upscheme/c/cvalues.h

1710 lines
47 KiB
C

#ifdef BITS64
#define NWORDS(sz) (((sz) + 7) >> 3)
#else
#define NWORDS(sz) (((sz) + 3) >> 2)
#endif
static int ALIGN2, ALIGN4, ALIGN8, ALIGNPTR;
value_t int8sym, uint8sym, int16sym, uint16sym, int32sym, uint32sym;
value_t int64sym, uint64sym;
value_t longsym, ulongsym, bytesym, wcharsym;
value_t floatsym, doublesym;
value_t gftypesym, stringtypesym, wcstringtypesym;
value_t emptystringsym;
value_t structsym, arraysym, enumsym, cfunctionsym, voidsym, pointersym;
value_t unionsym;
static struct htable TypeTable;
static struct htable reverse_dlsym_lookup_table;
static struct fltype *int8type, *uint8type;
static struct fltype *int16type, *uint16type;
static struct fltype *int32type, *uint32type;
static struct fltype *int64type, *uint64type;
static struct fltype *longtype, *ulongtype;
static struct fltype *floattype, *doubletype;
struct fltype *bytetype, *wchartype;
struct fltype *stringtype, *wcstringtype;
struct fltype *builtintype;
static void cvalue_init(struct fltype *type, value_t v, void *dest);
// cvalues-specific builtins
value_t cvalue_new(value_t *args, uint32_t nargs);
value_t cvalue_sizeof(value_t *args, uint32_t nargs);
value_t cvalue_typeof(value_t *args, uint32_t nargs);
// trigger unconditional GC after this many bytes are allocated
#define ALLOC_LIMIT_TRIGGER 67108864
static size_t malloc_pressure = 0;
static struct cvalue **Finalizers = NULL;
static size_t nfinalizers = 0;
static size_t maxfinalizers = 0;
void add_finalizer(struct cvalue *cv)
{
if (nfinalizers == maxfinalizers) {
size_t nn = (maxfinalizers == 0 ? 256 : maxfinalizers * 2);
struct cvalue **temp =
(struct cvalue **)realloc(Finalizers, nn * sizeof(value_t));
if (temp == NULL)
lerror(MemoryError, "out of memory");
Finalizers = temp;
maxfinalizers = nn;
}
Finalizers[nfinalizers++] = cv;
}
// remove dead objects from finalization list in-place
static void sweep_finalizers(void)
{
struct cvalue **lst = Finalizers;
size_t n = 0, ndel = 0, l = nfinalizers;
struct cvalue *tmp;
#define SWAP_sf(a, b) (tmp = a, a = b, b = tmp, 1)
if (l == 0)
return;
do {
tmp = lst[n];
if (isforwarded((value_t)tmp)) {
// object is alive
lst[n] = (struct cvalue *)ptr(forwardloc((value_t)tmp));
n++;
} else {
struct fltype *t = cv_class(tmp);
if (t->vtable != NULL && t->vtable->finalize != NULL) {
t->vtable->finalize(tagptr(tmp, TAG_CVALUE));
}
if (!isinlined(tmp) && owned(tmp)) {
#ifndef NDEBUG
memset(cv_data(tmp), 0xbb, cv_len(tmp));
#endif
free(cv_data(tmp));
}
ndel++;
}
} while ((n < l - ndel) && SWAP_sf(lst[n], lst[n + ndel]));
nfinalizers -= ndel;
#ifdef VERBOSEGC
if (ndel > 0)
printf("GC: finalized %d objects\n", ndel);
#endif
malloc_pressure = 0;
}
// compute the size of the metadata object for a cvalue
static size_t cv_nwords(struct cvalue *cv)
{
if (isinlined(cv)) {
size_t n = cv_len(cv);
if (n == 0 || cv_isstr(cv))
n++;
return CVALUE_NWORDS - 1 + NWORDS(n);
}
return CVALUE_NWORDS;
}
static void autorelease(struct cvalue *cv)
{
cv->type = (struct fltype *)(((uintptr_t)cv->type) | CV_OWNED_BIT);
add_finalizer(cv);
}
void cv_autorelease(struct cvalue *cv) { autorelease(cv); }
static value_t cprim(struct fltype *type, size_t sz)
{
struct cprim *pcp;
assert(!ismanaged((uintptr_t)type));
assert(sz == type->size);
pcp = (struct cprim *)alloc_words(CPRIM_NWORDS - 1 + NWORDS(sz));
pcp->type = type;
return tagptr(pcp, TAG_CPRIM);
}
value_t cvalue(struct fltype *type, size_t sz)
{
struct cvalue *pcv;
int str;
str = 0;
if (valid_numtype(type->numtype)) {
return cprim(type, sz);
}
if (type->eltype == bytetype) {
if (sz == 0)
return symbol_value(emptystringsym);
sz++;
str = 1;
}
if (sz <= MAX_INL_SIZE) {
size_t nw = CVALUE_NWORDS - 1 + NWORDS(sz) + (sz == 0 ? 1 : 0);
pcv = (struct cvalue *)alloc_words(nw);
pcv->type = type;
pcv->data = &pcv->_space[0];
if (type->vtable != NULL && type->vtable->finalize != NULL)
add_finalizer(pcv);
} else {
if (malloc_pressure > ALLOC_LIMIT_TRIGGER)
gc(0);
pcv = (struct cvalue *)alloc_words(CVALUE_NWORDS);
pcv->type = type;
pcv->data = malloc(sz);
autorelease(pcv);
malloc_pressure += sz;
}
if (str) {
sz--;
((char *)pcv->data)[sz] = '\0';
}
pcv->len = sz;
return tagptr(pcv, TAG_CVALUE);
}
value_t cvalue_from_data(struct fltype *type, void *data, size_t sz)
{
value_t cv;
cv = cvalue(type, sz);
memcpy(cptr(cv), data, sz);
return cv;
}
// this effectively dereferences a pointer
// just like *p in C, it only removes a level of indirection from the type,
// it doesn't copy any data.
// this method of creating a cvalue only allocates metadata.
// ptr is user-managed; we don't autorelease it unless the
// user explicitly calls (autorelease ) on the result of this function.
// 'parent' is an optional cvalue that this pointer is known to point
// into; NIL if none.
value_t cvalue_from_ref(struct fltype *type, void *ptr, size_t sz,
value_t parent)
{
struct cvalue *pcv;
value_t cv;
pcv = (struct cvalue *)alloc_words(CVALUE_NWORDS);
pcv->data = ptr;
pcv->len = sz;
pcv->type = type;
if (parent != NIL) {
pcv->type = (struct fltype *)(((uintptr_t)pcv->type) | CV_PARENT_BIT);
pcv->parent = parent;
}
cv = tagptr(pcv, TAG_CVALUE);
return cv;
}
value_t cvalue_string(size_t sz) { return cvalue(stringtype, sz); }
value_t cvalue_static_cstring(const char *str)
{
return cvalue_from_ref(stringtype, (char *)str, strlen(str), NIL);
}
value_t string_from_cstrn(const char *str, size_t n)
{
value_t v;
v = cvalue_string(n);
memcpy(cvalue_data(v), str, n);
return v;
}
value_t string_from_cstr(const char *str)
{
return string_from_cstrn(str, strlen(str));
}
int fl_isstring(value_t v)
{
return (iscvalue(v) && cv_isstr((struct cvalue *)ptr(v)));
}
// convert to malloc representation (fixed address)
void cv_pin(struct cvalue *cv)
{
size_t sz;
void *data;
if (!isinlined(cv))
return;
sz = cv_len(cv);
if (cv_isstr(cv))
sz++;
data = malloc(sz);
memcpy(data, cv_data(cv), sz);
cv->data = data;
autorelease(cv);
}
#define NUM_INIT_SUFFIX(ctype, cnvt, tag, suffix) \
static int cvalue_##ctype##_init(struct fltype *type, value_t arg, \
void *dest) \
{ \
ctype##suffix n = 0; \
(void)type; \
if (isfixnum(arg)) { \
n = numval(arg); \
} else if (iscprim(arg)) { \
struct cprim *cp = (struct cprim *)ptr(arg); \
void *p = cp_data(cp); \
n = (ctype##suffix)conv_to_##cnvt(p, cp_numtype(cp)); \
} else { \
return 1; \
} \
*((ctype##suffix *)dest) = n; \
return 0; \
}
#define NUM_INIT(ctype, cnvt, tag) NUM_INIT_SUFFIX(ctype, cnvt, tag, )
#define NUM_INIT_T(ctype, cnvt, tag) NUM_INIT_SUFFIX(ctype, cnvt, tag, _t)
NUM_INIT_T(int8, int32, T_INT8);
NUM_INIT_T(int16, int32, T_INT16);
NUM_INIT_T(int32, int32, T_INT32);
NUM_INIT_T(int64, int64, T_INT64);
NUM_INIT_T(uint8, uint32, T_UINT8);
NUM_INIT_T(uint16, uint32, T_UINT16);
NUM_INIT_T(uint32, uint32, T_UINT32);
NUM_INIT_T(uint64, uint64, T_UINT64);
NUM_INIT(float, double, T_FLOAT);
NUM_INIT(double, double, T_DOUBLE);
#define NUM_CTOR_INIT_SUFFIX(typenam, ctype, tag, suffix) \
value_t cvalue_##typenam(value_t *args, uint32_t nargs) \
{ \
value_t cp; \
if (nargs == 0) { \
PUSH(fixnum(0)); \
args = &Stack[SP - 1]; \
} \
cp = cprim(typenam##type, sizeof(ctype##suffix)); \
if (cvalue_##ctype##_init(typenam##type, args[0], \
cp_data((struct cprim *)ptr(cp)))) \
type_error(#typenam, "number", args[0]); \
return cp; \
}
#define NUM_CTOR_CTOR_SUFFIX(typenam, ctype, tag, suffix) \
value_t mk_##typenam(ctype##suffix n) \
{ \
value_t cp = cprim(typenam##type, sizeof(ctype##suffix)); \
*(ctype##suffix *)cp_data((struct cprim *)ptr(cp)) = n; \
return cp; \
}
#define NUM_CTOR(typenam, ctype, tag) \
NUM_CTOR_INIT_SUFFIX(typenam, ctype, tag, ) \
NUM_CTOR_CTOR_SUFFIX(typenam, ctype, tag, )
#define NUM_CTOR_T(typenam, ctype, tag) \
NUM_CTOR_INIT_SUFFIX(typenam, ctype, tag, _t) \
NUM_CTOR_CTOR_SUFFIX(typenam, ctype, tag, _t)
NUM_CTOR_T(int8, int8, T_INT8);
NUM_CTOR_T(int16, int16, T_INT16);
NUM_CTOR_T(int32, int32, T_INT32);
NUM_CTOR_T(int64, int64, T_INT64);
NUM_CTOR_T(uint8, uint8, T_UINT8);
NUM_CTOR_T(uint16, uint16, T_UINT16);
NUM_CTOR_T(uint32, uint32, T_UINT32);
NUM_CTOR_T(uint64, uint64, T_UINT64);
NUM_CTOR_T(byte, uint8, T_UINT8);
NUM_CTOR_T(wchar, int32, T_INT32);
#ifdef BITS64
NUM_CTOR_T(long, int64, T_INT64);
NUM_CTOR_T(ulong, uint64, T_UINT64);
#else
NUM_CTOR_T(long, int32, T_INT32);
NUM_CTOR_T(ulong, uint32, T_UINT32);
#endif
NUM_CTOR(float, float, T_FLOAT);
NUM_CTOR(double, double, T_DOUBLE);
value_t size_wrap(size_t sz)
{
if (fits_fixnum(sz))
return fixnum(sz);
assert(sizeof(void *) == sizeof(size_t));
return mk_ulong(sz);
}
size_t toulong(value_t n, char *fname)
{
if (isfixnum(n))
return numval(n);
if (iscprim(n)) {
struct cprim *cp = (struct cprim *)ptr(n);
return conv_to_ulong(cp_data(cp), cp_numtype(cp));
}
type_error(fname, "number", n);
return 0;
}
static int cvalue_enum_init(struct fltype *ft, value_t arg, void *dest)
{
int n = 0;
value_t syms;
value_t type = ft->type;
syms = car(cdr(type));
if (!isvector(syms))
type_error("enum", "vector", syms);
if (issymbol(arg)) {
for (n = 0; n < (int)vector_size(syms); n++) {
if (vector_elt(syms, n) == arg) {
*(int *)dest = n;
return 0;
}
}
lerror(ArgError, "enum: invalid enum value");
}
if (isfixnum(arg)) {
n = (int)numval(arg);
} else if (iscprim(arg)) {
struct cprim *cp = (struct cprim *)ptr(arg);
n = conv_to_int32(cp_data(cp), cp_numtype(cp));
} else {
type_error("enum", "number", arg);
}
if ((unsigned)n >= vector_size(syms))
lerror(ArgError, "enum: value out of range");
*(int *)dest = n;
return 0;
}
value_t cvalue_enum(value_t *args, uint32_t nargs)
{
value_t cv, type;
struct fltype *ft;
argcount("enum", nargs, 2);
type = fl_list2(enumsym, args[0]);
ft = get_type(type);
cv = cvalue(ft, sizeof(int32_t));
cvalue_enum_init(ft, args[1], cp_data((struct cprim *)ptr(cv)));
return cv;
}
static int isarray(value_t v)
{
return iscvalue(v) && cv_class((struct cvalue *)ptr(v))->eltype != NULL;
}
static size_t predict_arraylen(value_t arg)
{
if (isvector(arg))
return vector_size(arg);
else if (iscons(arg))
return llength(arg);
else if (arg == NIL)
return 0;
if (isarray(arg))
return cvalue_arraylen(arg);
return 1;
}
static int cvalue_array_init(struct fltype *ft, value_t arg, void *dest)
{
value_t type = ft->type;
size_t elsize, i, cnt, sz;
struct fltype *eltype = ft->eltype;
elsize = ft->elsz;
cnt = predict_arraylen(arg);
if (iscons(cdr_(cdr_(type)))) {
size_t tc = toulong(car_(cdr_(cdr_(type))), "array");
if (tc != cnt)
lerror(ArgError, "array: size mismatch");
}
sz = elsize * cnt;
if (isvector(arg)) {
assert(cnt <= vector_size(arg));
for (i = 0; i < cnt; i++) {
cvalue_init(eltype, vector_elt(arg, i), dest);
dest = (char *)dest + elsize;
}
return 0;
} else if (iscons(arg) || arg == NIL) {
i = 0;
while (iscons(arg)) {
if (i == cnt) {
i++;
break;
} // trigger error
cvalue_init(eltype, car_(arg), dest);
i++;
dest = (char *)dest + elsize;
arg = cdr_(arg);
}
if (i != cnt)
lerror(ArgError, "array: size mismatch");
return 0;
} else if (iscvalue(arg)) {
struct cvalue *cv = (struct cvalue *)ptr(arg);
if (isarray(arg)) {
struct fltype *aet = cv_class(cv)->eltype;
if (aet == eltype) {
if (cv_len(cv) == sz)
memcpy(dest, cv_data(cv), sz);
else
lerror(ArgError, "array: size mismatch");
return 0;
} else {
// TODO: initialize array from different type elements
lerror(ArgError, "array: element type mismatch");
}
}
}
if (cnt == 1)
cvalue_init(eltype, arg, dest);
else
type_error("array", "sequence", arg);
return 0;
}
value_t cvalue_array(value_t *args, uint32_t nargs)
{
size_t elsize, cnt, sz, i;
value_t arg, cv;
struct fltype *type;
char *dest;
if (nargs < 1)
argcount("array", nargs, 1);
cnt = nargs - 1;
type = get_array_type(args[0]);
elsize = type->elsz;
sz = elsize * cnt;
cv = cvalue(type, sz);
dest = cv_data((struct cvalue *)ptr(cv));
FOR_ARGS(i, 1, arg, args)
{
cvalue_init(type->eltype, arg, dest);
dest += elsize;
}
return cv;
}
// NOTE: v must be an array
size_t cvalue_arraylen(value_t v)
{
struct cvalue *cv = (struct cvalue *)ptr(v);
return cv_len(cv) / (cv_class(cv)->elsz);
}
static size_t cvalue_struct_offs(value_t type, value_t field,
int computeTotal, int *palign)
{
value_t fld = car(cdr_(type));
size_t fsz, ssz = 0;
int al;
*palign = 0;
while (iscons(fld)) {
fsz = ctype_sizeof(car(cdr(car_(fld))), &al);
ssz = ALIGN(ssz, al);
if (al > *palign)
*palign = al;
if (!computeTotal && field == car_(car_(fld))) {
// found target field
return ssz;
}
ssz += fsz;
fld = cdr_(fld);
}
return ALIGN(ssz, *palign);
}
static size_t cvalue_union_size(value_t type, int *palign)
{
value_t fld = car(cdr_(type));
size_t fsz, usz = 0;
int al;
*palign = 0;
while (iscons(fld)) {
fsz = ctype_sizeof(car(cdr(car_(fld))), &al);
if (al > *palign)
*palign = al;
if (fsz > usz)
usz = fsz;
fld = cdr_(fld);
}
return ALIGN(usz, *palign);
}
// *palign is an output argument giving the alignment required by type
size_t ctype_sizeof(value_t type, int *palign)
{
value_t hed, t, n;
size_t sz;
if (type == int8sym || type == uint8sym || type == bytesym) {
*palign = 1;
return 1;
}
if (type == int16sym || type == uint16sym) {
*palign = ALIGN2;
return 2;
}
if (type == int32sym || type == uint32sym || type == wcharsym ||
type == floatsym) {
*palign = ALIGN4;
return 4;
}
if (type == int64sym || type == uint64sym || type == doublesym) {
*palign = ALIGN8;
return 8;
}
if (type == longsym || type == ulongsym) {
#ifdef BITS64
*palign = ALIGN8;
return 8;
#else
*palign = ALIGN4;
return 4;
#endif
}
if (iscons(type)) {
hed = car_(type);
if (hed == pointersym || hed == cfunctionsym) {
*palign = ALIGNPTR;
return sizeof(void *);
}
if (hed == arraysym) {
t = car(cdr_(type));
if (!iscons(cdr_(cdr_(type))))
lerror(ArgError, "sizeof: incomplete type");
n = car_(cdr_(cdr_(type)));
sz = toulong(n, "sizeof");
return sz * ctype_sizeof(t, palign);
} else if (hed == structsym) {
return cvalue_struct_offs(type, NIL, 1, palign);
} else if (hed == unionsym) {
return cvalue_union_size(type, palign);
} else if (hed == enumsym) {
*palign = ALIGN4;
return 4;
}
}
lerror(ArgError, "sizeof: invalid c type");
return 0;
}
extern struct fltype *iostreamtype;
// get pointer and size for any plain-old-data value
void to_sized_ptr(value_t v, char *fname, char **pdata, size_t *psz)
{
if (iscvalue(v)) {
struct cvalue *pcv = (struct cvalue *)ptr(v);
struct ios *x = value2c(struct ios *, v);
if (cv_class(pcv) == iostreamtype && (x->bm == bm_mem)) {
*pdata = x->buf;
*psz = x->size;
return;
} else if (cv_isPOD(pcv)) {
*pdata = cv_data(pcv);
*psz = cv_len(pcv);
return;
}
} else if (iscprim(v)) {
struct cprim *pcp = (struct cprim *)ptr(v);
*pdata = cp_data(pcp);
*psz = cp_class(pcp)->size;
return;
}
type_error(fname, "plain-old-data", v);
}
value_t cvalue_sizeof(value_t *args, uint32_t nargs)
{
char *data;
size_t n;
int a;
argcount("sizeof", nargs, 1);
if (issymbol(args[0]) || iscons(args[0])) {
return size_wrap(ctype_sizeof(args[0], &a));
}
to_sized_ptr(args[0], "sizeof", &data, &n);
return size_wrap(n);
}
value_t cvalue_typeof(value_t *args, uint32_t nargs)
{
argcount("typeof", nargs, 1);
switch (tag(args[0])) {
case TAG_CONS:
return pairsym;
case TAG_NUM1:
case TAG_NUM:
return fixnumsym;
case TAG_SYM:
return symbolsym;
case TAG_VECTOR:
return vectorsym;
case TAG_FUNCTION:
if (args[0] == FL_T || args[0] == FL_F)
return booleansym;
if (args[0] == NIL)
return nullsym;
if (args[0] == FL_EOF)
return symbol("eof-object");
if (isbuiltin(args[0]))
return builtinsym;
return FUNCTION;
}
return cv_type((struct cvalue *)ptr(args[0]));
}
static value_t cvalue_relocate(value_t v)
{
struct cvalue *cv = (struct cvalue *)ptr(v);
struct cvalue *nv;
struct fltype *t;
value_t ncv;
size_t nw;
nw = cv_nwords(cv);
nv = (struct cvalue *)alloc_words(nw);
memcpy(nv, cv, nw * sizeof(value_t));
if (isinlined(cv))
nv->data = &nv->_space[0];
ncv = tagptr(nv, TAG_CVALUE);
t = cv_class(cv);
if (t->vtable != NULL && t->vtable->relocate != NULL)
t->vtable->relocate(v, ncv);
forward(v, ncv);
return ncv;
}
value_t cvalue_copy(value_t v)
{
struct cvalue *ncv;
struct cvalue *cv;
size_t nw, len;
assert(iscvalue(v));
PUSH(v);
cv = (struct cvalue *)ptr(v);
nw = cv_nwords(cv);
ncv = (struct cvalue *)alloc_words(nw);
v = POP();
cv = (struct cvalue *)ptr(v);
memcpy(ncv, cv, nw * sizeof(value_t));
if (!isinlined(cv)) {
len = cv_len(cv);
if (cv_isstr(cv))
len++;
ncv->data = malloc(len);
memcpy(ncv->data, cv_data(cv), len);
autorelease(ncv);
if (hasparent(cv)) {
ncv->type =
(struct fltype *)(((uintptr_t)ncv->type) & ~CV_PARENT_BIT);
ncv->parent = NIL;
}
} else {
ncv->data = &ncv->_space[0];
}
return tagptr(ncv, TAG_CVALUE);
}
value_t fl_copy(value_t *args, uint32_t nargs)
{
argcount("copy", nargs, 1);
if (iscons(args[0]) || isvector(args[0]))
lerror(ArgError, "copy: argument must be a leaf atom");
if (!iscvalue(args[0]))
return args[0];
if (!cv_isPOD((struct cvalue *)ptr(args[0])))
lerror(ArgError, "copy: argument must be a plain-old-data type");
return cvalue_copy(args[0]);
}
value_t fl_podp(value_t *args, uint32_t nargs)
{
argcount("plain-old-data?", nargs, 1);
return (iscprim(args[0]) ||
(iscvalue(args[0]) && cv_isPOD((struct cvalue *)ptr(args[0]))))
? FL_T
: FL_F;
}
static void cvalue_init(struct fltype *type, value_t v, void *dest)
{
cvinitfunc_t f = type->init;
if (f == NULL)
lerror(ArgError, "c-value: invalid c type");
f(type, v, dest);
}
static numerictype_t sym_to_numtype(value_t type)
{
if (type == int8sym)
return T_INT8;
else if (type == uint8sym || type == bytesym)
return T_UINT8;
else if (type == int16sym)
return T_INT16;
else if (type == uint16sym)
return T_UINT16;
#ifdef BITS64
else if (type == int32sym || type == wcharsym)
#else
else if (type == int32sym || type == wcharsym || type == longsym)
#endif
return T_INT32;
#ifdef BITS64
else if (type == uint32sym)
#else
else if (type == uint32sym || type == ulongsym)
#endif
return T_UINT32;
#ifdef BITS64
else if (type == int64sym || type == longsym)
#else
else if (type == int64sym)
#endif
return T_INT64;
#ifdef BITS64
else if (type == uint64sym || type == ulongsym)
#else
else if (type == uint64sym)
#endif
return T_UINT64;
else if (type == floatsym)
return T_FLOAT;
else if (type == doublesym)
return T_DOUBLE;
return N_NUMTYPES;
}
// (new type . args)
// this provides (1) a way to allocate values with a shared type for
// efficiency, (2) a uniform interface for allocating cvalues of any
// type, including user-defined.
value_t cvalue_new(value_t *args, uint32_t nargs)
{
struct fltype *ft;
value_t cv, type;
size_t elsz, cnt;
if (nargs < 1 || nargs > 2)
argcount("c-value", nargs, 2);
type = args[0];
ft = get_type(type);
if (ft->eltype != NULL) {
// special case to handle incomplete array types bla[]
elsz = ft->elsz;
if (iscons(cdr_(cdr_(type))))
cnt = toulong(car_(cdr_(cdr_(type))), "array");
else if (nargs == 2)
cnt = predict_arraylen(args[1]);
else
cnt = 0;
cv = cvalue(ft, elsz * cnt);
if (nargs == 2)
cvalue_array_init(ft, args[1], cv_data((struct cvalue *)ptr(cv)));
} else {
cv = cvalue(ft, ft->size);
if (nargs == 2)
cvalue_init(ft, args[1], cptr(cv));
}
return cv;
}
// NOTE: this only compares lexicographically; it ignores numeric formats
value_t cvalue_compare(value_t a, value_t b)
{
struct cvalue *ca = (struct cvalue *)ptr(a);
struct cvalue *cb = (struct cvalue *)ptr(b);
char *adata = cv_data(ca);
char *bdata = cv_data(cb);
size_t asz = cv_len(ca);
size_t bsz = cv_len(cb);
size_t minsz = asz < bsz ? asz : bsz;
int diff = memcmp(adata, bdata, minsz);
if (diff == 0) {
if (asz > bsz)
return fixnum(1);
else if (asz < bsz)
return fixnum(-1);
}
return fixnum(diff);
}
static void check_addr_args(char *fname, value_t arr, value_t ind,
char **data, unsigned long *index)
{
size_t numel;
struct cvalue *cv;
cv = (struct cvalue *)ptr(arr);
*data = cv_data(cv);
numel = cv_len(cv) / (cv_class(cv)->elsz);
*index = toulong(ind, fname);
if (*index >= numel)
bounds_error(fname, arr, ind);
}
static value_t cvalue_array_aref(value_t *args)
{
char *data;
unsigned long index;
struct fltype *eltype = cv_class((struct cvalue *)ptr(args[0]))->eltype;
value_t el = 0;
numerictype_t nt = eltype->numtype;
char *dest;
size_t sz;
if (nt >= T_INT32)
el = cvalue(eltype, eltype->size);
check_addr_args("aref", args[0], args[1], &data, &index);
if (nt < T_INT32) {
if (nt == T_INT8)
return fixnum((int8_t)data[index]);
else if (nt == T_UINT8)
return fixnum((uint8_t)data[index]);
else if (nt == T_INT16)
return fixnum(((int16_t *)data)[index]);
return fixnum(((uint16_t *)data)[index]);
}
dest = cptr(el);
sz = eltype->size;
if (sz == 1)
*dest = data[index];
else if (sz == 2)
*(int16_t *)dest = ((int16_t *)data)[index];
else if (sz == 4)
*(int32_t *)dest = ((int32_t *)data)[index];
else if (sz == 8)
*(int64_t *)dest = ((int64_t *)data)[index];
else
memcpy(dest, data + index * sz, sz);
return el;
}
static value_t cvalue_array_aset(value_t *args)
{
char *data;
char *dest;
unsigned long index;
struct fltype *eltype;
eltype = cv_class((struct cvalue *)ptr(args[0]))->eltype;
check_addr_args("aset!", args[0], args[1], &data, &index);
dest = data + index * eltype->size;
cvalue_init(eltype, args[2], dest);
return args[2];
}
value_t fl_builtin(value_t *args, uint32_t nargs)
{
struct symbol *name;
struct cvalue *cv;
argcount("builtin", nargs, 1);
name = tosymbol(args[0], "builtin");
if (ismanaged(args[0]) || (cv = name->dlcache) == NULL) {
lerrorf(ArgError, "builtin: function %s not found", name->name);
}
return tagptr(cv, TAG_CVALUE);
}
value_t cbuiltin(char *name, builtin_t f)
{
struct cvalue *cv;
value_t sym;
cv = (struct cvalue *)malloc(CVALUE_NWORDS * sizeof(value_t));
cv->type = builtintype;
cv->data = &cv->_space[0];
cv->len = sizeof(value_t);
*(void **)cv->data = f;
sym = symbol(name);
((struct symbol *)ptr(sym))->dlcache = cv;
ptrhash_put(&reverse_dlsym_lookup_table, cv, (void *)sym);
return tagptr(cv, TAG_CVALUE);
}
static value_t fl_logand(value_t *args, uint32_t nargs);
static value_t fl_logior(value_t *args, uint32_t nargs);
static value_t fl_logxor(value_t *args, uint32_t nargs);
static value_t fl_lognot(value_t *args, uint32_t nargs);
static value_t fl_ash(value_t *args, uint32_t nargs);
static struct builtinspec cvalues_builtin_info[] = {
{ "c-value", cvalue_new },
{ "typeof", cvalue_typeof },
{ "sizeof", cvalue_sizeof },
{ "builtin", fl_builtin },
{ "copy", fl_copy },
{ "plain-old-data?", fl_podp },
{ "logand", fl_logand },
{ "logior", fl_logior },
{ "logxor", fl_logxor },
{ "lognot", fl_lognot },
{ "ash", fl_ash },
// todo: autorelease
{ NULL, NULL }
};
#define cv_intern(tok) tok##sym = symbol(#tok)
#define ctor_cv_intern(tok) \
cv_intern(tok); \
set(tok##sym, cbuiltin(#tok, cvalue_##tok))
#define mk_primtype(name) \
name##type = get_type(name##sym); \
name##type->init = &cvalue_##name##_init
#define mk_primtype_(name, ctype) \
name##type = get_type(name##sym); \
name##type->init = &cvalue_##ctype##_init
static void cvalues_init(void)
{
htable_new(&TypeTable, 256);
htable_new(&reverse_dlsym_lookup_table, 256);
// compute struct field alignment required for primitives
ALIGN2 = sizeof(struct {
char a;
int16_t i;
}) -
2;
ALIGN4 = sizeof(struct {
char a;
int32_t i;
}) -
4;
ALIGN8 = sizeof(struct {
char a;
int64_t i;
}) -
8;
ALIGNPTR = sizeof(struct {
char a;
void *i;
}) -
sizeof(void *);
builtintype =
define_opaque_type(builtinsym, sizeof(builtin_t), NULL, NULL);
ctor_cv_intern(int8);
ctor_cv_intern(uint8);
ctor_cv_intern(int16);
ctor_cv_intern(uint16);
ctor_cv_intern(int32);
ctor_cv_intern(uint32);
ctor_cv_intern(int64);
ctor_cv_intern(uint64);
ctor_cv_intern(byte);
ctor_cv_intern(wchar);
ctor_cv_intern(long);
ctor_cv_intern(ulong);
ctor_cv_intern(float);
ctor_cv_intern(double);
ctor_cv_intern(array);
ctor_cv_intern(enum);
cv_intern(pointer);
cv_intern(struct);
cv_intern(union);
cv_intern(void);
cfunctionsym = symbol("c-function");
assign_global_builtins(cvalues_builtin_info);
stringtypesym = symbol("*string-type*");
setc(stringtypesym, fl_list2(arraysym, bytesym));
wcstringtypesym = symbol("*wcstring-type*");
setc(wcstringtypesym, fl_list2(arraysym, wcharsym));
mk_primtype(int8);
mk_primtype(uint8);
mk_primtype(int16);
mk_primtype(uint16);
mk_primtype(int32);
mk_primtype(uint32);
mk_primtype(int64);
mk_primtype(uint64);
#ifdef BITS64
mk_primtype_(long, int64);
mk_primtype_(ulong, uint64);
#else
mk_primtype_(long, int32);
mk_primtype_(ulong, uint32);
#endif
mk_primtype_(byte, uint8);
mk_primtype_(wchar, int32);
mk_primtype(float);
mk_primtype(double);
stringtype = get_type(symbol_value(stringtypesym));
wcstringtype = get_type(symbol_value(wcstringtypesym));
emptystringsym = symbol("*empty-string*");
setc(emptystringsym, cvalue_static_cstring(""));
}
#define RETURN_INT_AS(var, type) return (mk_##type((type##_t)var))
value_t return_from_uint64(uint64_t Uaccum)
{
if (fits_fixnum(Uaccum)) {
return fixnum((fixnum_t)Uaccum);
}
if (Uaccum > (uint64_t)S64_MAX) {
RETURN_INT_AS(Uaccum, uint64);
} else if (Uaccum > (uint64_t)UINT_MAX) {
RETURN_INT_AS(Uaccum, int64);
} else if (Uaccum > (uint64_t)INT_MAX) {
RETURN_INT_AS(Uaccum, uint32);
}
RETURN_INT_AS(Uaccum, int32);
}
value_t return_from_int64(int64_t Saccum)
{
if (fits_fixnum(Saccum)) {
return fixnum((fixnum_t)Saccum);
}
if (Saccum > (int64_t)UINT_MAX || Saccum < (int64_t)INT_MIN) {
RETURN_INT_AS(Saccum, int64);
} else if (Saccum > (int64_t)INT_MAX) {
RETURN_INT_AS(Saccum, uint32);
}
RETURN_INT_AS(Saccum, int32);
}
static value_t fl_add_any(value_t *args, uint32_t nargs, fixnum_t carryIn)
{
uint64_t Uaccum = 0;
int64_t Saccum = carryIn;
double Faccum = 0;
int32_t inexact = 0;
uint32_t i;
value_t arg = NIL;
FOR_ARGS(i, 0, arg, args)
{
if (isfixnum(arg)) {
Saccum += numval(arg);
continue;
} else if (iscprim(arg)) {
struct cprim *cp = (struct cprim *)ptr(arg);
void *a = cp_data(cp);
int64_t i64;
switch (cp_numtype(cp)) {
case T_INT8:
Saccum += *(int8_t *)a;
break;
case T_UINT8:
Saccum += *(uint8_t *)a;
break;
case T_INT16:
Saccum += *(int16_t *)a;
break;
case T_UINT16:
Saccum += *(uint16_t *)a;
break;
case T_INT32:
Saccum += *(int32_t *)a;
break;
case T_UINT32:
Saccum += *(uint32_t *)a;
break;
case T_INT64:
i64 = *(int64_t *)a;
if (i64 > 0)
Uaccum += (uint64_t)i64;
else
Saccum += i64;
break;
case T_UINT64:
Uaccum += *(uint64_t *)a;
break;
case T_FLOAT:
Faccum += *(float *)a;
inexact = 1;
break;
case T_DOUBLE:
Faccum += *(double *)a;
inexact = 1;
break;
default:
goto add_type_error;
}
continue;
}
add_type_error:
type_error("+", "number", arg);
}
if (inexact) {
Faccum += Uaccum;
Faccum += Saccum;
return mk_double(Faccum);
} else if (Saccum < 0) {
uint64_t negpart = (uint64_t)(-Saccum);
if (negpart > Uaccum) {
Saccum += (int64_t)Uaccum;
// return value in Saccum
if (Saccum >= INT_MIN) {
if (fits_fixnum(Saccum)) {
return fixnum((fixnum_t)Saccum);
}
RETURN_INT_AS(Saccum, int32);
}
RETURN_INT_AS(Saccum, int64);
}
Uaccum -= negpart;
} else {
Uaccum += (uint64_t)Saccum;
}
// return value in Uaccum
return return_from_uint64(Uaccum);
}
static value_t fl_neg(value_t n)
{
if (isfixnum(n)) {
fixnum_t s = fixnum(-numval(n));
if (__unlikely(n == (ufixnum_t)s))
return mk_long(-numval(n)); // negate overflows
else
return s;
} else if (iscprim(n)) {
struct cprim *cp = (struct cprim *)ptr(n);
void *a = cp_data(cp);
uint32_t ui32;
int32_t i32;
int64_t i64;
switch (cp_numtype(cp)) {
case T_INT8:
return fixnum(-(int32_t) * (int8_t *)a);
case T_UINT8:
return fixnum(-(int32_t) * (uint8_t *)a);
case T_INT16:
return fixnum(-(int32_t) * (int16_t *)a);
case T_UINT16:
return fixnum(-(int32_t) * (uint16_t *)a);
case T_INT32:
i32 = *(int32_t *)a;
if (i32 == (int32_t)INT32_TOP_BIT)
return mk_uint32((uint32_t)INT32_TOP_BIT);
return mk_int32(-i32);
case T_UINT32:
ui32 = *(uint32_t *)a;
if (ui32 <= ((uint32_t)INT_MAX) + 1)
return mk_int32(-(int32_t)ui32);
return mk_int64(-(int64_t)ui32);
case T_INT64:
i64 = *(int64_t *)a;
if (i64 == (int64_t)INT64_TOP_BIT)
return mk_uint64((uint64_t)INT64_TOP_BIT);
return mk_int64(-i64);
case T_UINT64:
return mk_int64(-(int64_t) * (uint64_t *)a);
case T_FLOAT:
return mk_float(-*(float *)a);
case T_DOUBLE:
return mk_double(-*(double *)a);
break;
}
}
type_error("-", "number", n);
return FL_NIL; // TODO: remove
}
static value_t fl_mul_any(value_t *args, uint32_t nargs, int64_t Saccum)
{
uint64_t Uaccum = 1;
double Faccum = 1;
int32_t inexact = 0;
uint32_t i;
value_t arg = NIL;
FOR_ARGS(i, 0, arg, args)
{
if (isfixnum(arg)) {
Saccum *= numval(arg);
continue;
} else if (iscprim(arg)) {
struct cprim *cp = (struct cprim *)ptr(arg);
void *a = cp_data(cp);
int64_t i64;
switch (cp_numtype(cp)) {
case T_INT8:
Saccum *= *(int8_t *)a;
break;
case T_UINT8:
Saccum *= *(uint8_t *)a;
break;
case T_INT16:
Saccum *= *(int16_t *)a;
break;
case T_UINT16:
Saccum *= *(uint16_t *)a;
break;
case T_INT32:
Saccum *= *(int32_t *)a;
break;
case T_UINT32:
Saccum *= *(uint32_t *)a;
break;
case T_INT64:
i64 = *(int64_t *)a;
if (i64 > 0)
Uaccum *= (uint64_t)i64;
else
Saccum *= i64;
break;
case T_UINT64:
Uaccum *= *(uint64_t *)a;
break;
case T_FLOAT:
Faccum *= *(float *)a;
inexact = 1;
break;
case T_DOUBLE:
Faccum *= *(double *)a;
inexact = 1;
break;
default:
goto mul_type_error;
}
continue;
}
mul_type_error:
type_error("*", "number", arg);
}
if (inexact) {
Faccum *= Uaccum;
Faccum *= Saccum;
return mk_double(Faccum);
} else if (Saccum < 0) {
Saccum *= (int64_t)Uaccum;
if (Saccum >= INT_MIN) {
if (fits_fixnum(Saccum)) {
return fixnum((fixnum_t)Saccum);
}
RETURN_INT_AS(Saccum, int32);
}
RETURN_INT_AS(Saccum, int64);
} else {
Uaccum *= (uint64_t)Saccum;
}
return return_from_uint64(Uaccum);
}
static int num_to_ptr(value_t a, fixnum_t *pi, numerictype_t *pt, void **pp)
{
struct cprim *cp;
if (isfixnum(a)) {
*pi = numval(a);
*pp = pi;
*pt = T_FIXNUM;
} else if (iscprim(a)) {
cp = (struct cprim *)ptr(a);
*pp = cp_data(cp);
*pt = cp_numtype(cp);
} else {
return 0;
}
return 1;
}
/*
returns -1, 0, or 1 based on ordering of a and b
eq: consider equality only, returning 0 or nonzero
eqnans: NaNs considered equal to each other
-0.0 not considered equal to 0.0
inexact not considered equal to exact
fname: if not NULL, throws type errors, else returns 2 for type errors
*/
int numeric_compare(value_t a, value_t b, int eq, int eqnans, char *fname)
{
intptr_t ai, bi;
numerictype_t ta, tb;
void *aptr, *bptr;
if (bothfixnums(a, b)) {
if (a == b)
return 0;
if (numval(a) < numval(b))
return -1;
return 1;
}
if (!num_to_ptr(a, &ai, &ta, &aptr)) {
if (fname)
type_error(fname, "number", a);
else
return 2;
}
if (!num_to_ptr(b, &bi, &tb, &bptr)) {
if (fname)
type_error(fname, "number", b);
else
return 2;
}
if (eq && eqnans && ((ta >= T_FLOAT) != (tb >= T_FLOAT)))
return 1;
if (cmp_eq(aptr, ta, bptr, tb, eqnans))
return 0;
if (eq)
return 1;
if (cmp_lt(aptr, ta, bptr, tb))
return -1;
return 1;
}
static value_t fl_div2(value_t a, value_t b)
{
double da, db;
intptr_t ai, bi;
numerictype_t ta, tb;
void *aptr, *bptr;
if (!num_to_ptr(a, &ai, &ta, &aptr))
type_error("/", "number", a);
if (!num_to_ptr(b, &bi, &tb, &bptr))
type_error("/", "number", b);
da = conv_to_double(aptr, ta);
db = conv_to_double(bptr, tb);
if (db == 0 && tb < T_FLOAT) // exact 0
DivideByZeroError();
da = da / db;
if (ta < T_FLOAT && tb < T_FLOAT && (double)(int64_t)da == da)
return return_from_int64((int64_t)da);
return mk_double(da);
}
static value_t fl_idiv2(value_t a, value_t b)
{
intptr_t ai, bi;
numerictype_t ta, tb;
void *aptr, *bptr;
int64_t a64, b64;
if (!num_to_ptr(a, &ai, &ta, &aptr))
type_error("div0", "number", a);
if (!num_to_ptr(b, &bi, &tb, &bptr))
type_error("div0", "number", b);
if (ta == T_UINT64) {
if (tb == T_UINT64) {
if (*(uint64_t *)bptr == 0)
goto div_error;
return return_from_uint64(*(uint64_t *)aptr / *(uint64_t *)bptr);
}
b64 = conv_to_int64(bptr, tb);
if (b64 < 0) {
return return_from_int64(
-(int64_t)(*(uint64_t *)aptr / (uint64_t)(-b64)));
}
if (b64 == 0)
goto div_error;
return return_from_uint64(*(uint64_t *)aptr / (uint64_t)b64);
}
if (tb == T_UINT64) {
if (*(uint64_t *)bptr == 0)
goto div_error;
a64 = conv_to_int64(aptr, ta);
if (a64 < 0) {
return return_from_int64(
-((int64_t)((uint64_t)(-a64) / *(uint64_t *)bptr)));
}
return return_from_uint64((uint64_t)a64 / *(uint64_t *)bptr);
}
b64 = conv_to_int64(bptr, tb);
if (b64 == 0)
goto div_error;
return return_from_int64(conv_to_int64(aptr, ta) / b64);
div_error:
DivideByZeroError();
}
static value_t fl_bitwise_op(value_t a, value_t b, int opcode, char *fname)
{
intptr_t ai, bi;
numerictype_t ta, tb, itmp;
void *aptr = NULL, *bptr = NULL, *ptmp;
int64_t b64;
if (!num_to_ptr(a, &ai, &ta, &aptr) || ta >= T_FLOAT)
type_error(fname, "integer", a);
if (!num_to_ptr(b, &bi, &tb, &bptr) || tb >= T_FLOAT)
type_error(fname, "integer", b);
if (ta < tb) {
itmp = ta;
ta = tb;
tb = itmp;
ptmp = aptr;
aptr = bptr;
bptr = ptmp;
}
// now a's type is larger than or same as b's
b64 = conv_to_int64(bptr, tb);
switch (opcode) {
case 0:
switch (ta) {
case T_INT8:
return fixnum(*(int8_t *)aptr & (int8_t)b64);
case T_UINT8:
return fixnum(*(uint8_t *)aptr & (uint8_t)b64);
case T_INT16:
return fixnum(*(int16_t *)aptr & (int16_t)b64);
case T_UINT16:
return fixnum(*(uint16_t *)aptr & (uint16_t)b64);
case T_INT32:
return mk_int32(*(int32_t *)aptr & (int32_t)b64);
case T_UINT32:
return mk_uint32(*(uint32_t *)aptr & (uint32_t)b64);
case T_INT64:
return mk_int64(*(int64_t *)aptr & (int64_t)b64);
case T_UINT64:
return mk_uint64(*(uint64_t *)aptr & (uint64_t)b64);
case T_FLOAT:
case T_DOUBLE:
assert(0);
}
break;
case 1:
switch (ta) {
case T_INT8:
return fixnum(*(int8_t *)aptr | (int8_t)b64);
case T_UINT8:
return fixnum(*(uint8_t *)aptr | (uint8_t)b64);
case T_INT16:
return fixnum(*(int16_t *)aptr | (int16_t)b64);
case T_UINT16:
return fixnum(*(uint16_t *)aptr | (uint16_t)b64);
case T_INT32:
return mk_int32(*(int32_t *)aptr | (int32_t)b64);
case T_UINT32:
return mk_uint32(*(uint32_t *)aptr | (uint32_t)b64);
case T_INT64:
return mk_int64(*(int64_t *)aptr | (int64_t)b64);
case T_UINT64:
return mk_uint64(*(uint64_t *)aptr | (uint64_t)b64);
case T_FLOAT:
case T_DOUBLE:
assert(0);
}
break;
case 2:
switch (ta) {
case T_INT8:
return fixnum(*(int8_t *)aptr ^ (int8_t)b64);
case T_UINT8:
return fixnum(*(uint8_t *)aptr ^ (uint8_t)b64);
case T_INT16:
return fixnum(*(int16_t *)aptr ^ (int16_t)b64);
case T_UINT16:
return fixnum(*(uint16_t *)aptr ^ (uint16_t)b64);
case T_INT32:
return mk_int32(*(int32_t *)aptr ^ (int32_t)b64);
case T_UINT32:
return mk_uint32(*(uint32_t *)aptr ^ (uint32_t)b64);
case T_INT64:
return mk_int64(*(int64_t *)aptr ^ (int64_t)b64);
case T_UINT64:
return mk_uint64(*(uint64_t *)aptr ^ (uint64_t)b64);
case T_FLOAT:
case T_DOUBLE:
assert(0);
}
}
assert(0);
return NIL;
}
static value_t fl_logand(value_t *args, uint32_t nargs)
{
value_t v, e;
int i;
if (nargs == 0)
return fixnum(-1);
v = args[0];
FOR_ARGS(i, 1, e, args)
{
if (bothfixnums(v, e))
v = v & e;
else
v = fl_bitwise_op(v, e, 0, "logand");
}
return v;
}
static value_t fl_logior(value_t *args, uint32_t nargs)
{
value_t v, e;
int i;
if (nargs == 0)
return fixnum(0);
v = args[0];
FOR_ARGS(i, 1, e, args)
{
if (bothfixnums(v, e))
v = v | e;
else
v = fl_bitwise_op(v, e, 1, "logior");
}
return v;
}
static value_t fl_logxor(value_t *args, uint32_t nargs)
{
value_t v, e;
int i;
if (nargs == 0)
return fixnum(0);
v = args[0];
FOR_ARGS(i, 1, e, args)
{
if (bothfixnums(v, e))
v = fixnum(numval(v) ^ numval(e));
else
v = fl_bitwise_op(v, e, 2, "logxor");
}
return v;
}
static value_t fl_lognot(value_t *args, uint32_t nargs)
{
struct cprim *cp;
void *aptr;
value_t a;
int ta;
argcount("lognot", nargs, 1);
a = args[0];
if (isfixnum(a))
return fixnum(~numval(a));
if (iscprim(a)) {
cp = (struct cprim *)ptr(a);
ta = cp_numtype(cp);
aptr = cp_data(cp);
switch (ta) {
case T_INT8:
return fixnum(~*(int8_t *)aptr);
case T_UINT8:
return fixnum(~*(uint8_t *)aptr);
case T_INT16:
return fixnum(~*(int16_t *)aptr);
case T_UINT16:
return fixnum(~*(uint16_t *)aptr);
case T_INT32:
return mk_int32(~*(int32_t *)aptr);
case T_UINT32:
return mk_uint32(~*(uint32_t *)aptr);
case T_INT64:
return mk_int64(~*(int64_t *)aptr);
case T_UINT64:
return mk_uint64(~*(uint64_t *)aptr);
}
}
type_error("lognot", "integer", a);
return FL_NIL; // TODO: remove
}
static value_t fl_ash(value_t *args, uint32_t nargs)
{
int64_t accum, i64;
value_t a;
fixnum_t n;
struct cprim *cp;
void *aptr;
int ta;
argcount("ash", nargs, 2);
a = args[0];
n = tofixnum(args[1], "ash");
if (isfixnum(a)) {
if (n <= 0)
return fixnum(numval(a) >> (-n));
accum = ((int64_t)numval(a)) << n;
if (fits_fixnum(accum))
return fixnum(accum);
else
return return_from_int64(accum);
}
if (iscprim(a)) {
if (n == 0)
return a;
cp = (struct cprim *)ptr(a);
ta = cp_numtype(cp);
aptr = cp_data(cp);
if (n < 0) {
n = -n;
switch (ta) {
case T_INT8:
return fixnum((*(int8_t *)aptr) >> n);
case T_UINT8:
return fixnum((*(uint8_t *)aptr) >> n);
case T_INT16:
return fixnum((*(int16_t *)aptr) >> n);
case T_UINT16:
return fixnum((*(uint16_t *)aptr) >> n);
case T_INT32:
return mk_int32((*(int32_t *)aptr) >> n);
case T_UINT32:
return mk_uint32((*(uint32_t *)aptr) >> n);
case T_INT64:
return mk_int64((*(int64_t *)aptr) >> n);
case T_UINT64:
return mk_uint64((*(uint64_t *)aptr) >> n);
}
} else {
if (ta == T_UINT64)
return return_from_uint64((*(uint64_t *)aptr) << n);
else if (ta < T_FLOAT) {
i64 = conv_to_int64(aptr, ta);
return return_from_int64(i64 << n);
}
}
}
type_error("ash", "integer", a);
return NIL;
}