; -*- scheme -*- ; make label self-evaluating, but evaluating the lambda in the process ;(defmacro labl (name f) ; (list list ''labl (list 'quote name) f)) (define-macro (labl name f) `(let (,name) (set! ,name ,f))) ;(define (reverse lst) ; ((label rev-help (lambda (lst result) ; (if (null? lst) result ; (rev-help (cdr lst) (cons (car lst) result))))) ; lst ())) (define (append- . lsts) ((label append-h (lambda (lsts) (cond ((null? lsts) ()) ((null? (cdr lsts)) (car lsts)) (#t ((label append2 (lambda (l d) (if (null? l) d (cons (car l) (append2 (cdr l) d))))) (car lsts) (append-h (cdr lsts))))))) lsts)) ;(princ 'Hello '| | 'world! "\n") ;(filter (lambda (x) (not (< x 0))) '(1 -1 -2 5 10 -8 0)) (define (fib n) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))) ;(princ (time (fib 34)) "\n") ;(dotimes (i 20000) (map-int (lambda (x) (list 'quote x)) 8)) ;(dotimes (i 40000) (append '(a b) '(1 2 3 4) () '(c) () '(5 6))) ;(dotimes (i 80000) (list 1 2 3 4 5)) ;(set! a (map-int identity 10000)) ;(dotimes (i 200) (rfoldl cons () a)) (define (sort l) (if (or (null? l) (null? (cdr l))) l (let* ((piv (car l)) (halves (separate (lambda (x) (< x piv)) (cdr l)))) (nconc (sort (car halves)) (list piv) (sort (cdr halves)))))) #| (define-macro (dotimes var . body) (let ((v (car var)) (cnt (cadr var))) `(let ((,v 0)) (while (< ,v ,cnt) (prog1 ,(cons 'begin body) (set! ,v (+ ,v 1))))))) (define (map-int f n) (if (<= n 0) () (let ((first (cons (f 0) ()))) ((label map-int- (lambda (acc i n) (if (= i n) first (begin (set-cdr! acc (cons (f i) ())) (map-int- (cdr acc) (+ i 1) n))))) first 1 n)))) |# (define-macro (labl name fn) `((lambda (,name) (set! ,name ,fn)) ())) (define (square x) (* x x)) (define (expt b p) (cond ((= p 0) 1) ((= b 0) 0) ((even? p) (square (expt b (div0 p 2)))) (#t (* b (expt b (- p 1)))))) (define (gcd a b) (cond ((= a 0) b) ((= b 0) a) ((< a b) (gcd a (- b a))) (#t (gcd b (- a b))))) ; like eval-when-compile (define-macro (literal expr) (let ((v (eval expr))) (if (self-evaluating? v) v (list quote v)))) (define (cardepth l) (if (atom? l) 0 (+ 1 (cardepth (car l))))) (define (nestlist f zero n) (if (<= n 0) () (cons zero (nestlist f (f zero) (- n 1))))) (define (mapl f . lsts) ((label mapl- (lambda (lsts) (if (null? (car lsts)) () (begin (apply f lsts) (mapl- (map cdr lsts)))))) lsts)) ; test to see if a symbol begins with : (define (keywordp s) (and (>= s '|:|) (<= s '|:~|))) ; swap the cars and cdrs of every cons in a structure (define (swapad c) (if (atom? c) c (set-cdr! c (K (swapad (car c)) (set-car! c (swapad (cdr c))))))) (define (without x l) (filter (lambda (e) (not (eq e x))) l)) (define (conscount c) (if (pair? c) (+ 1 (conscount (car c)) (conscount (cdr c))) 0)) ; _ Welcome to ; (_ _ _ |_ _ | . _ _ 2 ; | (-||||_(_)|__|_)|_) ; ==================|== ;[` _ ,_ |- | . _ 2 ;| (/_||||_()|_|_\|) ; | (define-macro (while- test . forms) `((label -loop- (lambda () (if ,test (begin ,@forms (-loop-)) ()))))) ; this would be a cool use of thunking to handle 'finally' clauses, but ; this code doesn't work in the case where the user manually re-raises ; inside a catch block. one way to handle it would be to replace all ; their uses of 'raise' with '*_try_finally_raise_*' which calls the thunk. ; (try expr ; (catch (TypeError e) . exprs) ; (catch (IOError e) . exprs) ; (finally . exprs)) (define-macro (try expr . forms) (let ((final (f-body (cdr (or (assq 'finally forms) '(()))))) (body (foldr ; create a function to check for and handle one exception ; type, and pass off control to the next when no match (lambda (catc next) (let ((var (cadr (cadr catc))) (extype (caadr catc)) (todo (f-body (cddr catc)))) `(lambda (,var) (if (or (eq ,var ',extype) (and (pair? ,var) (eq (car ,var) ',extype))) ,todo (,next ,var))))) ; default function; no matches so re-raise '(lambda (e) (begin (*_try_finally_thunk_*) (raise e))) ; make list of catch forms (filter (lambda (f) (eq (car f) 'catch)) forms)))) `(let ((*_try_finally_thunk_* (lambda () ,final))) (prog1 (attempt ,expr ,body) (*_try_finally_thunk_*))))) (define Y (lambda (f) ((lambda (h) (f (lambda (x) ((h h) x)))) (lambda (h) (f (lambda (x) ((h h) x))))))) (define yfib (Y (lambda (fib) (lambda (n) (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2)))))))) ;(defun tt () (time (dotimes (i 500000) (* 0x1fffffff 1) ))) ;(tt) ;(tt) ;(tt) (define-macro (accumulate-while cnd what . body) (let ((first (gensym)) (acc (gensym))) `(let ((,first ()) (,acc (list ()))) (set! ,first ,acc) (while ,cnd (begin (set! ,acc (cdr (set-cdr! ,acc (cons ,what ())))) ,@body)) (cdr ,first)))) (define-macro (accumulate-for var lo hi what . body) (let ((first (gensym)) (acc (gensym))) `(let ((,first ()) (,acc (list ()))) (set! ,first ,acc) (for ,lo ,hi (lambda (,var) (begin (set! ,acc (cdr (set-cdr! ,acc (cons ,what ())))) ,@body))) (cdr ,first)))) (define (map-indexed f lst) (if (atom? lst) lst (let ((i 0)) (accumulate-while (pair? lst) (f (car lst) i) (begin (set! lst (cdr lst)) (set! i (1+ i))))))) (define (string.findall haystack needle . offs) (define (sub h n offs lst) (let ((i (string.find h n offs))) (if i (sub h n (string.inc h i) (cons i lst)) (reverse! lst)))) (sub haystack needle (if (null? offs) 0 (car offs)) ()))