#ifdef BITS64 #define NWORDS(sz) (((sz)+7)>>3) #else #define NWORDS(sz) (((sz)+3)>>2) #endif static int ALIGN2, ALIGN4, ALIGN8, ALIGNPTR; value_t int8sym, uint8sym, int16sym, uint16sym, int32sym, uint32sym; value_t int64sym, uint64sym; value_t longsym, ulongsym, bytesym, wcharsym; value_t floatsym, doublesym; value_t gftypesym, stringtypesym, wcstringtypesym; value_t emptystringsym; value_t structsym, arraysym, enumsym, cfunctionsym, voidsym, pointersym; value_t unionsym; static htable_t TypeTable; static htable_t reverse_dlsym_lookup_table; static fltype_t *int8type, *uint8type; static fltype_t *int16type, *uint16type; static fltype_t *int32type, *uint32type; static fltype_t *int64type, *uint64type; static fltype_t *longtype, *ulongtype; static fltype_t *floattype, *doubletype; fltype_t *bytetype, *wchartype; fltype_t *stringtype, *wcstringtype; fltype_t *builtintype; static void cvalue_init(fltype_t *type, value_t v, void *dest); void cvalue_print(ios_t *f, value_t v, int princ); // cvalues-specific builtins value_t cvalue_new(value_t *args, u_int32_t nargs); value_t cvalue_sizeof(value_t *args, u_int32_t nargs); value_t cvalue_typeof(value_t *args, u_int32_t nargs); // trigger unconditional GC after this many bytes are allocated #define ALLOC_LIMIT_TRIGGER 67108864 static cvalue_t **Finalizers = NULL; static size_t nfinalizers=0; static size_t maxfinalizers=0; static size_t malloc_pressure = 0; void add_finalizer(cvalue_t *cv) { if (nfinalizers == maxfinalizers) { size_t nn = (maxfinalizers==0 ? 256 : maxfinalizers*2); cvalue_t **temp = (cvalue_t**)realloc(Finalizers, nn*sizeof(value_t)); if (temp == NULL) lerror(MemoryError, "out of memory"); Finalizers = temp; maxfinalizers = nn; } Finalizers[nfinalizers++] = cv; } // remove dead objects from finalization list in-place static void sweep_finalizers() { cvalue_t **lst = Finalizers; size_t n=0, ndel=0, l=nfinalizers; cvalue_t *tmp; #define SWAP_sf(a,b) (tmp=a,a=b,b=tmp,1) if (l == 0) return; do { tmp = lst[n]; if (isforwarded((value_t)tmp)) { // object is alive lst[n] = (cvalue_t*)ptr(forwardloc((value_t)tmp)); n++; } else { fltype_t *t = cv_class(tmp); if (t->vtable != NULL && t->vtable->finalize != NULL) { t->vtable->finalize(tagptr(tmp, TAG_CVALUE)); } if (!isinlined(tmp) && owned(tmp)) { free(cv_data(tmp)); } ndel++; } } while ((n < l-ndel) && SWAP_sf(lst[n],lst[n+ndel])); nfinalizers -= ndel; #ifdef VERBOSEGC if (ndel > 0) printf("GC: finalized %d objects\n", ndel); #endif malloc_pressure = 0; } // compute the size of the metadata object for a cvalue static size_t cv_nwords(cvalue_t *cv) { if (isinlined(cv)) { size_t n = cv_len(cv); if (n==0 || cv_isstr(cv)) n++; return CVALUE_NWORDS - 1 + NWORDS(n); } return CVALUE_NWORDS; } static void autorelease(cvalue_t *cv) { cv->type = (fltype_t*)(((uptrint_t)cv->type) | CV_OWNED_BIT); add_finalizer(cv); } void cv_autorelease(cvalue_t *cv) { autorelease(cv); } static value_t cprim(fltype_t *type, size_t sz) { cprim_t *pcp = (cprim_t*)alloc_words(CPRIM_NWORDS-1+NWORDS(sz)); pcp->type = type; return tagptr(pcp, TAG_CPRIM); } value_t cvalue(fltype_t *type, size_t sz) { cvalue_t *pcv; int str=0; if (valid_numtype(type->numtype)) { return cprim(type, sz); } if (type->eltype == bytetype) { if (sz == 0) return symbol_value(emptystringsym); sz++; str=1; } if (sz <= MAX_INL_SIZE) { size_t nw = CVALUE_NWORDS - 1 + NWORDS(sz) + (sz==0 ? 1 : 0); pcv = (cvalue_t*)alloc_words(nw); pcv->type = type; pcv->data = &pcv->_space[0]; if (type->vtable != NULL && type->vtable->finalize != NULL) add_finalizer(pcv); } else { if (malloc_pressure > ALLOC_LIMIT_TRIGGER) gc(0); pcv = (cvalue_t*)alloc_words(CVALUE_NWORDS); pcv->type = type; pcv->data = malloc(sz); autorelease(pcv); malloc_pressure += sz; } if (str) { sz--; ((char*)pcv->data)[sz] = '\0'; } pcv->len = sz; return tagptr(pcv, TAG_CVALUE); } value_t cvalue_from_data(fltype_t *type, void *data, size_t sz) { value_t cv; cv = cvalue(type, sz); memcpy(cptr(cv), data, sz); return cv; } // this effectively dereferences a pointer // just like *p in C, it only removes a level of indirection from the type, // it doesn't copy any data. // this method of creating a cvalue only allocates metadata. // ptr is user-managed; we don't autorelease it unless the // user explicitly calls (autorelease ) on the result of this function. // 'parent' is an optional cvalue that this pointer is known to point // into; NIL if none. value_t cvalue_from_ref(fltype_t *type, void *ptr, size_t sz, value_t parent) { cvalue_t *pcv; value_t cv; pcv = (cvalue_t*)alloc_words(CVALUE_NWORDS); pcv->data = ptr; pcv->len = sz; pcv->type = type; if (parent != NIL) { pcv->type = (fltype_t*)(((uptrint_t)pcv->type) | CV_PARENT_BIT); pcv->parent = parent; } cv = tagptr(pcv, TAG_CVALUE); return cv; } value_t cvalue_string(size_t sz) { return cvalue(stringtype, sz); } value_t cvalue_static_cstring(char *str) { return cvalue_from_ref(stringtype, str, strlen(str), NIL); } value_t string_from_cstr(char *str) { size_t n = strlen(str); value_t v = cvalue_string(n); memcpy(cvalue_data(v), str, n); return v; } int isstring(value_t v) { return (iscvalue(v) && cv_isstr((cvalue_t*)ptr(v))); } // convert to malloc representation (fixed address) /* static void cv_pin(cvalue_t *cv) { if (!cv->flags.inlined) return; size_t sz = cv->flags.inllen; void *data = malloc(sz); cv->flags.inlined = 0; // TODO: handle flags.cstring if (cv->flags.prim) { memcpy(data, (void*)(&((cprim_t*)cv)->data), sz); ((cprim_t*)cv)->data = data; } else { memcpy(data, (void*)(&cv->data), sz); cv->data = data; } autorelease(cv); } */ #define num_ctor(typenam, ctype, cnvt, tag) \ static void cvalue_##typenam##_init(fltype_t *type, value_t arg, \ void *dest) \ { \ ctype##_t n=0; \ (void)type; \ if (isfixnum(arg)) { \ n = numval(arg); \ } \ else if (iscprim(arg)) { \ cprim_t *cp = (cprim_t*)ptr(arg); \ void *p = cp_data(cp); \ n = (ctype##_t)conv_to_##cnvt(p, cp_numtype(cp)); \ } \ else { \ type_error(#typenam, "number", arg); \ } \ *((ctype##_t*)dest) = n; \ } \ value_t cvalue_##typenam(value_t *args, u_int32_t nargs) \ { \ if (nargs==0) { PUSH(fixnum(0)); args = &Stack[SP-1]; } \ value_t cp = cprim(typenam##type, sizeof(ctype##_t)); \ cvalue_##typenam##_init(typenam##type, \ args[0], cp_data((cprim_t*)ptr(cp))); \ return cp; \ } \ value_t mk_##typenam(ctype##_t n) \ { \ value_t cp = cprim(typenam##type, sizeof(ctype##_t)); \ *(ctype##_t*)cp_data((cprim_t*)ptr(cp)) = n; \ return cp; \ } num_ctor(int8, int8, int32, T_INT8) num_ctor(uint8, uint8, uint32, T_UINT8) num_ctor(int16, int16, int32, T_INT16) num_ctor(uint16, uint16, uint32, T_UINT16) num_ctor(int32, int32, int32, T_INT32) num_ctor(uint32, uint32, uint32, T_UINT32) num_ctor(int64, int64, int64, T_INT64) num_ctor(uint64, uint64, uint64, T_UINT64) num_ctor(byte, uint8, uint32, T_UINT8) num_ctor(wchar, int32, int32, T_INT32) #ifdef BITS64 num_ctor(long, long, int64, T_INT64) num_ctor(ulong, ulong, uint64, T_UINT64) #else num_ctor(long, long, int32, T_INT32) num_ctor(ulong, ulong, uint32, T_UINT32) #endif num_ctor(float, float, double, T_FLOAT) num_ctor(double, double, double, T_DOUBLE) value_t size_wrap(size_t sz) { if (fits_fixnum(sz)) return fixnum(sz); assert(sizeof(void*) == sizeof(size_t)); return mk_ulong(sz); } size_t toulong(value_t n, char *fname) { if (isfixnum(n)) return numval(n); if (iscprim(n)) { cprim_t *cp = (cprim_t*)ptr(n); return conv_to_ulong(cp_data(cp), cp_numtype(cp)); } type_error(fname, "number", n); return 0; } static void cvalue_enum_init(fltype_t *ft, value_t arg, void *dest) { int n=0; value_t syms; value_t type = ft->type; syms = car(cdr(type)); if (!iscons(syms)) type_error("enum", "cons", syms); if (issymbol(arg)) { while (iscons(syms)) { if (car_(syms) == arg) { *(int*)dest = n; return; } n++; syms = cdr_(syms); } lerror(ArgError, "enum: invalid enum value"); } if (isfixnum(arg)) { n = (int)numval(arg); } else if (iscprim(arg)) { cprim_t *cp = (cprim_t*)ptr(arg); n = conv_to_int32(cp_data(cp), cp_numtype(cp)); } else { type_error("enum", "number", arg); } if ((unsigned)n >= llength(syms)) lerror(ArgError, "enum: value out of range"); *(int*)dest = n; } value_t cvalue_enum(value_t *args, u_int32_t nargs) { argcount("enum", nargs, 2); value_t type = list2(enumsym, args[0]); fltype_t *ft = get_type(type); value_t cv = cvalue(ft, sizeof(int32_t)); cvalue_enum_init(ft, args[1], cp_data((cprim_t*)ptr(cv))); return cv; } static void array_init_fromargs(char *dest, value_t *vals, size_t cnt, fltype_t *eltype, size_t elsize) { size_t i; for(i=0; i < cnt; i++) { cvalue_init(eltype, vals[i], dest); dest += elsize; } } static int isarray(value_t v) { return iscvalue(v) && cv_class((cvalue_t*)ptr(v))->eltype != NULL; } static size_t predict_arraylen(value_t arg) { if (isvector(arg)) return vector_size(arg); else if (iscons(arg)) return llength(arg); else if (arg == NIL) return 0; if (isarray(arg)) return cvalue_arraylen(arg); return 1; } static void cvalue_array_init(fltype_t *ft, value_t arg, void *dest) { value_t type = ft->type; size_t elsize, i, cnt, sz; fltype_t *eltype = ft->eltype; elsize = ft->elsz; cnt = predict_arraylen(arg); if (iscons(cdr_(cdr_(type)))) { size_t tc = toulong(car_(cdr_(cdr_(type))), "array"); if (tc != cnt) lerror(ArgError, "array: size mismatch"); } sz = elsize * cnt; if (isvector(arg)) { array_init_fromargs((char*)dest, &vector_elt(arg,0), cnt, eltype, elsize); return; } else if (iscons(arg) || arg==NIL) { i = 0; while (iscons(arg)) { if (SP >= N_STACK) break; PUSH(car_(arg)); i++; arg = cdr_(arg); } if (i != cnt) lerror(ArgError, "array: size mismatch"); array_init_fromargs((char*)dest, &Stack[SP-i], i, eltype, elsize); POPN(i); return; } else if (iscvalue(arg)) { cvalue_t *cv = (cvalue_t*)ptr(arg); if (isarray(arg)) { fltype_t *aet = cv_class(cv)->eltype; if (aet == eltype) { if (cv_len(cv) == sz) memcpy(dest, cv_data(cv), sz); else lerror(ArgError, "array: size mismatch"); return; } else { // TODO: initialize array from different type elements lerror(ArgError, "array: element type mismatch"); } } } if (cnt == 1) cvalue_init(eltype, arg, dest); else type_error("array", "sequence", arg); } value_t cvalue_array(value_t *args, u_int32_t nargs) { size_t elsize, cnt, sz; if (nargs < 1) argcount("array", nargs, 1); cnt = nargs - 1; fltype_t *type = get_array_type(args[0]); elsize = type->elsz; sz = elsize * cnt; value_t cv = cvalue(type, sz); array_init_fromargs(cv_data((cvalue_t*)ptr(cv)), &args[1], cnt, type->eltype, elsize); return cv; } // NOTE: v must be an array size_t cvalue_arraylen(value_t v) { cvalue_t *cv = (cvalue_t*)ptr(v); return cv_len(cv)/(cv_class(cv)->elsz); } value_t cvalue_relocate(value_t v) { size_t nw; cvalue_t *cv = (cvalue_t*)ptr(v); cvalue_t *nv; value_t ncv; nw = cv_nwords(cv); nv = (cvalue_t*)alloc_words(nw); memcpy(nv, cv, nw*sizeof(value_t)); if (isinlined(cv)) nv->data = &nv->_space[0]; ncv = tagptr(nv, TAG_CVALUE); fltype_t *t = cv_class(cv); if (t->vtable != NULL && t->vtable->relocate != NULL) t->vtable->relocate(v, ncv); forward(v, ncv); return ncv; } size_t cvalue_struct_offs(value_t type, value_t field, int computeTotal, int *palign) { value_t fld = car(cdr_(type)); size_t fsz, ssz = 0; int al; *palign = 0; while (iscons(fld)) { fsz = ctype_sizeof(car(cdr(car_(fld))), &al); ssz = ALIGN(ssz, al); if (al > *palign) *palign = al; if (!computeTotal && field==car_(car_(fld))) { // found target field return ssz; } ssz += fsz; fld = cdr_(fld); } return ALIGN(ssz, *palign); } static size_t cvalue_union_size(value_t type, int *palign) { value_t fld = car(cdr_(type)); size_t fsz, usz = 0; int al; *palign = 0; while (iscons(fld)) { fsz = ctype_sizeof(car(cdr(car_(fld))), &al); if (al > *palign) *palign = al; if (fsz > usz) usz = fsz; fld = cdr_(fld); } return ALIGN(usz, *palign); } // *palign is an output argument giving the alignment required by type size_t ctype_sizeof(value_t type, int *palign) { if (type == int8sym || type == uint8sym || type == bytesym) { *palign = 1; return 1; } if (type == int16sym || type == uint16sym) { *palign = ALIGN2; return 2; } if (type == int32sym || type == uint32sym || type == wcharsym || type == floatsym) { *palign = ALIGN4; return 4; } if (type == int64sym || type == uint64sym || type == doublesym) { *palign = ALIGN8; return 8; } if (type == longsym || type == ulongsym) { #ifdef BITS64 *palign = ALIGN8; return 8; #else *palign = ALIGN4; return 4; #endif } if (iscons(type)) { value_t hed = car_(type); if (hed == pointersym || hed == cfunctionsym) { *palign = ALIGNPTR; return sizeof(void*); } if (hed == arraysym) { value_t t = car(cdr_(type)); if (!iscons(cdr_(cdr_(type)))) lerror(ArgError, "sizeof: incomplete type"); value_t n = car_(cdr_(cdr_(type))); size_t sz = toulong(n, "sizeof"); return sz * ctype_sizeof(t, palign); } else if (hed == structsym) { return cvalue_struct_offs(type, NIL, 1, palign); } else if (hed == unionsym) { return cvalue_union_size(type, palign); } else if (hed == enumsym) { *palign = ALIGN4; return 4; } } lerror(ArgError, "sizeof: invalid c type"); return 0; } value_t cvalue_sizeof(value_t *args, u_int32_t nargs) { argcount("sizeof", nargs, 1); if (iscvalue(args[0])) { cvalue_t *cv = (cvalue_t*)ptr(args[0]); return size_wrap(cv_len(cv)); } else if (iscprim(args[0])) { cprim_t *cp = (cprim_t*)ptr(args[0]); return fixnum(cp_class(cp)->size); } int a; return size_wrap(ctype_sizeof(args[0], &a)); } value_t cvalue_typeof(value_t *args, u_int32_t nargs) { argcount("typeof", nargs, 1); switch(tag(args[0])) { case TAG_CONS: return conssym; case TAG_NUM1: case TAG_NUM: return fixnumsym; case TAG_SYM: return symbolsym; case TAG_VECTOR: return vectorsym; case TAG_BUILTIN: return builtinsym; } return cv_type((cvalue_t*)ptr(args[0])); } value_t cvalue_copy(value_t v) { assert(iscvalue(v)); PUSH(v); cvalue_t *cv = (cvalue_t*)ptr(v); size_t nw = cv_nwords(cv); value_t *pnv = alloc_words(nw); v = POP(); cv = (cvalue_t*)ptr(v); memcpy(pnv, cv, nw * sizeof(value_t)); if (!isinlined(cv)) { size_t len = cv_len(cv); if (cv_isstr(cv)) len++; void *data = malloc(len); memcpy(data, cv_data(cv), len); ((cvalue_t*)pnv)->data = data; autorelease((cvalue_t*)pnv); } return tagptr(pnv, TAG_CVALUE); } static void cvalue_init(fltype_t *type, value_t v, void *dest) { cvinitfunc_t f=type->init; if (f == NULL) lerror(ArgError, "c-value: invalid c type"); f(type, v, dest); } static numerictype_t sym_to_numtype(value_t type) { if (type == int8sym) return T_INT8; else if (type == uint8sym || type == bytesym) return T_UINT8; else if (type == int16sym) return T_INT16; else if (type == uint16sym) return T_UINT16; #ifdef BITS64 else if (type == int32sym || type == wcharsym) #else else if (type == int32sym || type == wcharsym || type == longsym) #endif return T_INT32; #ifdef BITS64 else if (type == uint32sym) #else else if (type == uint32sym || type == ulongsym) #endif return T_UINT32; #ifdef BITS64 else if (type == int64sym || type == longsym) #else else if (type == int64sym) #endif return T_INT64; #ifdef BITS64 else if (type == uint64sym || type == ulongsym) #else else if (type == uint64sym) #endif return T_UINT64; else if (type == floatsym) return T_FLOAT; else if (type == doublesym) return T_DOUBLE; assert(false); return N_NUMTYPES; } // (new type . args) // this provides (1) a way to allocate values with a shared type for // efficiency, (2) a uniform interface for allocating cvalues of any // type, including user-defined. value_t cvalue_new(value_t *args, u_int32_t nargs) { if (nargs < 1 || nargs > 2) argcount("c-value", nargs, 2); value_t type = args[0]; fltype_t *ft = get_type(type); value_t cv; if (ft->eltype != NULL) { // special case to handle incomplete array types bla[] size_t elsz = ft->elsz; size_t cnt; if (iscons(cdr_(cdr_(type)))) cnt = toulong(car_(cdr_(cdr_(type))), "array"); else if (nargs == 2) cnt = predict_arraylen(args[1]); else cnt = 0; cv = cvalue(ft, elsz * cnt); if (nargs == 2) cvalue_array_init(ft, args[1], cv_data((cvalue_t*)ptr(cv))); } else { cv = cvalue(ft, ft->size); if (nargs == 2) cvalue_init(ft, args[1], cptr(cv)); } return cv; } // NOTE: this only compares lexicographically; it ignores numeric formats value_t cvalue_compare(value_t a, value_t b) { cvalue_t *ca = (cvalue_t*)ptr(a); cvalue_t *cb = (cvalue_t*)ptr(b); char *adata = cv_data(ca); char *bdata = cv_data(cb); size_t asz = cv_len(ca); size_t bsz = cv_len(cb); size_t minsz = asz < bsz ? asz : bsz; int diff = memcmp(adata, bdata, minsz); if (diff == 0) { if (asz > bsz) return fixnum(1); else if (asz < bsz) return fixnum(-1); } return fixnum(diff); } static void check_addr_args(char *fname, value_t arr, value_t ind, char **data, ulong_t *index) { size_t numel; cvalue_t *cv = (cvalue_t*)ptr(arr); *data = cv_data(cv); numel = cv_len(cv)/(cv_class(cv)->elsz); *index = toulong(ind, fname); if (*index >= numel) bounds_error(fname, arr, ind); } static value_t cvalue_array_aref(value_t *args) { char *data; ulong_t index; fltype_t *eltype = cv_class((cvalue_t*)ptr(args[0]))->eltype; value_t el = cvalue(eltype, eltype->size); check_addr_args("aref", args[0], args[1], &data, &index); char *dest = cptr(el); size_t sz = eltype->size; if (sz == 1) *dest = data[index]; else if (sz == 2) *(int16_t*)dest = ((int16_t*)data)[index]; else if (sz == 4) *(int32_t*)dest = ((int32_t*)data)[index]; else if (sz == 8) *(int64_t*)dest = ((int64_t*)data)[index]; else memcpy(dest, data + index*sz, sz); return el; } static value_t cvalue_array_aset(value_t *args) { char *data; ulong_t index; fltype_t *eltype = cv_class((cvalue_t*)ptr(args[0]))->eltype; check_addr_args("aset", args[0], args[1], &data, &index); char *dest = data + index*eltype->size; cvalue_init(eltype, args[2], dest); return args[2]; } value_t fl_builtin(value_t *args, u_int32_t nargs) { argcount("builtin", nargs, 1); symbol_t *name = tosymbol(args[0], "builtin"); builtin_t f; if (ismanaged(args[0]) || (f=(builtin_t)name->dlcache) == NULL) { lerror(ArgError, "builtin: function not found"); } return tagptr(f, TAG_BUILTIN); } value_t cbuiltin(char *name, builtin_t f) { assert(((uptrint_t)f & 0x7) == 0); value_t sym = symbol(name); ((symbol_t*)ptr(sym))->dlcache = f; ptrhash_put(&reverse_dlsym_lookup_table, f, (void*)sym); return tagptr(f, TAG_BUILTIN); /* value_t gf = cvalue(builtintype, sizeof(void*)); ((cvalue_t*)ptr(gf))->data = f; size_t nw = cv_nwords((cvalue_t*)ptr(gf)); // directly-callable values are assumed not to move for // evaluator performance, so put builtin func metadata on the // unmanaged heap cvalue_t *buf = malloc_aligned(nw * sizeof(value_t), 8); memcpy(buf, ptr(gf), nw*sizeof(value_t)); return tagptr(buf, TAG_BUILTIN); */ } #define cv_intern(tok) tok##sym = symbol(#tok) #define ctor_cv_intern(tok) \ cv_intern(tok);set(tok##sym, cbuiltin(#tok, cvalue_##tok)) #define mk_primtype(name) \ name##type=get_type(name##sym);name##type->init = &cvalue_##name##_init void cvalues_init() { htable_new(&TypeTable, 256); htable_new(&reverse_dlsym_lookup_table, 256); // compute struct field alignment required for primitives ALIGN2 = sizeof(struct { char a; int16_t i; }) - 2; ALIGN4 = sizeof(struct { char a; int32_t i; }) - 4; ALIGN8 = sizeof(struct { char a; int64_t i; }) - 8; ALIGNPTR = sizeof(struct { char a; void *i; }) - sizeof(void*); cv_intern(pointer); cfunctionsym = symbol("c-function"); builtintype = define_opaque_type(builtinsym, sizeof(builtin_t), NULL, NULL); ctor_cv_intern(int8); ctor_cv_intern(uint8); ctor_cv_intern(int16); ctor_cv_intern(uint16); ctor_cv_intern(int32); ctor_cv_intern(uint32); ctor_cv_intern(int64); ctor_cv_intern(uint64); ctor_cv_intern(byte); ctor_cv_intern(wchar); ctor_cv_intern(long); ctor_cv_intern(ulong); ctor_cv_intern(float); ctor_cv_intern(double); ctor_cv_intern(array); ctor_cv_intern(enum); cv_intern(struct); cv_intern(union); cv_intern(void); set(symbol("c-value"), cbuiltin("c-value", cvalue_new)); set(symbol("typeof"), cbuiltin("typeof", cvalue_typeof)); set(symbol("sizeof"), cbuiltin("sizeof", cvalue_sizeof)); set(symbol("builtin"), cbuiltin("builtin", fl_builtin)); // todo: autorelease stringtypesym = symbol("*string-type*"); setc(stringtypesym, list2(arraysym, bytesym)); wcstringtypesym = symbol("*wcstring-type*"); setc(wcstringtypesym, list2(arraysym, wcharsym)); mk_primtype(int8); mk_primtype(uint8); mk_primtype(int16); mk_primtype(uint16); mk_primtype(int32); mk_primtype(uint32); mk_primtype(int64); mk_primtype(uint64); mk_primtype(long); mk_primtype(ulong); mk_primtype(byte); mk_primtype(wchar); mk_primtype(float); mk_primtype(double); stringtype = get_type(symbol_value(stringtypesym)); wcstringtype = get_type(symbol_value(wcstringtypesym)); emptystringsym = symbol("*empty-string*"); setc(emptystringsym, cvalue_static_cstring("")); } #define RETURN_NUM_AS(var, type) return(mk_##type((type##_t)var)) value_t return_from_uint64(uint64_t Uaccum) { if (fits_fixnum(Uaccum)) { return fixnum((fixnum_t)Uaccum); } if (Uaccum > (uint64_t)S64_MAX) { RETURN_NUM_AS(Uaccum, uint64); } else if (Uaccum > (uint64_t)UINT_MAX) { RETURN_NUM_AS(Uaccum, int64); } else if (Uaccum > (uint64_t)INT_MAX) { RETURN_NUM_AS(Uaccum, uint32); } RETURN_NUM_AS(Uaccum, int32); } value_t return_from_int64(int64_t Saccum) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } if (Saccum > (int64_t)UINT_MAX || Saccum < (int64_t)INT_MIN) { RETURN_NUM_AS(Saccum, int64); } else if (Saccum > (int64_t)INT_MAX) { RETURN_NUM_AS(Saccum, uint32); } RETURN_NUM_AS(Saccum, int32); } value_t fl_add_any(value_t *args, u_int32_t nargs, fixnum_t carryIn) { uint64_t Uaccum=0; int64_t Saccum = carryIn; double Faccum=0; uint32_t i; for(i=0; i < nargs; i++) { if (isfixnum(args[i])) { Saccum += numval(args[i]); continue; } else if (iscprim(args[i])) { cprim_t *cp = (cprim_t*)ptr(args[i]); void *a = cp_data(cp); int64_t i64; switch(cp_numtype(cp)) { case T_INT8: Saccum += *(int8_t*)a; break; case T_UINT8: Saccum += *(uint8_t*)a; break; case T_INT16: Saccum += *(int16_t*)a; break; case T_UINT16: Saccum += *(uint16_t*)a; break; case T_INT32: Saccum += *(int32_t*)a; break; case T_UINT32: Saccum += *(uint32_t*)a; break; case T_INT64: i64 = *(int64_t*)a; if (i64 > 0) Uaccum += (uint64_t)i64; else Saccum += i64; break; case T_UINT64: Uaccum += *(uint64_t*)a; break; case T_FLOAT: Faccum += *(float*)a; break; case T_DOUBLE: Faccum += *(double*)a; break; default: goto add_type_error; } continue; } add_type_error: type_error("+", "number", args[i]); } if (Faccum != 0) { Faccum += Uaccum; Faccum += Saccum; return mk_double(Faccum); } else if (Saccum < 0) { uint64_t negpart = (uint64_t)(-Saccum); if (negpart > Uaccum) { Saccum += (int64_t)Uaccum; // return value in Saccum if (Saccum >= INT_MIN) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } RETURN_NUM_AS(Saccum, int32); } RETURN_NUM_AS(Saccum, int64); } Uaccum -= negpart; } else { Uaccum += (uint64_t)Saccum; } // return value in Uaccum return return_from_uint64(Uaccum); } value_t fl_neg(value_t n) { if (isfixnum(n)) { return fixnum(-numval(n)); } else if (iscprim(n)) { cprim_t *cp = (cprim_t*)ptr(n); void *a = cp_data(cp); uint32_t ui32; int32_t i32; int64_t i64; switch(cp_numtype(cp)) { case T_INT8: return fixnum(-(int32_t)*(int8_t*)a); case T_UINT8: return fixnum(-(int32_t)*(uint8_t*)a); case T_INT16: return fixnum(-(int32_t)*(int16_t*)a); case T_UINT16: return fixnum(-(int32_t)*(uint16_t*)a); case T_INT32: i32 = *(int32_t*)a; if (i32 == (int32_t)BIT31) return mk_uint32((uint32_t)BIT31); return mk_int32(-i32); case T_UINT32: ui32 = *(uint32_t*)a; if (ui32 <= ((uint32_t)INT_MAX)+1) return mk_int32(-(int32_t)ui32); return mk_int64(-(int64_t)ui32); case T_INT64: i64 = *(int64_t*)a; if (i64 == (int64_t)BIT63) return mk_uint64((uint64_t)BIT63); return mk_int64(-i64); case T_UINT64: return mk_int64(-(int64_t)*(uint64_t*)a); case T_FLOAT: return mk_float(-*(float*)a); case T_DOUBLE: return mk_double(-*(double*)a); break; } } type_error("-", "number", n); } value_t fl_mul_any(value_t *args, u_int32_t nargs, int64_t Saccum) { uint64_t Uaccum=1; double Faccum=1; uint32_t i; for(i=0; i < nargs; i++) { if (isfixnum(args[i])) { Saccum *= numval(args[i]); continue; } else if (iscprim(args[i])) { cprim_t *cp = (cprim_t*)ptr(args[i]); void *a = cp_data(cp); int64_t i64; switch(cp_numtype(cp)) { case T_INT8: Saccum *= *(int8_t*)a; break; case T_UINT8: Saccum *= *(uint8_t*)a; break; case T_INT16: Saccum *= *(int16_t*)a; break; case T_UINT16: Saccum *= *(uint16_t*)a; break; case T_INT32: Saccum *= *(int32_t*)a; break; case T_UINT32: Saccum *= *(uint32_t*)a; break; case T_INT64: i64 = *(int64_t*)a; if (i64 > 0) Uaccum *= (uint64_t)i64; else Saccum *= i64; break; case T_UINT64: Uaccum *= *(uint64_t*)a; break; case T_FLOAT: Faccum *= *(float*)a; break; case T_DOUBLE: Faccum *= *(double*)a; break; default: goto mul_type_error; } continue; } mul_type_error: type_error("*", "number", args[i]); } if (Faccum != 1) { Faccum *= Uaccum; Faccum *= Saccum; return mk_double(Faccum); } else if (Saccum < 0) { Saccum *= (int64_t)Uaccum; if (Saccum >= INT_MIN) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } RETURN_NUM_AS(Saccum, int32); } RETURN_NUM_AS(Saccum, int64); } else { Uaccum *= (uint64_t)Saccum; } return return_from_uint64(Uaccum); } value_t fl_div2(value_t a, value_t b) { double da, db; int_t ai, bi; int ta, tb; void *aptr=NULL, *bptr=NULL; cprim_t *cp; if (isfixnum(a)) { ai = numval(a); aptr = &ai; ta = T_FIXNUM; } else if (iscprim(a)) { cp = (cprim_t*)ptr(a); ta = cp_numtype(cp); if (ta <= T_DOUBLE) aptr = cp_data(cp); } if (aptr == NULL) type_error("/", "number", a); if (isfixnum(b)) { bi = numval(b); bptr = &bi; tb = T_FIXNUM; } else if (iscprim(b)) { cp = (cprim_t*)ptr(b); tb = cp_numtype(cp); if (tb <= T_DOUBLE) bptr = cp_data(cp); } if (bptr == NULL) type_error("/", "number", b); if (ta == T_FLOAT) { db = conv_to_double(bptr, tb); da = (double)*(float*)aptr / db; return mk_double(da); } if (ta == T_DOUBLE) { db = conv_to_double(bptr, tb); da = *(double*)aptr / db; return mk_double(da); } if (tb == T_FLOAT) { da = conv_to_double(aptr, ta); da /= (double)*(float*)bptr; return mk_double(da); } if (tb == T_DOUBLE) { da = conv_to_double(aptr, ta); da /= *(double*)bptr; return mk_double(da); } int64_t a64, b64; if (ta == T_UINT64) { if (tb == T_UINT64) { if (*(uint64_t*)bptr == 0) goto div_error; return return_from_uint64(*(uint64_t*)aptr / *(uint64_t*)bptr); } b64 = conv_to_int64(bptr, tb); if (b64 < 0) { return return_from_int64(-(int64_t)(*(uint64_t*)aptr / (uint64_t)(-b64))); } if (b64 == 0) goto div_error; return return_from_uint64(*(uint64_t*)aptr / (uint64_t)b64); } if (tb == T_UINT64) { if (*(uint64_t*)bptr == 0) goto div_error; a64 = conv_to_int64(aptr, ta); if (a64 < 0) { return return_from_int64(-((int64_t)((uint64_t)(-a64) / *(uint64_t*)bptr))); } return return_from_uint64((uint64_t)a64 / *(uint64_t*)bptr); } b64 = conv_to_int64(bptr, tb); if (b64 == 0) goto div_error; return return_from_int64(conv_to_int64(aptr, ta) / b64); div_error: lerror(DivideError, "/: division by zero"); } static void *int_data_ptr(value_t a, int *pnumtype, char *fname) { cprim_t *cp; if (iscprim(a)) { cp = (cprim_t*)ptr(a); *pnumtype = cp_numtype(cp); if (*pnumtype < T_FLOAT) return cp_data(cp); } type_error(fname, "integer", a); return NULL; } value_t fl_bitwise_not(value_t a) { cprim_t *cp; int ta; void *aptr; if (iscprim(a)) { cp = (cprim_t*)ptr(a); ta = cp_numtype(cp); aptr = cp_data(cp); switch (ta) { case T_INT8: return mk_int8(~*(int8_t *)aptr); case T_UINT8: return mk_uint8(~*(uint8_t *)aptr); case T_INT16: return mk_int16(~*(int16_t *)aptr); case T_UINT16: return mk_uint16(~*(uint16_t*)aptr); case T_INT32: return mk_int32(~*(int32_t *)aptr); case T_UINT32: return mk_uint32(~*(uint32_t*)aptr); case T_INT64: return mk_int64(~*(int64_t *)aptr); case T_UINT64: return mk_uint64(~*(uint64_t*)aptr); } } type_error("~", "integer", a); return NIL; } #define BITSHIFT_OP(name, op) \ value_t fl_##name(value_t a, int n) \ { \ cprim_t *cp; \ int ta; \ void *aptr; \ if (iscprim(a)) { \ cp = (cprim_t*)ptr(a); \ ta = cp_numtype(cp); \ aptr = cp_data(cp); \ switch (ta) { \ case T_INT8: return mk_int8((*(int8_t *)aptr) op n); \ case T_UINT8: return mk_uint8((*(uint8_t *)aptr) op n); \ case T_INT16: return mk_int16((*(int16_t *)aptr) op n); \ case T_UINT16: return mk_uint16((*(uint16_t*)aptr) op n); \ case T_INT32: return mk_int32((*(int32_t *)aptr) op n); \ case T_UINT32: return mk_uint32((*(uint32_t*)aptr) op n); \ case T_INT64: return mk_int64((*(int64_t *)aptr) op n); \ case T_UINT64: return mk_uint64((*(uint64_t*)aptr) op n); \ } \ } \ type_error(#op, "integer", a); \ return NIL; \ } BITSHIFT_OP(shl,<<) BITSHIFT_OP(shr,>>) value_t fl_bitwise_op(value_t a, value_t b, int opcode, char *fname) { int_t ai, bi; int ta, tb, itmp; void *aptr=NULL, *bptr=NULL, *ptmp; int64_t b64; if (isfixnum(a)) { ta = T_FIXNUM; ai = numval(a); aptr = &ai; bptr = int_data_ptr(b, &tb, fname); } else { aptr = int_data_ptr(a, &ta, fname); if (isfixnum(b)) { tb = T_FIXNUM; bi = numval(b); bptr = &bi; } else { bptr = int_data_ptr(b, &tb, fname); } } if (ta < tb) { itmp = ta; ta = tb; tb = itmp; ptmp = aptr; aptr = bptr; bptr = ptmp; } // now a's type is larger than or same as b's b64 = conv_to_int64(bptr, tb); switch (opcode) { case 0: switch (ta) { case T_INT8: return mk_int8( *(int8_t *)aptr & (int8_t )b64); case T_UINT8: return mk_uint8( *(uint8_t *)aptr & (uint8_t )b64); case T_INT16: return mk_int16( *(int16_t*)aptr & (int16_t )b64); case T_UINT16: return mk_uint16(*(uint16_t*)aptr & (uint16_t)b64); case T_INT32: return mk_int32( *(int32_t*)aptr & (int32_t )b64); case T_UINT32: return mk_uint32(*(uint32_t*)aptr & (uint32_t)b64); case T_INT64: return mk_int64( *(int64_t*)aptr & (int64_t )b64); case T_UINT64: return mk_uint64(*(uint64_t*)aptr & (uint64_t)b64); } break; case 1: switch (ta) { case T_INT8: return mk_int8( *(int8_t *)aptr | (int8_t )b64); case T_UINT8: return mk_uint8( *(uint8_t *)aptr | (uint8_t )b64); case T_INT16: return mk_int16( *(int16_t*)aptr | (int16_t )b64); case T_UINT16: return mk_uint16(*(uint16_t*)aptr | (uint16_t)b64); case T_INT32: return mk_int32( *(int32_t*)aptr | (int32_t )b64); case T_UINT32: return mk_uint32(*(uint32_t*)aptr | (uint32_t)b64); case T_INT64: return mk_int64( *(int64_t*)aptr | (int64_t )b64); case T_UINT64: return mk_uint64(*(uint64_t*)aptr | (uint64_t)b64); } break; case 2: switch (ta) { case T_INT8: return mk_int8( *(int8_t *)aptr ^ (int8_t )b64); case T_UINT8: return mk_uint8( *(uint8_t *)aptr ^ (uint8_t )b64); case T_INT16: return mk_int16( *(int16_t*)aptr ^ (int16_t )b64); case T_UINT16: return mk_uint16(*(uint16_t*)aptr ^ (uint16_t)b64); case T_INT32: return mk_int32( *(int32_t*)aptr ^ (int32_t )b64); case T_UINT32: return mk_uint32(*(uint32_t*)aptr ^ (uint32_t)b64); case T_INT64: return mk_int64( *(int64_t*)aptr ^ (int64_t )b64); case T_UINT64: return mk_uint64(*(uint64_t*)aptr ^ (uint64_t)b64); } } assert(0); return NIL; }