#define MAX_INL_SIZE 96 #ifdef BITS64 #define NWORDS(sz) (((sz)+7)>>3) #else #define NWORDS(sz) (((sz)+3)>>2) #endif static int struct_aligns[8] = { sizeof(struct { char a; int8_t i; }), sizeof(struct { char a; int16_t i; }), sizeof(struct { char a; char i[3]; }), sizeof(struct { char a; int32_t i; }), sizeof(struct { char a; char i[5]; }), sizeof(struct { char a; char i[6]; }), sizeof(struct { char a; char i[7]; }), sizeof(struct { char a; int64_t i; }) }; static int ALIGN2, ALIGN4, ALIGN8; typedef void (*cvinitfunc_t)(value_t*, u_int32_t, void*, void*); value_t int8sym, uint8sym, int16sym, uint16sym, int32sym, uint32sym; value_t int64sym, uint64sym; value_t longsym, ulongsym, charsym, wcharsym; value_t floatsym, doublesym; value_t gftypesym, lispvaluesym, stringtypesym, wcstringtypesym; value_t emptystringsym; value_t structsym, arraysym, enumsym, cfunctionsym, voidsym, pointersym; value_t unionsym; value_t autoreleasesym, typeofsym, sizeofsym; static void cvalue_init(value_t type, value_t *vs, u_int32_t nv, void *dest); void cvalue_print(FILE *f, value_t v, int princ); // exported guest functions value_t cvalue_new(value_t *args, u_int32_t nargs); value_t cvalue_sizeof(value_t *args, u_int32_t nargs); value_t cvalue_typeof(value_t *args, u_int32_t nargs); // compute the size of the metadata object for a cvalue static size_t cv_nwords(cvalue_t *cv) { if (cv->flags.prim) { if (cv->flags.inlined) return 2 + NWORDS(cv->flags.inllen); return 3; } if (cv->flags.inlined) { size_t s = 3 + NWORDS(cv->flags.inllen + cv->flags.cstring); return (s < 5) ? 5 : s; } return 5; } void *cv_data(cvalue_t *cv) { if (cv->flags.prim) { if (cv->flags.inlined) { return &((cprim_t*)cv)->data; } return ((cprim_t*)cv)->data; } else if (cv->flags.inlined) { return &cv->data; } return cv->data; } void *cvalue_data(value_t v) { return cv_data((cvalue_t*)ptr(v)); } static void autorelease(cvalue_t *cv) { cv->flags.autorelease = 1; // TODO: add to finalizer list } value_t cvalue(value_t type, size_t sz) { cvalue_t *pcv; if (issymbol(type)) { cprim_t *pcp; pcp = (cprim_t*)alloc_words(2 + NWORDS(sz)); pcp->flagbits = INITIAL_FLAGS; pcp->flags.inllen = sz; pcp->flags.inlined = 1; pcp->flags.prim = 1; pcp->type = type; return tagptr(pcp, TAG_BUILTIN); } PUSH(type); if (sz <= MAX_INL_SIZE) { size_t nw = 3 + NWORDS(sz); pcv = (cvalue_t*)alloc_words((nw < 5) ? 5 : nw); pcv->flagbits = INITIAL_FLAGS; pcv->flags.inllen = sz; pcv->flags.inlined = 1; } else { pcv = (cvalue_t*)alloc_words(5); pcv->flagbits = INITIAL_FLAGS; pcv->flags.inlined = 0; pcv->data = malloc(sz); pcv->len = sz; autorelease(pcv); } pcv->deps = NIL; pcv->type = POP(); return tagptr(pcv, TAG_BUILTIN); } value_t cvalue_from_data(value_t type, void *data, size_t sz) { cvalue_t *pcv; value_t cv; cv = cvalue(type, sz); pcv = (cvalue_t*)ptr(cv); memcpy(cv_data(pcv), data, sz); return cv; } // this effectively dereferences a pointer // just like *p in C, it only removes a level of indirection from the type, // it doesn't copy any data. // this method of creating a cvalue only allocates metadata. // ptr is user-managed; we don't autorelease it unless the // user explicitly calls (autorelease ) on the result of this function. // 'parent' is an optional cvalue that this pointer is known to point // into; UNBOUND if none. value_t cvalue_from_ref(value_t type, void *ptr, size_t sz, value_t parent) { cvalue_t *pcv; value_t cv; PUSH(parent); PUSH(type); pcv = (cvalue_t*)alloc_words(5); pcv->flagbits = INITIAL_FLAGS; pcv->flags.inlined = 0; pcv->data = ptr; pcv->len = sz; pcv->deps = NIL; pcv->type = POP(); parent = POP(); if (parent != UNBOUND) { // TODO: add dependency } cv = tagptr(pcv, TAG_BUILTIN); return cv; } value_t cvalue_string(size_t sz) { value_t cv; char *data; cvalue_t *pcv; if (sz == 0) return symbol_value(emptystringsym); // secretly allocate space for 1 more byte, hide a NUL there so // any string will always be NUL terminated. cv = cvalue(symbol_value(stringtypesym), sz+1); pcv = (cvalue_t*)ptr(cv); data = cv_data(pcv); data[sz] = '\0'; if (pcv->flags.inlined) pcv->flags.inllen = sz; else pcv->len = sz; pcv->flags.cstring = 1; return cv; } value_t cvalue_pinned_cstring(char *str) { value_t v = cvalue_from_ref(symbol_value(stringtypesym), str, strlen(str), UNBOUND); ((cvalue_t*)ptr(v))->flags.cstring = 1; return v; } // convert to malloc representation (fixed address) /* static void cv_pin(cvalue_t *cv) { if (!cv->flags.inlined) return; size_t sz = cv->flags.inllen; void *data = malloc(sz); cv->flags.inlined = 0; // TODO: handle flags.cstring if (cv->flags.prim) { memcpy(data, (void*)(&((cprim_t*)cv)->data), sz); ((cprim_t*)cv)->data = data; } else { memcpy(data, (void*)(&cv->data), sz); cv->data = data; } autorelease(cv); } */ static int64_t strtoi64(char *str, char *fname) { char *pend; int64_t i; errno = 0; i = strtoll(str, &pend, 0); if (*pend != '\0' || errno) lerror(ArgError, "%s: invalid string", fname); return i; } static uint64_t strtoui64(char *str, char *fname) { char *pend; uint64_t i; errno = 0; i = strtoull(str, &pend, 0); if (*pend != '\0' || errno) lerror(ArgError, "%s: invalid string", fname); return i; } static double strtodouble(char *str, char *fname) { char *pend; double d; errno = 0; d = strtod(str, &pend); if (*pend != '\0' || errno) lerror(ArgError, "%s: invalid string", fname); return d; } #define num_ctor(typenam, cnvt, tag, fromstr) \ static void cvalue_##typenam##_init(value_t *args, u_int32_t nargs, \ void *dest, void *data) \ { \ typenam##_t n=0; \ (void)data; \ if (nargs) { \ if (iscvalue(args[0])) { \ cvalue_t *cv = (cvalue_t*)ptr(args[0]); \ void *p = cv_data(cv); \ if (valid_numtype(cv_numtype(cv))) { \ n = (typenam##_t)conv_to_##cnvt(p, cv_numtype(cv)); \ } \ else if (cv->flags.cstring) { \ n = fromstr(p, #typenam); \ } \ else if (cv_len(cv) == sizeof(typenam##_t)) { \ n = *(typenam##_t*)p; \ } \ else { \ type_error(#typenam, "number", args[0]); \ } \ } \ else { \ n = tofixnum(args[0], #typenam); \ } \ } \ *((typenam##_t*)dest) = n; \ } \ value_t cvalue_##typenam(value_t *args, u_int32_t nargs) \ { \ value_t cv = cvalue(typenam##sym, sizeof(typenam##_t)); \ ((cprim_t*)ptr(cv))->flags.numtype = tag; \ cvalue_##typenam##_init(args, nargs, &((cprim_t*)ptr(cv))->data, 0); \ return cv; \ } \ value_t mk_##typenam(typenam##_t n) \ { \ value_t cv = cvalue(typenam##sym, sizeof(typenam##_t)); \ ((cprim_t*)ptr(cv))->flags.numtype = tag; \ *(typenam##_t*)&((cprim_t*)ptr(cv))->data = n; \ return cv; \ } num_ctor(int8, int32, T_INT8, strtoi64) num_ctor(uint8, uint32, T_UINT8, strtoui64) num_ctor(int16, int32, T_INT16, strtoi64) num_ctor(uint16, uint32, T_UINT16, strtoui64) num_ctor(int32, int32, T_INT32, strtoi64) num_ctor(uint32, uint32, T_UINT32, strtoui64) num_ctor(int64, int64, T_INT64, strtoi64) num_ctor(uint64, uint64, T_UINT64, strtoui64) num_ctor(char, uint32, T_UINT8, strtoui64) num_ctor(wchar, int32, T_INT32, strtoi64) #ifdef BITS64 num_ctor(long, int64, T_INT64, strtoi64) num_ctor(ulong, uint64, T_UINT64, strtoui64) #else num_ctor(long, int32, T_INT32, strtoi64) num_ctor(ulong, uint32, T_UINT32, strtoui64) #endif num_ctor(float, double, T_FLOAT, strtodouble) num_ctor(double, double, T_DOUBLE, strtodouble) value_t size_wrap(size_t sz) { if (fits_fixnum(sz)) return fixnum(sz); assert(sizeof(void*) == sizeof(size_t)); return mk_ulong(sz); } size_t toulong(value_t n, char *fname) { if (isfixnum(n)) return numval(n); if (iscvalue(n)) { cvalue_t *cv = (cvalue_t*)ptr(n); if (valid_numtype(cv_numtype(cv))) { return conv_to_ulong(cv_data(cv), cv_numtype(cv)); } } type_error(fname, "number", n); return 0; } static void cvalue_enum_init(value_t *args, u_int32_t nargs, void *dest, void *data) { int n=0; value_t syms; (void)data; argcount("enum", nargs, 2); syms = args[0]; if (!iscons(syms)) type_error("enum", "cons", syms); if (issymbol(args[1])) { while (iscons(syms)) { if (car_(syms) == args[1]) { *(int*)dest = n; return; } n++; syms = cdr_(syms); } lerror(ArgError, "enum: invalid enum value"); } if (isfixnum(args[1])) { n = (int)numval(args[1]); } else if (iscvalue(args[1])) { cvalue_t *cv = (cvalue_t*)ptr(args[1]); if (!valid_numtype(cv_numtype(cv))) type_error("enum", "number", args[1]); n = conv_to_int32(cv_data(cv), cv_numtype(cv)); } if ((unsigned)n >= llength(syms)) lerror(ArgError, "enum: value out of range"); *(int*)dest = n; } value_t cvalue_enum(value_t *args, u_int32_t nargs) { argcount("enum", nargs, 2); value_t cv = cvalue(list2(enumsym, args[0]), 4); ((cvalue_t*)ptr(cv))->flags.numtype = T_INT32; cvalue_enum_init(args, nargs, cv_data((cvalue_t*)ptr(cv)), NULL); return cv; } static void cvalue_array_init(value_t *args, u_int32_t nargs, void *dest, void *data) { size_t cnt=0, elsize, i; value_t *init = NULL; int junk; if (data != 0) elsize = (size_t)data; // already computed by constructor else elsize = ctype_sizeof(args[0], &junk); char *out = (char*)dest; if (nargs == 2) { if (isvector(args[1]) || iscons(args[1]) || args[1]==NIL) init = &args[1]; else cnt = toulong(args[1], "array"); } else if (nargs == 3) { cnt = toulong(args[1], "array"); init = &args[2]; } else { argcount("array", nargs, 2); } if (init) { if (isvector(*init)) { if (cnt && vector_size(*init) != cnt) lerror(ArgError, "array: size mismatch"); cnt = vector_size(*init); for(i=0; i < cnt; i++) { cvalue_init(args[0], &vector_elt(*init, i), 1, out); out += elsize; } return; } else if (iscons(*init) || *init==NIL) { for(i=0; i < cnt || cnt==0; i++) { if (!iscons(*init)) { if (cnt != 0) lerror(ArgError, "array: size mismatch"); else break; } cvalue_init(args[0], &car_(*init), 1, out); out += elsize; *init = cdr_(*init); } return; } else if (iscvalue(*init)) { cvalue_t *cv = (cvalue_t*)ptr(*init); size_t tot = cnt*elsize; if (tot == cv_len(cv)) { if (tot) memcpy(out, cv_data(cv), tot); return; } } else { type_error("array", "cons", *init); } lerror(ArgError, "array: invalid size"); } } static size_t predict_arraylen(value_t *args, u_int32_t nargs, size_t *elsz) { int junk; size_t cnt; if (nargs < 2) argcount("array", nargs, 2); *elsz = ctype_sizeof(args[0], &junk); if (isvector(args[1])) { cnt = vector_size(args[1]); } else if (iscons(args[1])) { cnt = llength(args[1]); } else if (args[1] == NIL) { cnt = 0; } else { cnt = toulong(args[1], "array"); } return cnt; } static value_t alloc_array(value_t type, size_t sz) { value_t cv; if (car_(cdr_(type)) == charsym) { cv = cvalue_string(sz); ((cvalue_t*)ptr(cv))->type = type; } else { cv = cvalue(type, sz); } return cv; } value_t cvalue_array(value_t *args, u_int32_t nargs) { size_t elsize, cnt, sz; cnt = predict_arraylen(args, nargs, &elsize); sz = elsize * cnt; value_t cv = alloc_array(listn(3, arraysym, args[0], size_wrap(cnt)), sz); cvalue_array_init(args, nargs, cv_data((cvalue_t*)ptr(cv)), (void*)elsize); return cv; } // NOTE: v must be an array size_t cvalue_arraylen(value_t v) { cvalue_t *cv = (cvalue_t*)ptr(v); value_t type = cv_type(cv); if (iscons(cdr_(cdr_(type)))) { return toulong(car_(cdr_(cdr_(type))), "length"); } // incomplete array type int junk; value_t eltype = car_(cdr_(type)); size_t elsize = ctype_sizeof(eltype, &junk); return elsize ? cv_len(cv)/elsize : 0; } value_t cvalue_relocate(value_t v) { size_t nw; cvalue_t *cv = (cvalue_t*)ptr(v); cvalue_t *nv; value_t ncv; if (cv->flags.moved) return cv->type; nw = cv_nwords(cv); if (!cv->flags.islispfunction) { nv = (cvalue_t*)alloc_words(nw); memcpy(nv, cv, nw*sizeof(value_t)); ncv = tagptr(nv, TAG_BUILTIN); cv->type = ncv; cv->flags.moved = 1; } else { // guestfunctions are permanent objects, unmanaged nv = cv; ncv = v; } nv->type = relocate(nv->type); return ncv; } size_t cvalue_struct_offs(value_t type, value_t field, int computeTotal, int *palign) { value_t fld = car(cdr_(type)); size_t fsz, ssz = 0; int al; *palign = 0; while (iscons(fld)) { fsz = ctype_sizeof(car(cdr(car_(fld))), &al); ssz = ALIGN(ssz, al); if (al > *palign) *palign = al; if (!computeTotal && field==car_(car_(fld))) { // found target field return ssz; } ssz += fsz; fld = cdr_(fld); } return ALIGN(ssz, *palign); } static size_t cvalue_union_size(value_t type, int *palign) { value_t fld = car(cdr_(type)); size_t fsz, usz = 0; int al; *palign = 0; while (iscons(fld)) { fsz = ctype_sizeof(car(cdr(car_(fld))), &al); if (al > *palign) *palign = al; if (fsz > usz) usz = fsz; fld = cdr_(fld); } return ALIGN(usz, *palign); } // *palign is an output argument giving the alignment required by type size_t ctype_sizeof(value_t type, int *palign) { if (type == int8sym || type == uint8sym || type == charsym) { *palign = 1; return 1; } if (type == int16sym || type == uint16sym) { *palign = ALIGN2; return 2; } if (type == int32sym || type == uint32sym || type == wcharsym || type == floatsym) { *palign = ALIGN4; return 4; } if (type == int64sym || type == uint64sym || type == doublesym) { *palign = ALIGN8; return 8; } if (type == longsym || type == ulongsym) { #ifdef BITS64 *palign = ALIGN8; return 8; #else *palign = ALIGN4; return 4; #endif } if (iscons(type)) { value_t hed = car_(type); if (hed == pointersym || hed == cfunctionsym || hed == lispvaluesym) { *palign = struct_aligns[sizeof(void*)-1]; return sizeof(void*); } if (hed == arraysym) { value_t t = car(cdr_(type)); if (!iscons(cdr_(cdr_(type)))) lerror(ArgError, "sizeof: incomplete type"); value_t n = car_(cdr_(cdr_(type))); size_t sz = toulong(n, "sizeof"); return sz * ctype_sizeof(t, palign); } else if (hed == structsym) { return cvalue_struct_offs(type, NIL, 1, palign); } else if (hed == unionsym) { return cvalue_union_size(type, palign); } else if (hed == enumsym) { *palign = ALIGN4; return 4; } } lerror(ArgError, "sizeof: invalid c type"); return 0; } value_t cvalue_sizeof(value_t *args, u_int32_t nargs) { cvalue_t *cv; argcount("sizeof", nargs, 1); if (iscvalue(args[0])) { cv = (cvalue_t*)ptr(args[0]); return size_wrap(cv_len(cv)); } int a; return size_wrap(ctype_sizeof(args[0], &a)); } value_t cvalue_typeof(value_t *args, u_int32_t nargs) { argcount("typeof", nargs, 1); switch(tag(args[0])) { case TAG_CONS: return conssym; case TAG_NUM: return fixnumsym; case TAG_SYM: return symbolsym; case TAG_BUILTIN: if (isbuiltin(args[0])) return builtinsym; if (discriminateAsVector(args[0])) return vectorsym; } return cv_type((cvalue_t*)ptr(args[0])); } value_t cvalue_copy(value_t v) { assert(iscvalue(v)); PUSH(v); cvalue_t *cv = (cvalue_t*)ptr(v); size_t nw = cv_nwords(cv); value_t *pnv = alloc_words(nw); v = POP(); cv = (cvalue_t*)ptr(v); memcpy(pnv, cv, nw * sizeof(value_t)); if (!cv->flags.inlined) { size_t len = cv_len(cv); if (cv->flags.cstring) len++; void *data = malloc(len); memcpy(data, cv_data(cv), len); if (cv->flags.prim) ((cprim_t*)pnv)->data = data; else ((cvalue_t*)pnv)->data = data; autorelease((cvalue_t*)pnv); } return tagptr(pnv, TAG_BUILTIN); } static void cvalue_init(value_t type, value_t *vs, u_int32_t nv, void *dest) { cvinitfunc_t f; unsigned int i, na=0; if (issymbol(type)) { f = ((symbol_t*)ptr(type))->dlcache; } else if (!iscons(type)) { f = NULL; lerror(ArgError, "c-value: invalid c type"); } else { value_t head = car_(type); f = ((symbol_t*)ptr(head))->dlcache; type = cdr_(type); while (iscons(type)) { PUSH(car_(type)); na++; type = cdr_(type); } } for(i=0; i < nv; i++) PUSH(vs[i]); na += nv; f(&Stack[SP-na], na, dest, NULL); POPN(na); } static numerictype_t sym_to_numtype(value_t type) { if (type == int8sym) return T_INT8; else if (type == uint8sym || type == charsym) return T_UINT8; else if (type == int16sym) return T_INT16; else if (type == uint16sym) return T_UINT16; #ifdef BITS64 else if (type == int32sym || type == wcharsym) #else else if (type == int32sym || type == wcharsym || type == longsym) #endif return T_INT32; #ifdef BITS64 else if (type == uint32sym) #else else if (type == uint32sym || type == ulongsym) #endif return T_UINT32; #ifdef BITS64 else if (type == int64sym || type == longsym) #else else if (type == int64sym) #endif return T_INT64; #ifdef BITS64 else if (type == uint64sym || type == ulongsym) #else else if (type == uint64sym) #endif return T_UINT64; assert(false); return N_NUMTYPES; } // (new type . args) // this provides (1) a way to allocate values with a shared type for // efficiency, (2) a uniform interface for allocating cvalues of any // type, including user-defined. value_t cvalue_new(value_t *args, u_int32_t nargs) { if (nargs < 1) argcount("c-value", nargs, 1); value_t type = args[0]; value_t cv; if (iscons(type) && car_(type) == arraysym) { // special case to handle incomplete array types bla[] size_t elsz; value_t c = cdr_(type); int na=0; while (iscons(c)) { PUSH(car_(c)); c = cdr_(c); na++; } if (nargs > 1) { PUSH(args[1]); na++; } size_t cnt = predict_arraylen(&Stack[SP-na], na, &elsz); cv = alloc_array(type, elsz * cnt); cvalue_array_init(&Stack[SP-na], na, cv_data((cvalue_t*)ptr(cv)), (void*)elsz); POPN(na); } else { int junk; cv = cvalue(type, ctype_sizeof(type, &junk)); if (issymbol(type)) { ((cvalue_t*)ptr(cv))->flags.numtype = sym_to_numtype(type); } cvalue_init(type, &args[1], nargs-1, cv_data((cvalue_t*)ptr(cv))); } return cv; } // NOTE: this only compares lexicographically; it ignores numeric formats value_t cvalue_compare(value_t a, value_t b) { cvalue_t *ca = (cvalue_t*)ptr(a); cvalue_t *cb = (cvalue_t*)ptr(b); char *adata = cv_data(ca); char *bdata = cv_data(cb); size_t asz = cv_len(ca); size_t bsz = cv_len(cb); size_t minsz = asz < bsz ? asz : bsz; int diff = memcmp(adata, bdata, minsz); if (diff == 0) { if (asz > bsz) return fixnum(1); else if (asz < bsz) return fixnum(-1); } return fixnum(diff); } static void check_addr_args(char *fname, size_t typesize, value_t *args, void **data, ulong_t *index) { size_t sz; if (!iscvalue(args[0])) type_error(fname, "cvalue", args[0]); *data = cv_data((cvalue_t*)ptr(args[0])); sz = cv_len((cvalue_t*)ptr(args[0])); cvalue_t *cv = (cvalue_t*)ptr(args[1]); if (isfixnum(args[1])) *index = numval(args[1]); else if (!iscvalue(args[1]) || !valid_numtype(cv_numtype(cv))) type_error(fname, "number", args[1]); else *index = conv_to_ulong(cv_data(cv), cv_numtype(cv)); if (*index > sz - typesize) bounds_error(fname, args[0], args[1]); } value_t cvalue_get_int8(value_t *args, u_int32_t nargs) { void *data; ulong_t index; argcount("get-int8", nargs, 2); check_addr_args("get-int8", sizeof(int8_t), args, &data, &index); return fixnum(((int8_t*)data)[index]); } value_t cvalue_set_int8(value_t *args, u_int32_t nargs) { void *data; ulong_t index; int32_t val=0; argcount("set-int8", nargs, 3); check_addr_args("set-int8", sizeof(int8_t), args, &data, &index); cvalue_t *cv = (cvalue_t*)ptr(args[2]); if (isfixnum(args[2])) val = numval(args[2]); else if (!iscvalue(args[2]) || !valid_numtype(cv_numtype(cv))) type_error("set-int8", "number", args[2]); else val = conv_to_int32(cv_data(cv), cv_numtype(cv)); ((int8_t*)data)[index] = val; return args[2]; } value_t guestfunc(guestfunc_t f) { value_t gf = cvalue(symbol_value(gftypesym), sizeof(void*)); ((cvalue_t*)ptr(gf))->data = f; ((cvalue_t*)ptr(gf))->flags.islispfunction = 1; size_t nw = cv_nwords((cvalue_t*)ptr(gf)); // directly-callable values are assumed not to move for // evaluator performance, so put guestfunction metadata on the // unmanaged heap cvalue_t *buf = malloc(nw * sizeof(value_t)); memcpy(buf, ptr(gf), nw*sizeof(value_t)); return tagptr(buf, TAG_BUILTIN); } #define cv_intern(tok) tok##sym = symbol(#tok) #define ctor_cv_intern(tok) cv_intern(tok); set(tok##sym, guestfunc(cvalue_##tok)) #define symbol_dlcache(s) (((symbol_t*)ptr(s))->dlcache) #define cache_initfunc(tok) symbol_dlcache(tok##sym) = &cvalue_##tok##_init void cvalues_init() { int i; // compute struct field alignment required for primitives of sizes 1-8 for(i=0; i < 8; i++) struct_aligns[i] -= (i+1); ALIGN2 = struct_aligns[1]; ALIGN4 = struct_aligns[3]; ALIGN8 = struct_aligns[7]; cv_intern(uint32); cv_intern(pointer); cfunctionsym = symbol("c-function"); cv_intern(lispvalue); gftypesym = symbol("*guest-function-type*"); setc(gftypesym, listn(3, cfunctionsym, lispvaluesym, list2(list2(pointersym, lispvaluesym), uint32sym))); set(uint32sym, guestfunc(cvalue_uint32)); ctor_cv_intern(int8); ctor_cv_intern(uint8); ctor_cv_intern(int16); ctor_cv_intern(uint16); ctor_cv_intern(int32); ctor_cv_intern(int64); ctor_cv_intern(uint64); ctor_cv_intern(char); ctor_cv_intern(wchar); ctor_cv_intern(long); ctor_cv_intern(ulong); ctor_cv_intern(float); ctor_cv_intern(double); ctor_cv_intern(array); ctor_cv_intern(enum); cv_intern(struct); cv_intern(union); cv_intern(void); set(symbol("c-value"), guestfunc(cvalue_new)); set(symbol("get-int8"), guestfunc(cvalue_get_int8)); set(symbol("set-int8"), guestfunc(cvalue_set_int8)); cv_intern(autorelease); ctor_cv_intern(typeof); ctor_cv_intern(sizeof); // set up references to the init functions for each primitive type. // this is used for fast access in constructors for compound types // like arrays that need to initialize (but not allocate) elements. cache_initfunc(int8); cache_initfunc(uint8); cache_initfunc(int16); cache_initfunc(uint16); cache_initfunc(int32); cache_initfunc(uint32); cache_initfunc(int64); cache_initfunc(uint64); cache_initfunc(char); cache_initfunc(wchar); cache_initfunc(long); cache_initfunc(ulong); cache_initfunc(float); cache_initfunc(double); cache_initfunc(array); cache_initfunc(enum); stringtypesym = symbol("*string-type*"); setc(stringtypesym, list2(arraysym, charsym)); wcstringtypesym = symbol("*wcstring-type*"); setc(wcstringtypesym, list2(arraysym, wcharsym)); emptystringsym = symbol("*empty-string*"); setc(emptystringsym, cvalue_pinned_cstring("")); } #define RETURN_NUM_AS(var, type) return(mk_##type((type##_t)var)) value_t return_from_uint64(uint64_t Uaccum) { if (fits_fixnum(Uaccum)) { return fixnum((fixnum_t)Uaccum); } if (Uaccum > (uint64_t)S64_MAX) { RETURN_NUM_AS(Uaccum, uint64); } else if (Uaccum > (uint64_t)UINT_MAX) { RETURN_NUM_AS(Uaccum, int64); } else if (Uaccum > (uint64_t)INT_MAX) { RETURN_NUM_AS(Uaccum, uint32); } RETURN_NUM_AS(Uaccum, int32); } value_t return_from_int64(int64_t Saccum) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } if (Saccum > (int64_t)UINT_MAX || Saccum < (int64_t)INT_MIN) { RETURN_NUM_AS(Saccum, int64); } else if (Saccum > (int64_t)INT_MAX) { RETURN_NUM_AS(Saccum, uint32); } RETURN_NUM_AS(Saccum, int32); } value_t fl_add_any(value_t *args, u_int32_t nargs, fixnum_t carryIn) { uint64_t Uaccum=0; int64_t Saccum = carryIn; double Faccum=0; uint32_t i; for(i=0; i < nargs; i++) { if (isfixnum(args[i])) { Saccum += numval(args[i]); continue; } else if (iscvalue(args[i])) { cvalue_t *cv = (cvalue_t*)ptr(args[i]); void *a = cv_data(cv); int64_t i64; switch(cv_numtype(cv)) { case T_INT8: Saccum += *(int8_t*)a; break; case T_UINT8: Saccum += *(uint8_t*)a; break; case T_INT16: Saccum += *(int16_t*)a; break; case T_UINT16: Saccum += *(uint16_t*)a; break; case T_INT32: Saccum += *(int32_t*)a; break; case T_UINT32: Saccum += *(uint32_t*)a; break; case T_INT64: i64 = *(int64_t*)a; if (i64 > 0) Uaccum += (uint64_t)i64; else Saccum += i64; break; case T_UINT64: Uaccum += *(uint64_t*)a; break; case T_FLOAT: Faccum += *(float*)a; break; case T_DOUBLE: Faccum += *(double*)a; break; default: goto add_type_error; } continue; } add_type_error: type_error("+", "number", args[i]); } if (Faccum != 0) { Faccum += Uaccum; Faccum += Saccum; return mk_double(Faccum); } else if (Saccum < 0) { uint64_t negpart = (uint64_t)(-Saccum); if (negpart > Uaccum) { Saccum += (int64_t)Uaccum; // return value in Saccum if (Saccum >= INT_MIN) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } RETURN_NUM_AS(Saccum, int32); } RETURN_NUM_AS(Saccum, int64); } Uaccum -= negpart; } else { Uaccum += (uint64_t)Saccum; } // return value in Uaccum return return_from_uint64(Uaccum); } value_t fl_neg(value_t n) { if (isfixnum(n)) { return fixnum(-numval(n)); } else if (iscvalue(n)) { cvalue_t *cv = (cvalue_t*)ptr(n); void *a = cv_data(cv); uint32_t ui32; int32_t i32; int64_t i64; switch(cv_numtype(cv)) { case T_INT8: return fixnum(-(int32_t)*(int8_t*)a); case T_UINT8: return fixnum(-(int32_t)*(uint8_t*)a); case T_INT16: return fixnum(-(int32_t)*(int16_t*)a); case T_UINT16: return fixnum(-(int32_t)*(uint16_t*)a); case T_INT32: i32 = *(int32_t*)a; if (i32 == (int32_t)BIT31) return mk_uint32((uint32_t)BIT31); return mk_int32(-i32); case T_UINT32: ui32 = *(uint32_t*)a; if (ui32 <= ((uint32_t)INT_MAX)+1) return mk_int32(-(int32_t)ui32); return mk_int64(-(int64_t)ui32); case T_INT64: i64 = *(int64_t*)a; if (i64 == (int64_t)BIT63) return mk_uint64((uint64_t)BIT63); return mk_int64(-i64); case T_UINT64: return mk_int64(-(int64_t)*(uint64_t*)a); case T_FLOAT: return mk_float(-*(float*)a); case T_DOUBLE: return mk_double(-*(double*)a); break; } } type_error("-", "number", n); } value_t fl_mul_any(value_t *args, u_int32_t nargs, int64_t Saccum) { uint64_t Uaccum=1; double Faccum=1; uint32_t i; for(i=0; i < nargs; i++) { if (isfixnum(args[i])) { Saccum *= numval(args[i]); continue; } else if (iscvalue(args[i])) { cvalue_t *cv = (cvalue_t*)ptr(args[i]); void *a = cv_data(cv); int64_t i64; switch(cv_numtype(cv)) { case T_INT8: Saccum *= *(int8_t*)a; break; case T_UINT8: Saccum *= *(uint8_t*)a; break; case T_INT16: Saccum *= *(int16_t*)a; break; case T_UINT16: Saccum *= *(uint16_t*)a; break; case T_INT32: Saccum *= *(int32_t*)a; break; case T_UINT32: Saccum *= *(uint32_t*)a; break; case T_INT64: i64 = *(int64_t*)a; if (i64 > 0) Uaccum *= (uint64_t)i64; else Saccum *= i64; break; case T_UINT64: Uaccum *= *(uint64_t*)a; break; case T_FLOAT: Faccum *= *(float*)a; break; case T_DOUBLE: Faccum *= *(double*)a; break; default: goto mul_type_error; } continue; } mul_type_error: type_error("*", "number", args[i]); } if (Faccum != 1) { Faccum *= Uaccum; Faccum *= Saccum; return mk_double(Faccum); } else if (Saccum < 0) { Saccum *= (int64_t)Uaccum; if (Saccum >= INT_MIN) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } RETURN_NUM_AS(Saccum, int32); } RETURN_NUM_AS(Saccum, int64); } else { Uaccum *= (uint64_t)Saccum; } return return_from_uint64(Uaccum); } value_t fl_div2(value_t a, value_t b) { double da, db; int_t ai, bi; int ta, tb; void *aptr=NULL, *bptr=NULL; cvalue_t *cv; if (isfixnum(a)) { ai = numval(a); aptr = &ai; ta = T_FIXNUM; } else if (iscvalue(a)) { cv = (cvalue_t*)ptr(a); ta = cv_numtype(cv); if (ta <= T_DOUBLE) aptr = cv_data(cv); } if (aptr == NULL) type_error("/", "number", a); if (isfixnum(b)) { bi = numval(b); bptr = &bi; tb = T_FIXNUM; } else if (iscvalue(b)) { cv = (cvalue_t*)ptr(b); tb = cv_numtype(cv); if (tb <= T_DOUBLE) bptr = cv_data(cv); } if (bptr == NULL) type_error("/", "number", b); if (ta == T_FLOAT) { db = conv_to_double(bptr, tb); da = (double)*(float*)aptr / db; return mk_double(da); } if (ta == T_DOUBLE) { db = conv_to_double(bptr, tb); da = *(double*)aptr / db; return mk_double(da); } if (tb == T_FLOAT) { da = conv_to_double(aptr, ta); da /= (double)*(float*)bptr; return mk_double(da); } if (tb == T_DOUBLE) { da = conv_to_double(aptr, ta); da /= *(double*)bptr; return mk_double(da); } int64_t a64, b64; if (ta == T_UINT64) { if (tb == T_UINT64) { if (*(uint64_t*)bptr == 0) goto div_error; return return_from_uint64(*(uint64_t*)aptr / *(uint64_t*)bptr); } b64 = conv_to_int64(bptr, tb); if (b64 < 0) { return return_from_int64(-(int64_t)(*(uint64_t*)aptr / (uint64_t)(-b64))); } if (b64 == 0) goto div_error; return return_from_uint64(*(uint64_t*)aptr / (uint64_t)b64); } if (tb == T_UINT64) { if (*(uint64_t*)bptr == 0) goto div_error; a64 = conv_to_int64(aptr, ta); if (a64 < 0) { return return_from_int64(-((int64_t)((uint64_t)(-a64) / *(uint64_t*)bptr))); } return return_from_uint64((uint64_t)a64 / *(uint64_t*)bptr); } b64 = conv_to_int64(bptr, tb); if (b64 == 0) goto div_error; return return_from_int64(conv_to_int64(aptr, ta) / b64); div_error: lerror(DivideError, "/: division by zero"); } static void *int_data_ptr(value_t a, int *pnumtype, char *fname) { cvalue_t *cv; if (iscvalue(a)) { cv = (cvalue_t*)ptr(a); *pnumtype = cv_numtype(cv); if (*pnumtype < T_FLOAT) return cv_data(cv); } type_error(fname, "integer", a); return NULL; } value_t fl_bitwise_not(value_t a) { cvalue_t *cv; int ta; void *aptr; if (iscvalue(a)) { cv = (cvalue_t*)ptr(a); ta = cv_numtype(cv); aptr = cv_data(cv); switch (ta) { case T_INT8: return mk_int8(~*(int8_t *)aptr); case T_UINT8: return mk_uint8(~*(uint8_t *)aptr); case T_INT16: return mk_int16(~*(int16_t *)aptr); case T_UINT16: return mk_uint16(~*(uint16_t*)aptr); case T_INT32: return mk_int32(~*(int32_t *)aptr); case T_UINT32: return mk_uint32(~*(uint32_t*)aptr); case T_INT64: return mk_int64(~*(int64_t *)aptr); case T_UINT64: return mk_uint64(~*(uint64_t*)aptr); } } type_error("~", "integer", a); return NIL; } #define BITSHIFT_OP(name, op) \ value_t fl_##name(value_t a, int n) \ { \ cvalue_t *cv; \ int ta; \ void *aptr; \ if (iscvalue(a)) { \ cv = (cvalue_t*)ptr(a); \ ta = cv_numtype(cv); \ aptr = cv_data(cv); \ switch (ta) { \ case T_INT8: return mk_int8((*(int8_t *)aptr) op n); \ case T_UINT8: return mk_uint8((*(uint8_t *)aptr) op n); \ case T_INT16: return mk_int16((*(int16_t *)aptr) op n); \ case T_UINT16: return mk_uint16((*(uint16_t*)aptr) op n); \ case T_INT32: return mk_int32((*(int32_t *)aptr) op n); \ case T_UINT32: return mk_uint32((*(uint32_t*)aptr) op n); \ case T_INT64: return mk_int64((*(int64_t *)aptr) op n); \ case T_UINT64: return mk_uint64((*(uint64_t*)aptr) op n); \ } \ } \ type_error(#op, "integer", a); \ return NIL; \ } BITSHIFT_OP(shl,<<) BITSHIFT_OP(shr,>>) value_t fl_bitwise_op(value_t a, value_t b, int opcode, char *fname) { int_t ai, bi; int ta, tb, itmp; void *aptr=NULL, *bptr=NULL, *ptmp; int64_t b64; if (isfixnum(a)) { ta = T_FIXNUM; ai = numval(a); aptr = &ai; bptr = int_data_ptr(b, &tb, fname); } else { aptr = int_data_ptr(a, &ta, fname); if (isfixnum(b)) { tb = T_FIXNUM; bi = numval(b); bptr = &bi; } else { bptr = int_data_ptr(b, &tb, fname); } } if (ta < tb) { itmp = ta; ta = tb; tb = itmp; ptmp = aptr; aptr = bptr; bptr = ptmp; } // now a's type is larger than or same as b's b64 = conv_to_int64(bptr, tb); switch (opcode) { case 0: switch (ta) { case T_INT8: return mk_int8( *(int8_t *)aptr & (int8_t )b64); case T_UINT8: return mk_uint8( *(uint8_t *)aptr & (uint8_t )b64); case T_INT16: return mk_int16( *(int16_t*)aptr & (int16_t )b64); case T_UINT16: return mk_uint16(*(uint16_t*)aptr & (uint16_t)b64); case T_INT32: return mk_int32( *(int32_t*)aptr & (int32_t )b64); case T_UINT32: return mk_uint32(*(uint32_t*)aptr & (uint32_t)b64); case T_INT64: return mk_int64( *(int64_t*)aptr & (int64_t )b64); case T_UINT64: return mk_uint64(*(uint64_t*)aptr & (uint64_t)b64); } break; case 1: switch (ta) { case T_INT8: return mk_int8( *(int8_t *)aptr | (int8_t )b64); case T_UINT8: return mk_uint8( *(uint8_t *)aptr | (uint8_t )b64); case T_INT16: return mk_int16( *(int16_t*)aptr | (int16_t )b64); case T_UINT16: return mk_uint16(*(uint16_t*)aptr | (uint16_t)b64); case T_INT32: return mk_int32( *(int32_t*)aptr | (int32_t )b64); case T_UINT32: return mk_uint32(*(uint32_t*)aptr | (uint32_t)b64); case T_INT64: return mk_int64( *(int64_t*)aptr | (int64_t )b64); case T_UINT64: return mk_uint64(*(uint64_t*)aptr | (uint64_t)b64); } break; case 2: switch (ta) { case T_INT8: return mk_int8( *(int8_t *)aptr ^ (int8_t )b64); case T_UINT8: return mk_uint8( *(uint8_t *)aptr ^ (uint8_t )b64); case T_INT16: return mk_int16( *(int16_t*)aptr ^ (int16_t )b64); case T_UINT16: return mk_uint16(*(uint16_t*)aptr ^ (uint16_t)b64); case T_INT32: return mk_int32( *(int32_t*)aptr ^ (int32_t )b64); case T_UINT32: return mk_uint32(*(uint32_t*)aptr ^ (uint32_t)b64); case T_INT64: return mk_int64( *(int64_t*)aptr ^ (int64_t )b64); case T_UINT64: return mk_uint64(*(uint64_t*)aptr ^ (uint64_t)b64); } } assert(0); return NIL; }