; -*- scheme -*- ; dictionaries ---------------------------------------------------------------- (define (dict-new) ()) (define (dict-extend dl key value) (cond ((null? dl) (list (cons key value))) ((equal? key (caar dl)) (cons (cons key value) (cdr dl))) (else (cons (car dl) (dict-extend (cdr dl) key value))))) (define (dict-lookup dl key) (cond ((null? dl) ()) ((equal? key (caar dl)) (cdar dl)) (else (dict-lookup (cdr dl) key)))) (define (dict-keys dl) (map car dl)) ; graphs ---------------------------------------------------------------------- (define (graph-empty) (dict-new)) (define (graph-connect g n1 n2) (dict-extend (dict-extend g n2 (cons n1 (dict-lookup g n2))) n1 (cons n2 (dict-lookup g n1)))) (define (graph-adjacent? g n1 n2) (member n2 (dict-lookup g n1))) (define (graph-neighbors g n) (dict-lookup g n)) (define (graph-nodes g) (dict-keys g)) (define (graph-add-node g n1) (dict-extend g n1 ())) (define (graph-from-edges edge-list) (if (null? edge-list) (graph-empty) (graph-connect (graph-from-edges (cdr edge-list)) (caar edge-list) (cdar edge-list)))) ; graph coloring -------------------------------------------------------------- (define (node-colorable? g coloring node-to-color color-of-node) (not (member color-of-node (map (lambda (n) (let ((color-pair (assq n coloring))) (if (pair? color-pair) (cdr color-pair) ()))) (graph-neighbors g node-to-color))))) (define (try-each f lst) (if (null? lst) #f (let ((ret (f (car lst)))) (if ret ret (try-each f (cdr lst)))))) (define (color-node g coloring colors uncolored-nodes color) (cond ((null? uncolored-nodes) coloring) ((node-colorable? g coloring (car uncolored-nodes) color) (let ((new-coloring (cons (cons (car uncolored-nodes) color) coloring))) (try-each (lambda (c) (color-node g new-coloring colors (cdr uncolored-nodes) c)) colors))))) (define (color-graph g colors) (if (null? colors) (and (null? (graph-nodes g)) ()) (color-node g () colors (graph-nodes g) (car colors)))) (define (color-pairs pairs colors) (color-graph (graph-from-edges pairs) colors)) ; queens ---------------------------------------------------------------------- (define (can-attack x y) (let ((x1 (mod x 5)) (y1 (truncate (/ x 5))) (x2 (mod y 5)) (y2 (truncate (/ y 5)))) (or (= x1 x2) (= y1 y2) (= (abs (- y2 y1)) (abs (- x2 x1)))))) (define (generate-5x5-pairs) (let ((result ())) (dotimes (x 25) (dotimes (y 25) (if (and (/= x y) (can-attack x y)) (set! result (cons (cons x y) result)) ()))) result))