OP_NULLP)
Stack[SP - 1] = ((Stack[SP - 1] == NIL) ? FL_T : FL_F);
NEXT_OP;
OP(OP_BOOLEANP)
v = Stack[SP - 1];
Stack[SP - 1] = ((v == FL_T || v == FL_F) ? FL_T : FL_F);
NEXT_OP;
OP(OP_SYMBOLP)
Stack[SP - 1] = (issymbol(Stack[SP - 1]) ? FL_T : FL_F);
NEXT_OP;
OP(OP_NUMBERP)
v = Stack[SP - 1];
Stack[SP - 1] = (fl_isnumber(v) ? FL_T : FL_F);
NEXT_OP;
OP(OP_FIXNUMP)
Stack[SP - 1] = (isfixnum(Stack[SP - 1]) ? FL_T : FL_F);
NEXT_OP;
OP(OP_BOUNDP)
sym = tosymbol(Stack[SP - 1], "bound?");
Stack[SP - 1] = ((sym->binding == UNBOUND) ? FL_F : FL_T);
NEXT_OP;
OP(OP_BUILTINP)
v = Stack[SP - 1];
Stack[SP - 1] = (isbuiltin(v) || iscbuiltin(v)) ? FL_T : FL_F;
NEXT_OP;
OP(OP_FUNCTIONP)
v = Stack[SP - 1];
Stack[SP - 1] =
((tag(v) == TAG_FUNCTION &&
(uintval(v) <= OP_ASET || v > (N_BUILTINS << 3))) ||
iscbuiltin(v))
? FL_T
: FL_F;
NEXT_OP;
OP(OP_VECTORP)
Stack[SP - 1] = (isvector(Stack[SP - 1]) ? FL_T : FL_F);
NEXT_OP;
OP(OP_CONS)
if (curheap > lim)
gc(0);
c = (struct cons *)curheap;
curheap += sizeof(struct cons);
c->car = Stack[SP - 2];
c->cdr = Stack[SP - 1];
Stack[SP - 2] = tagptr(c, TAG_CONS);
POPN(1);
NEXT_OP;
OP(OP_CAR)
v = Stack[SP - 1];
if (!iscons(v))
type_error("car", "cons", v);
Stack[SP - 1] = car_(v);
NEXT_OP;
OP(OP_CDR)
v = Stack[SP - 1];
if (!iscons(v))
type_error("cdr", "cons", v);
Stack[SP - 1] = cdr_(v);
NEXT_OP;
OP(OP_CADR)
v = Stack[SP - 1];
if (!iscons(v))
type_error("cdr", "cons", v);
v = cdr_(v);
if (!iscons(v))
type_error("car", "cons", v);
Stack[SP - 1] = car_(v);
NEXT_OP;
OP(OP_SETCAR)
car(Stack[SP - 2]) = Stack[SP - 1];
POPN(1);
NEXT_OP;
OP(OP_SETCDR)
cdr(Stack[SP - 2]) = Stack[SP - 1];
POPN(1);
NEXT_OP;
OP(OP_LIST)
n = *ip++;
apply_list:
if (n > 0) {
v = list(&Stack[SP - n], n);
POPN(n);
PUSH(v);
} else {
PUSH(NIL);
}
NEXT_OP;
OP(OP_TAPPLY)
n = *ip++;
apply_tapply:
v = POP(); // arglist
n = SP - (n - 2); // n-2 == # leading arguments not in the list
while (iscons(v)) {
if (SP >= N_STACK)
grow_stack();
PUSH(car_(v));
v = cdr_(v);
}
n = SP - n;
goto do_tcall;
OP(OP_APPLY)
n = *ip++;
apply_apply:
v = POP(); // arglist
n = SP - (n - 2); // n-2 == # leading arguments not in the list
while (iscons(v)) {
if (SP >= N_STACK)
grow_stack();
PUSH(car_(v));
v = cdr_(v);
}
n = SP - n;
goto do_call;
OP(OP_ADD)
n = *ip++;
apply_add:
s = 0;
i = SP - n;
for (; i < SP; i++) {
if (isfixnum(Stack[i])) {
s += numval(Stack[i]);
if (!fits_fixnum(s)) {
i++;
goto add_ovf;
}
} else {
add_ovf:
v = fl_add_any(&Stack[i], SP - i, s);
break;
}
}
if (i == SP)
v = fixnum(s);
POPN(n);
PUSH(v);
NEXT_OP;
OP(OP_ADD2)
if (bothfixnums(Stack[SP - 1], Stack[SP - 2])) {
s = numval(Stack[SP - 1]) + numval(Stack[SP - 2]);
if (fits_fixnum(s))
v = fixnum(s);
else
v = mk_long(s);
} else {
v = fl_add_any(&Stack[SP - 2], 2, 0);
}
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_SUB)
n = *ip++;
apply_sub:
if (n == 2)
goto do_sub2;
if (n == 1)
goto do_neg;
i = SP - n;
// we need to pass the full arglist on to fl_add_any
// so it can handle rest args properly
PUSH(Stack[i]);
Stack[i] = fixnum(0);
Stack[i + 1] = fl_neg(fl_add_any(&Stack[i], n, 0));
Stack[i] = POP();
v = fl_add_any(&Stack[i], 2, 0);
POPN(n);
PUSH(v);
NEXT_OP;
OP(OP_NEG)
do_neg:
if (isfixnum(Stack[SP - 1])) {
s = fixnum(-numval(Stack[SP - 1]));
if (__unlikely(Stack[SP - 1] == (ufixnum_t)s))
Stack[SP - 1] =
mk_long(-numval(Stack[SP - 1])); // negate overflows
else
Stack[SP - 1] = s;
} else
Stack[SP - 1] = fl_neg(Stack[SP - 1]);
NEXT_OP;
OP(OP_SUB2)
do_sub2:
if (bothfixnums(Stack[SP - 2], Stack[SP - 1])) {
s = numval(Stack[SP - 2]) - numval(Stack[SP - 1]);
if (fits_fixnum(s))
v = fixnum(s);
else
v = mk_long(s);
} else {
Stack[SP - 1] = fl_neg(Stack[SP - 1]);
v = fl_add_any(&Stack[SP - 2], 2, 0);
}
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_MUL)
n = *ip++;
apply_mul:
accum = 1;
i = SP - n;
for (; i < SP; i++) {
if (isfixnum(Stack[i])) {
accum *= numval(Stack[i]);
} else {
v = fl_mul_any(&Stack[i], SP - i, accum);
break;
}
}
if (i == SP) {
if (fits_fixnum(accum))
v = fixnum(accum);
else
v = return_from_int64(accum);
}
POPN(n);
PUSH(v);
NEXT_OP;
OP(OP_DIV)
n = *ip++;
apply_div:
i = SP - n;
if (n == 1) {
Stack[SP - 1] = fl_div2(fixnum(1), Stack[i]);
} else {
if (n > 2) {
PUSH(Stack[i]);
Stack[i] = fixnum(1);
Stack[i + 1] = fl_mul_any(&Stack[i], n, 1);
Stack[i] = POP();
}
v = fl_div2(Stack[i], Stack[i + 1]);
POPN(n);
PUSH(v);
}
NEXT_OP;
OP(OP_IDIV)
v = Stack[SP - 2];
e = Stack[SP - 1];
if (bothfixnums(v, e)) {
if (e == 0)
DivideByZeroError();
v = fixnum(numval(v) / numval(e));
} else
v = fl_idiv2(v, e);
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_NUMEQ)
v = Stack[SP - 2];
e = Stack[SP - 1];
if (bothfixnums(v, e))
v = (v == e) ? FL_T : FL_F;
else
v = (!numeric_compare(v, e, 1, 0, "=")) ? FL_T : FL_F;
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_LT)
if (bothfixnums(Stack[SP - 2], Stack[SP - 1])) {
v =
(numval(Stack[SP - 2]) < numval(Stack[SP - 1])) ? FL_T : FL_F;
} else {
v = (numval(fl_compare(Stack[SP - 2], Stack[SP - 1])) < 0)
? FL_T
: FL_F;
}
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_COMPARE)
Stack[SP - 2] = compare_(Stack[SP - 2], Stack[SP - 1], 0);
POPN(1);
NEXT_OP;
OP(OP_VECTOR)
n = *ip++;
apply_vector:
v = alloc_vector(n, 0);
if (n) {
memcpy(&vector_elt(v, 0), &Stack[SP - n],
n * sizeof(value_t));
POPN(n);
}
PUSH(v);
NEXT_OP;
OP(OP_AREF)
v = Stack[SP - 2];
if (isvector(v)) {
e = Stack[SP - 1];
if (isfixnum(e))
i = numval(e);
else
i = (uint32_t)toulong(e, "aref");
if ((unsigned)i >= vector_size(v))
bounds_error("aref", v, e);
v = vector_elt(v, i);
} else if (isarray(v)) {
v = cvalue_array_aref(&Stack[SP - 2]);
} else {
type_error("aref", "sequence", v);
}
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_ASET)
e = Stack[SP - 3];
if (isvector(e)) {
i = tofixnum(Stack[SP - 2], "aset!");
if ((unsigned)i >= vector_size(e))
bounds_error("aset!", v, Stack[SP - 1]);
vector_elt(e, i) = (v = Stack[SP - 1]);
} else if (isarray(e)) {
v = cvalue_array_aset(&Stack[SP - 3]);
} else {
type_error("aset!", "sequence", e);
}
POPN(2);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_FOR)
s = tofixnum(Stack[SP - 3], "for");
hi = tofixnum(Stack[SP - 2], "for");
// f = Stack[SP-1];
v = FL_UNSPECIFIED;
SP += 2;
n = SP;
for (; s <= hi; s++) {
Stack[SP - 2] = Stack[SP - 3];
Stack[SP - 1] = fixnum(s);
v = apply_cl(1);
SP = n;
}
POPN(4);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_LOADT) PUSH(FL_T);
NEXT_OP;
OP(OP_LOADF) PUSH(FL_F);
NEXT_OP;
OP(OP_LOADNIL) PUSH(NIL);
NEXT_OP;
OP(OP_LOAD0) PUSH(fixnum(0));
NEXT_OP;
OP(OP_LOAD1) PUSH(fixnum(1));
NEXT_OP;
OP(OP_LOADI8) s = (int8_t)*ip++;
PUSH(fixnum(s));
NEXT_OP;
OP(OP_LOADV)
v = fn_vals(Stack[bp - 1]);
assert(*ip < vector_size(v));
v = vector_elt(v, *ip);
ip++;
PUSH(v);
NEXT_OP;
OP(OP_LOADVL)
v = fn_vals(Stack[bp - 1]);
v = vector_elt(v, GET_INT32(ip));
ip += 4;
PUSH(v);
NEXT_OP;
OP(OP_LOADGL)
v = fn_vals(Stack[bp - 1]);
v = vector_elt(v, GET_INT32(ip));
ip += 4;
goto do_loadg;
OP(OP_LOADG)
v = fn_vals(Stack[bp - 1]);
assert(*ip < vector_size(v));
v = vector_elt(v, *ip);
ip++;
do_loadg:
assert(issymbol(v));
sym = (struct symbol *)ptr(v);
if (sym->binding == UNBOUND)
fl_raise(fl_list2(UnboundError, v));
PUSH(sym->binding);
NEXT_OP;
OP(OP_SETGL)
v = fn_vals(Stack[bp - 1]);
v = vector_elt(v, GET_INT32(ip));
ip += 4;
goto do_setg;
OP(OP_SETG)
v = fn_vals(Stack[bp - 1]);
assert(*ip < vector_size(v));
v = vector_elt(v, *ip);
ip++;
do_setg:
assert(issymbol(v));
sym = (struct symbol *)ptr(v);
v = Stack[SP - 1];
if (!isconstant(sym))
sym->binding = v;
NEXT_OP;
OP(OP_LOADA)
assert(nargs > 0);
i = *ip++;
if (captured) {
e = Stack[bp];
assert(isvector(e));
assert(i < vector_size(e));
v = vector_elt(e, i);
} else {
v = Stack[bp + i];
}
PUSH(v);
NEXT_OP;
OP(OP_LOADA0)
if (captured)
v = vector_elt(Stack[bp], 0);
else
v = Stack[bp];
PUSH(v);
NEXT_OP;
OP(OP_LOADA1)
if (captured)
v = vector_elt(Stack[bp], 1);
else
v = Stack[bp + 1];
PUSH(v);
NEXT_OP;
OP(OP_LOADAL)
assert(nargs > 0);
i = GET_INT32(ip);
ip += 4;
if (captured)
v = vector_elt(Stack[bp], i);
else
v = Stack[bp + i];
PUSH(v);
NEXT_OP;
OP(OP_SETA)
assert(nargs > 0);
v = Stack[SP - 1];
i = *ip++;
if (captured) {
e = Stack[bp];
assert(isvector(e));
assert(i < vector_size(e));
vector_elt(e, i) = v;
} else {
Stack[bp + i] = v;
}
NEXT_OP;
OP(OP_SETAL)
assert(nargs > 0);
v = Stack[SP - 1];
i = GET_INT32(ip);
ip += 4;
if (captured)
vector_elt(Stack[bp], i) = v;
else
Stack[bp + i] = v;
NEXT_OP;
OP(OP_LOADC)
s = *ip++;
i = *ip++;
v = Stack[bp + nargs];
while (s--)
v = vector_elt(v, vector_size(v) - 1);
assert(isvector(v));
assert(i < vector_size(v));
PUSH(vector_elt(v, i));
NEXT_OP;
OP(OP_SETC)
s = *ip++;
i = *ip++;
v = Stack[bp + nargs];
while (s--)
v = vector_elt(v, vector_size(v) - 1);
assert(isvector(v));
assert(i < vector_size(v));
vector_elt(v, i) = Stack[SP - 1];
NEXT_OP;
OP(OP_LOADC00)
PUSH(vector_elt(Stack[bp + nargs], 0));
NEXT_OP;
OP(OP_LOADC01)
PUSH(vector_elt(Stack[bp + nargs], 1));
NEXT_OP;
OP(OP_LOADCL)
s = GET_INT32(ip);
ip += 4;
i = GET_INT32(ip);
ip += 4;
v = Stack[bp + nargs];
while (s--)
v = vector_elt(v, vector_size(v) - 1);
PUSH(vector_elt(v, i));
NEXT_OP;
OP(OP_SETCL)
s = GET_INT32(ip);
ip += 4;
i = GET_INT32(ip);
ip += 4;
v = Stack[bp + nargs];
while (s--)
v = vector_elt(v, vector_size(v) - 1);
assert(i < vector_size(v));
vector_elt(v, i) = Stack[SP - 1];
NEXT_OP;
OP(OP_CLOSURE)
// build a closure (lambda args body . env)
if (nargs > 0 && !captured) {
// save temporary environment to the heap
n = nargs;
pv = alloc_words(n + 2);
PUSH(tagptr(pv, TAG_VECTOR));
pv[0] = fixnum(n + 1);
pv++;
do {
pv[n] = Stack[bp + n];
} while (n--);
// environment representation changed; install
// the new representation so everybody can see it
captured = 1;
Stack[curr_frame - 1] = 1;
Stack[bp] = Stack[SP - 1];
} else {
PUSH(Stack[bp]); // env has already been captured; share
}
if (curheap > lim - 2)
gc(0);
pv = (value_t *)curheap;
curheap += (4 * sizeof(value_t));
e = Stack[SP - 2]; // closure to copy
assert(isfunction(e));
pv[0] = ((value_t *)ptr(e))[0];
pv[1] = ((value_t *)ptr(e))[1];
pv[2] = Stack[SP - 1]; // env
pv[3] = ((value_t *)ptr(e))[3];
POPN(1);
Stack[SP - 1] = tagptr(pv, TAG_FUNCTION);
NEXT_OP;
OP(OP_TRYCATCH)
v = do_trycatch();
POPN(1);
Stack[SP - 1] = v;
NEXT_OP;
OP(OP_OPTARGS)
i = GET_INT32(ip);
ip += 4;
n = GET_INT32(ip);
ip += 4;
if (nargs < i)
lerror(ArgError, "apply: too few arguments");
if ((int32_t)n > 0) {
if (nargs > n)
lerror(ArgError, "apply: too many arguments");
} else
n = -n;
if (n > nargs) {
n -= nargs;
SP += n;
Stack[SP - 1] = Stack[SP - n - 1];
Stack[SP - 2] = Stack[SP - n - 2];
Stack[SP - 3] = nargs + n;
Stack[SP - 4] = Stack[SP - n - 4];
Stack[SP - 5] = Stack[SP - n - 5];
curr_frame = SP;
for (i = 0; i < n; i++) {
Stack[bp + nargs + i] = UNBOUND;
}
nargs += n;
}
NEXT_OP;
OP(OP_KEYARGS)
v = fn_vals(Stack[bp - 1]);
v = vector_elt(v, 0);
i = GET_INT32(ip);
ip += 4;
n = GET_INT32(ip);
ip += 4;
s = GET_INT32(ip);
ip += 4;
nargs =
process_keys(v, i, n, labs(s) - (i + n), bp, nargs, s < 0);
NEXT_OP;
#ifndef USE_COMPUTED_GOTO
default:
goto dispatch;
#endif
}
}
#ifdef USE_COMPUTED_GOTO
return UNBOUND; // not reached
#else
goto dispatch;
#endif
}
static uint32_t compute_maxstack(uint8_t *code, size_t len, int bswap)
{
uint8_t *ip = code + 4, *end = code + len;
uint8_t op;
uint32_t i, n, sp = 0, maxsp = 0;
while (1) {
if ((int32_t)sp > (int32_t)maxsp)
maxsp = sp;
if (ip >= end)
break;
op = *ip++;
switch (op) {
case OP_ARGC:
n = *ip++;
break;
case OP_VARGC:
n = *ip++;
sp += (n + 2);
break;
case OP_LARGC:
if (bswap)
SWAP_INT32(ip);
n = GET_INT32(ip);
ip += 4;
break;
case OP_LVARGC:
if (bswap)
SWAP_INT32(ip);
n = GET_INT32(ip);
ip += 4;
sp += (n + 2);
break;
case OP_OPTARGS:
if (bswap)
SWAP_INT32(ip);
i = GET_INT32(ip);
ip += 4;
if (bswap)
SWAP_INT32(ip);
n = abs(GET_INT32(ip));
ip += 4;
sp += (n - i);
break;
case OP_KEYARGS:
if (bswap)
SWAP_INT32(ip);
i = GET_INT32(ip);
ip += 4;
if (bswap)
SWAP_INT32(ip);
n = GET_INT32(ip);
ip += 4;
if (bswap)
SWAP_INT32(ip);
n = abs(GET_INT32(ip));
ip += 4;
sp += (n - i);
break;
case OP_BRBOUND:
if (bswap)
SWAP_INT32(ip);
ip += 4;
sp++;
break;
case OP_TCALL:
case OP_CALL:
n = *ip++; // nargs
sp -= n;
break;
case OP_TCALLL:
case OP_CALLL:
if (bswap)
SWAP_INT32(ip);
n = GET_INT32(ip);
ip += 4;
sp -= n;
break;
case OP_JMP:
if (bswap)
SWAP_INT16(ip);
ip += 2;
break;
case OP_JMPL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
break;
case OP_BRF:
case OP_BRT:
if (bswap)
SWAP_INT16(ip);
ip += 2;
sp--;
break;
case OP_BRFL:
case OP_BRTL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
sp--;
break;
case OP_BRNE:
if (bswap)
SWAP_INT16(ip);
ip += 2;
sp -= 2;
break;
case OP_BRNEL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
sp -= 2;
break;
case OP_BRNN:
case OP_BRN:
if (bswap)
SWAP_INT16(ip);
ip += 2;
sp--;
break;
case OP_BRNNL:
case OP_BRNL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
sp--;
break;
case OP_RET:
sp--;
break;
case OP_CONS:
case OP_SETCAR:
case OP_SETCDR:
case OP_POP:
case OP_EQ:
case OP_EQV:
case OP_EQUAL:
case OP_ADD2:
case OP_SUB2:
case OP_IDIV:
case OP_NUMEQ:
case OP_LT:
case OP_COMPARE:
case OP_AREF:
case OP_TRYCATCH:
sp--;
break;
case OP_PAIRP:
case OP_ATOMP:
case OP_NOT:
case OP_NULLP:
case OP_BOOLEANP:
case OP_SYMBOLP:
case OP_NUMBERP:
case OP_FIXNUMP:
case OP_BOUNDP:
case OP_BUILTINP:
case OP_FUNCTIONP:
case OP_VECTORP:
case OP_NOP:
case OP_CAR:
case OP_CDR:
case OP_NEG:
case OP_CLOSURE:
break;
case OP_TAPPLY:
case OP_APPLY:
n = *ip++;
sp -= (n - 1);
break;
case OP_LIST:
case OP_ADD:
case OP_SUB:
case OP_MUL:
case OP_DIV:
case OP_VECTOR:
n = *ip++;
sp -= (n - 1);
break;
case OP_ASET:
sp -= 2;
break;
case OP_FOR:
if (sp + 2 > maxsp)
maxsp = sp + 2;
sp -= 2;
break;
case OP_LOADT:
case OP_LOADF:
case OP_LOADNIL:
case OP_LOAD0:
case OP_LOAD1:
case OP_LOADA0:
case OP_LOADA1:
case OP_LOADC00:
case OP_LOADC01:
case OP_DUP:
sp++;
break;
case OP_LOADI8:
case OP_LOADV:
case OP_LOADG:
case OP_LOADA:
ip++;
sp++;
break;
case OP_LOADVL:
case OP_LOADGL:
case OP_LOADAL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
sp++;
break;
case OP_SETG:
case OP_SETA:
ip++;
break;
case OP_SETGL:
case OP_SETAL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
break;
case OP_LOADC:
ip += 2;
sp++;
break;
case OP_SETC:
ip += 2;
break;
case OP_LOADCL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
if (bswap)
SWAP_INT32(ip);
ip += 4;
sp++;
break;
case OP_SETCL:
if (bswap)
SWAP_INT32(ip);
ip += 4;
if (bswap)
SWAP_INT32(ip);
ip += 4;
break;
}
}
return maxsp + 5;
}
// top = top frame pointer to start at
static value_t _stacktrace(uint32_t top)
{
uint32_t bp, sz;
value_t v, lst = NIL;
fl_gc_handle(&lst);
while (top > 0) {
sz = Stack[top - 3] + 1;
bp = top - 5 - sz;
v = alloc_vector(sz, 0);
if (Stack[top - 1] /*captured*/) {
vector_elt(v, 0) = Stack[bp];
memcpy(&vector_elt(v, 1), &vector_elt(Stack[bp + 1], 0),
(sz - 1) * sizeof(value_t));
} else {
uint32_t i;
for (i = 0; i < sz; i++) {
value_t si = Stack[bp + i];
// if there's an error evaluating argument defaults some slots
// might be left set to UNBOUND (issue #22)
vector_elt(v, i) = (si == UNBOUND ? FL_UNSPECIFIED : si);
}
}
lst = fl_cons(v, lst);
top = Stack[top - 4];
}
fl_free_gc_handles(1);
return lst;
}
// builtins
// -------------------------------------------------------------------
void assign_global_builtins(struct builtinspec *b)
{
while (b->name != NULL) {
setc(symbol(b->name), cbuiltin(b->name, b->fptr));
b++;
}
}
static value_t fl_function(value_t *args, uint32_t nargs)
{
struct cvalue *arr;
char *data;
int swap;
uint32_t ms;
struct function *fn;
value_t fv;
if (nargs == 1 && issymbol(args[0]))
return fl_builtin(args, nargs);
if (nargs < 2 || nargs > 4)
argcount("function", nargs, 2);
if (!fl_isstring(args[0]))
type_error("function", "string", args[0]);
if (!isvector(args[1]))
type_error("function", "vector", args[1]);
arr = (struct cvalue *)ptr(args[0]);
cv_pin(arr);
data = cv_data(arr);
swap = 0;
if ((uint8_t)data[4] >= N_OPCODES) {
// read syntax, shifted 48 for compact text representation
size_t i, sz = cv_len(arr);
for (i = 0; i < sz; i++)
data[i] -= 48;
} else {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
swap = 1;
#endif
}
ms = compute_maxstack((uint8_t *)data, cv_len(arr), swap);
PUT_INT32(data, ms);
fn = (struct function *)alloc_words(4);
fv = tagptr(fn, TAG_FUNCTION);
fn->bcode = args[0];
fn->vals = args[1];
fn->env = NIL;
fn->name = LAMBDA;
if (nargs > 2) {
if (issymbol(args[2])) {
fn->name = args[2];
if (nargs > 3)
fn->env = args[3];
} else {
fn->env = args[2];
if (nargs > 3) {
if (!issymbol(args[3]))
type_error("function", "symbol", args[3]);
fn->name = args[3];
}
}
if (isgensym(fn->name))
lerror(ArgError, "function: name should not be a gensym");
}
return fv;
}
static value_t fl_function_code(value_t *args, uint32_t nargs)
{
value_t v;
argcount("function:code", nargs, 1);
v = args[0];
if (!isclosure(v))
type_error("function:code", "function", v);
return fn_bcode(v);
}
static value_t fl_function_vals(value_t *args, uint32_t nargs)
{
value_t v;
argcount("function:vals", nargs, 1);
v = args[0];
if (!isclosure(v))
type_error("function:vals", "function", v);
return fn_vals(v);
}
static value_t fl_function_env(value_t *args, uint32_t nargs)
{
value_t v;
argcount("function:env", nargs, 1);
v = args[0];
if (!isclosure(v))
type_error("function:env", "function", v);
return fn_env(v);
}
static value_t fl_function_name(value_t *args, uint32_t nargs)
{
value_t v;
argcount("function:name", nargs, 1);
v = args[0];
if (!isclosure(v))
type_error("function:name", "function", v);
return fn_name(v);
}
value_t fl_copylist(value_t *args, uint32_t nargs)
{
argcount("copy-list", nargs, 1);
return copy_list(args[0]);
}
value_t fl_append(value_t *args, uint32_t nargs)
{
value_t first, lst, lastcons;
uint32_t i;
if (nargs == 0)
return NIL;
first = lastcons = NIL;
fl_gc_handle(&first);
fl_gc_handle(&lastcons);
i = 0;
while (1) {
lst = args[i++];
if (i >= nargs)
break;
if (iscons(lst)) {
lst = copy_list(lst);
if (first == NIL)
first = lst;
else
cdr_(lastcons) = lst;
lastcons = tagptr((((struct cons *)curheap) - 1), TAG_CONS);
} else if (lst != NIL) {
type_error("append", "cons", lst);
}
}
if (first == NIL)
first = lst;
else
cdr_(lastcons) = lst;
fl_free_gc_handles(2);
return first;
}
value_t fl_liststar(value_t *args, uint32_t nargs)
{
if (nargs == 1)
return args[0];
else if (nargs == 0)
argcount("list*", nargs, 1);
return _list(args, nargs, 1);
}
value_t fl_stacktrace(value_t *args, uint32_t nargs)
{
(void)args;
argcount("stacktrace", nargs, 0);
return _stacktrace(fl_throwing_frame ? fl_throwing_frame : curr_frame);
}
value_t fl_map1(value_t *args, uint32_t nargs)
{
value_t first, last, v;
int64_t argSP;
if (nargs < 2)
lerror(ArgError, "map: too few arguments");
if (!iscons(args[1]))
return NIL;
argSP = args - Stack;
assert(argSP >= 0 && argSP < N_STACK);
if (nargs == 2) {
if (SP + 3 > N_STACK)
grow_stack();
PUSH(Stack[argSP]);
PUSH(car_(Stack[argSP + 1]));
v = _applyn(1);
PUSH(v);
v = mk_cons();
car_(v) = POP();
cdr_(v) = NIL;
last = first = v;
Stack[argSP + 1] = cdr_(Stack[argSP + 1]);
fl_gc_handle(&first);
fl_gc_handle(&last);
while (iscons(Stack[argSP + 1])) {
Stack[SP - 2] = Stack[argSP];
Stack[SP - 1] = car_(Stack[argSP + 1]);
v = _applyn(1);
PUSH(v);
v = mk_cons();
car_(v) = POP();
cdr_(v) = NIL;
cdr_(last) = v;
last = v;
Stack[argSP + 1] = cdr_(Stack[argSP + 1]);
}
POPN(2);
fl_free_gc_handles(2);
} else {
size_t i;
while (SP + nargs + 1 > N_STACK)
grow_stack();
PUSH(Stack[argSP]);
for (i = 1; i < nargs; i++) {
PUSH(car(Stack[argSP + i]));
Stack[argSP + i] = cdr_(Stack[argSP + i]);
}
v = _applyn(nargs - 1);
POPN(nargs);
PUSH(v);
v = mk_cons();
car_(v) = POP();
cdr_(v) = NIL;
last = first = v;
fl_gc_handle(&first);
fl_gc_handle(&last);
while (iscons(Stack[argSP + 1])) {
PUSH(Stack[argSP]);
for (i = 1; i < nargs; i++) {
PUSH(car(Stack[argSP + i]));
Stack[argSP + i] = cdr_(Stack[argSP + i]);
}
v = _applyn(nargs - 1);
POPN(nargs);
PUSH(v);
v = mk_cons();
car_(v) = POP();
cdr_(v) = NIL;
cdr_(last) = v;
last = v;
}
fl_free_gc_handles(2);
}
return first;
}
static struct builtinspec core_builtin_info[] = {
{ "function", fl_function },
{ "function:code", fl_function_code },
{ "function:vals", fl_function_vals },
{ "function:env", fl_function_env },
{ "function:name", fl_function_name },
{ "stacktrace", fl_stacktrace },
{ "gensym", fl_gensym },
{ "gensym?", fl_gensymp },
{ "hash", fl_hash },
{ "copy-list", fl_copylist },
{ "append", fl_append },
{ "list*", fl_liststar },
{ "map", fl_map1 },
{ NULL, NULL }
};
// initialization
// -------------------------------------------------------------
extern void builtins_init(void);
extern void comparehash_init(void);
static void lisp_init(size_t initial_heapsize)
{
char buf[1024];
char *exename;
int i;
llt_init();
setlocale(LC_NUMERIC, "C");
heapsize = initial_heapsize;
fromspace = LLT_ALLOC(heapsize);
tospace = LLT_ALLOC(heapsize);
curheap = fromspace;
lim = curheap + heapsize - sizeof(struct cons);
consflags = bitvector_new(heapsize / sizeof(struct cons), 1);
htable_new(&pr.cycle_traversed, 32);
comparehash_init();
N_STACK = 262144;
Stack = malloc(N_STACK * sizeof(value_t));
FL_NIL = NIL = builtin(OP_THE_EMPTY_LIST);
FL_T = builtin(OP_BOOL_CONST_T);
FL_F = builtin(OP_BOOL_CONST_F);
FL_EOF = builtin(OP_EOF_OBJECT);
LAMBDA = symbol("lambda");
FUNCTION = symbol("function");
QUOTE = symbol("quote");
TRYCATCH = symbol("trycatch");
BACKQUOTE = symbol("quasiquote");
COMMA = symbol("unquote");
COMMAAT = symbol("unquote-splicing");
COMMADOT = symbol("unquote-nsplicing");
IOError = symbol("io-error");
ParseError = symbol("parse-error");
TypeError = symbol("type-error");
ArgError = symbol("arg-error");
UnboundError = symbol("unbound-error");
KeyError = symbol("key-error");
MemoryError = symbol("memory-error");
BoundsError = symbol("bounds-error");
DivideError = symbol("divide-error");
EnumerationError = symbol("enumeration-error");
Error = symbol("error");
pairsym = symbol("pair");
symbolsym = symbol("symbol");
fixnumsym = symbol("fixnum");
vectorsym = symbol("vector");
builtinsym = symbol("builtin");
booleansym = symbol("boolean");
nullsym = symbol("null");
definesym = symbol("define");
defmacrosym = symbol("define-macro");
forsym = symbol("for");
setqsym = symbol("set!");
evalsym = symbol("eval");
vu8sym = symbol("vu8");
fnsym = symbol("fn");
nulsym = symbol("nul");
alarmsym = symbol("alarm");
backspacesym = symbol("backspace");
tabsym = symbol("tab");
linefeedsym = symbol("linefeed");
vtabsym = symbol("vtab");
pagesym = symbol("page");
returnsym = symbol("return");
escsym = symbol("esc");
spacesym = symbol("space");
deletesym = symbol("delete");
newlinesym = symbol("newline");
tsym = symbol("t");
Tsym = symbol("T");
fsym = symbol("f");
Fsym = symbol("F");
set(printprettysym = symbol("*print-pretty*"), FL_T);
set(printreadablysym = symbol("*print-readably*"), FL_T);
set(printwidthsym = symbol("*print-width*"), fixnum(80));
set(printlengthsym = symbol("*print-length*"), FL_F);
set(printlevelsym = symbol("*print-level*"), FL_F);
builtins_table_sym = symbol("*builtins*");
fl_lasterror = NIL;
i = 0;
for (i = OP_EQ; i <= OP_ASET; i++) {
setc(symbol(builtin_names[i]), builtin(i));
}
setc(symbol("eq"), builtin(OP_EQ));
setc(symbol("procedure?"), builtin(OP_FUNCTIONP));
setc(symbol("top-level-bound?"), builtin(OP_BOUNDP));
set(symbol("*os-name*"), symbol(env_get_os_name()));
the_empty_vector = tagptr(alloc_words(1), TAG_VECTOR);
vector_setsize(the_empty_vector, 0);
cvalues_init();
exename = get_exename(buf, sizeof(buf));
if (exename != NULL) {
path_to_dirname(exename);
setc(symbol("*install-dir*"), cvalue_static_cstring(strdup(exename)));
}
memory_exception_value =
fl_list2(MemoryError, cvalue_static_cstring("out of memory"));
assign_global_builtins(core_builtin_info);
builtins_init();
}
// top level
// ------------------------------------------------------------------
value_t fl_toplevel_eval(value_t expr)
{
return fl_applyn(1, symbol_value(evalsym), expr);
}
void fl_init(size_t initial_heapsize) { lisp_init(initial_heapsize); }
int fl_load_boot_image(void)
{
value_t e, f;
int saveSP;
struct ios *s;
struct symbol *sym;
f = cvalue(iostreamtype, sizeof(struct ios));
s = value2c(struct ios *, f);
ios_static_buffer(s, boot_image, sizeof(boot_image));
PUSH(f);
saveSP = SP;
{
FL_TRY
{
while (1) {
e = fl_read_sexpr(Stack[SP - 1]);
if (ios_eof(value2c(struct ios *, Stack[SP - 1])))
break;
if (isfunction(e)) {
// stage 0 format: series of thunks
PUSH(e);
(void)_applyn(0);
SP = saveSP;
} else {
// stage 1 format: list alternating symbol/value
while (iscons(e)) {
sym = tosymbol(car_(e), "bootstrap");
e = cdr_(e);
(void)tocons(e, "bootstrap");
sym->binding = car_(e);
e = cdr_(e);
}
break;
}
}
}
FL_CATCH
{
ios_puts("fatal error during bootstrap:\n", ios_stderr);
fl_print(ios_stderr, fl_lasterror);
ios_putc('\n', ios_stderr);
return 1;
}
}
ios_close(value2c(struct ios *, Stack[SP - 1]));
POPN(1);
return 0;
}