#ifdef BITS64 #define NWORDS(sz) (((sz) + 7) >> 3) #else #define NWORDS(sz) (((sz) + 3) >> 2) #endif static int ALIGN2, ALIGN4, ALIGN8, ALIGNPTR; value_t int8sym, uint8sym, int16sym, uint16sym, int32sym, uint32sym; value_t int64sym, uint64sym; value_t longsym, ulongsym, bytesym, wcharsym; value_t floatsym, doublesym; value_t gftypesym, stringtypesym, wcstringtypesym; value_t emptystringsym; value_t structsym, arraysym, enumsym, cfunctionsym, voidsym, pointersym; value_t unionsym; static struct htable TypeTable; static struct htable reverse_dlsym_lookup_table; static struct fltype *int8type, *uint8type; static struct fltype *int16type, *uint16type; static struct fltype *int32type, *uint32type; static struct fltype *int64type, *uint64type; static struct fltype *longtype, *ulongtype; static struct fltype *floattype, *doubletype; struct fltype *bytetype, *wchartype; struct fltype *stringtype, *wcstringtype; struct fltype *builtintype; static void cvalue_init(struct fltype *type, value_t v, void *dest); // cvalues-specific builtins value_t cvalue_new(value_t *args, uint32_t nargs); value_t cvalue_sizeof(value_t *args, uint32_t nargs); value_t cvalue_typeof(value_t *args, uint32_t nargs); // trigger unconditional GC after this many bytes are allocated #define ALLOC_LIMIT_TRIGGER 67108864 static size_t malloc_pressure = 0; static struct cvalue **Finalizers = NULL; static size_t nfinalizers = 0; static size_t maxfinalizers = 0; void add_finalizer(struct cvalue *cv) { if (nfinalizers == maxfinalizers) { size_t nn = (maxfinalizers == 0 ? 256 : maxfinalizers * 2); struct cvalue **temp = (struct cvalue **)realloc(Finalizers, nn * sizeof(value_t)); if (temp == NULL) lerror(MemoryError, "out of memory"); Finalizers = temp; maxfinalizers = nn; } Finalizers[nfinalizers++] = cv; } // remove dead objects from finalization list in-place static void sweep_finalizers(void) { struct cvalue **lst = Finalizers; size_t n = 0, ndel = 0, l = nfinalizers; struct cvalue *tmp; #define SWAP_sf(a, b) (tmp = a, a = b, b = tmp, 1) if (l == 0) return; do { tmp = lst[n]; if (isforwarded((value_t)tmp)) { // object is alive lst[n] = (struct cvalue *)ptr(forwardloc((value_t)tmp)); n++; } else { struct fltype *t = cv_class(tmp); if (t->vtable != NULL && t->vtable->finalize != NULL) { t->vtable->finalize(tagptr(tmp, TAG_CVALUE)); } if (!isinlined(tmp) && owned(tmp)) { #ifndef NDEBUG memset(cv_data(tmp), 0xbb, cv_len(tmp)); #endif free(cv_data(tmp)); } ndel++; } } while ((n < l - ndel) && SWAP_sf(lst[n], lst[n + ndel])); nfinalizers -= ndel; #ifdef VERBOSEGC if (ndel > 0) printf("GC: finalized %d objects\n", ndel); #endif malloc_pressure = 0; } // compute the size of the metadata object for a cvalue static size_t cv_nwords(struct cvalue *cv) { if (isinlined(cv)) { size_t n = cv_len(cv); if (n == 0 || cv_isstr(cv)) n++; return CVALUE_NWORDS - 1 + NWORDS(n); } return CVALUE_NWORDS; } static void autorelease(struct cvalue *cv) { cv->type = (struct fltype *)(((uintptr_t)cv->type) | CV_OWNED_BIT); add_finalizer(cv); } void cv_autorelease(struct cvalue *cv) { autorelease(cv); } static value_t cprim(struct fltype *type, size_t sz) { struct cprim *pcp; assert(!ismanaged((uintptr_t)type)); assert(sz == type->size); pcp = (struct cprim *)alloc_words(CPRIM_NWORDS - 1 + NWORDS(sz)); pcp->type = type; return tagptr(pcp, TAG_CPRIM); } value_t cvalue(struct fltype *type, size_t sz) { struct cvalue *pcv; int str; str = 0; if (valid_numtype(type->numtype)) { return cprim(type, sz); } if (type->eltype == bytetype) { if (sz == 0) return symbol_value(emptystringsym); sz++; str = 1; } if (sz <= MAX_INL_SIZE) { size_t nw = CVALUE_NWORDS - 1 + NWORDS(sz) + (sz == 0 ? 1 : 0); pcv = (struct cvalue *)alloc_words(nw); pcv->type = type; pcv->data = &pcv->_space[0]; if (type->vtable != NULL && type->vtable->finalize != NULL) add_finalizer(pcv); } else { if (malloc_pressure > ALLOC_LIMIT_TRIGGER) gc(0); pcv = (struct cvalue *)alloc_words(CVALUE_NWORDS); pcv->type = type; pcv->data = malloc(sz); autorelease(pcv); malloc_pressure += sz; } if (str) { sz--; ((char *)pcv->data)[sz] = '\0'; } pcv->len = sz; return tagptr(pcv, TAG_CVALUE); } value_t cvalue_from_data(struct fltype *type, void *data, size_t sz) { value_t cv; cv = cvalue(type, sz); memcpy(cptr(cv), data, sz); return cv; } // this effectively dereferences a pointer // just like *p in C, it only removes a level of indirection from the type, // it doesn't copy any data. // this method of creating a cvalue only allocates metadata. // ptr is user-managed; we don't autorelease it unless the // user explicitly calls (autorelease ) on the result of this function. // 'parent' is an optional cvalue that this pointer is known to point // into; NIL if none. value_t cvalue_from_ref(struct fltype *type, void *ptr, size_t sz, value_t parent) { struct cvalue *pcv; value_t cv; pcv = (struct cvalue *)alloc_words(CVALUE_NWORDS); pcv->data = ptr; pcv->len = sz; pcv->type = type; if (parent != NIL) { pcv->type = (struct fltype *)(((uintptr_t)pcv->type) | CV_PARENT_BIT); pcv->parent = parent; } cv = tagptr(pcv, TAG_CVALUE); return cv; } value_t cvalue_string(size_t sz) { return cvalue(stringtype, sz); } value_t cvalue_static_cstring(const char *str) { return cvalue_from_ref(stringtype, (char *)str, strlen(str), NIL); } value_t string_from_cstrn(const char *str, size_t n) { value_t v; v = cvalue_string(n); memcpy(cvalue_data(v), str, n); return v; } value_t string_from_cstr(const char *str) { return string_from_cstrn(str, strlen(str)); } int fl_isstring(value_t v) { return (iscvalue(v) && cv_isstr((struct cvalue *)ptr(v))); } // convert to malloc representation (fixed address) void cv_pin(struct cvalue *cv) { size_t sz; void *data; if (!isinlined(cv)) return; sz = cv_len(cv); if (cv_isstr(cv)) sz++; data = malloc(sz); memcpy(data, cv_data(cv), sz); cv->data = data; autorelease(cv); } #define NUM_INIT_SUFFIX(ctype, cnvt, tag, suffix) \ static int cvalue_##ctype##_init(struct fltype *type, value_t arg, \ void *dest) \ { \ ctype##suffix n = 0; \ (void)type; \ if (isfixnum(arg)) { \ n = numval(arg); \ } else if (iscprim(arg)) { \ struct cprim *cp = (struct cprim *)ptr(arg); \ void *p = cp_data(cp); \ n = (ctype##suffix)conv_to_##cnvt(p, cp_numtype(cp)); \ } else { \ return 1; \ } \ *((ctype##suffix *)dest) = n; \ return 0; \ } #define NUM_INIT(ctype, cnvt, tag) NUM_INIT_SUFFIX(ctype, cnvt, tag, ) #define NUM_INIT_T(ctype, cnvt, tag) NUM_INIT_SUFFIX(ctype, cnvt, tag, _t) NUM_INIT_T(int8, int32, T_INT8); NUM_INIT_T(int16, int32, T_INT16); NUM_INIT_T(int32, int32, T_INT32); NUM_INIT_T(int64, int64, T_INT64); NUM_INIT_T(uint8, uint32, T_UINT8); NUM_INIT_T(uint16, uint32, T_UINT16); NUM_INIT_T(uint32, uint32, T_UINT32); NUM_INIT_T(uint64, uint64, T_UINT64); NUM_INIT(float, double, T_FLOAT); NUM_INIT(double, double, T_DOUBLE); #define NUM_CTOR_INIT_SUFFIX(typenam, ctype, tag, suffix) \ value_t cvalue_##typenam(value_t *args, uint32_t nargs) \ { \ value_t cp; \ if (nargs == 0) { \ PUSH(fixnum(0)); \ args = &Stack[SP - 1]; \ } \ cp = cprim(typenam##type, sizeof(ctype##suffix)); \ if (cvalue_##ctype##_init(typenam##type, args[0], \ cp_data((struct cprim *)ptr(cp)))) \ type_error(#typenam, "number", args[0]); \ return cp; \ } #define NUM_CTOR_CTOR_SUFFIX(typenam, ctype, tag, suffix) \ value_t mk_##typenam(ctype##suffix n) \ { \ value_t cp = cprim(typenam##type, sizeof(ctype##suffix)); \ *(ctype##suffix *)cp_data((struct cprim *)ptr(cp)) = n; \ return cp; \ } #define NUM_CTOR(typenam, ctype, tag) \ NUM_CTOR_INIT_SUFFIX(typenam, ctype, tag, ) \ NUM_CTOR_CTOR_SUFFIX(typenam, ctype, tag, ) #define NUM_CTOR_T(typenam, ctype, tag) \ NUM_CTOR_INIT_SUFFIX(typenam, ctype, tag, _t) \ NUM_CTOR_CTOR_SUFFIX(typenam, ctype, tag, _t) NUM_CTOR_T(int8, int8, T_INT8); NUM_CTOR_T(int16, int16, T_INT16); NUM_CTOR_T(int32, int32, T_INT32); NUM_CTOR_T(int64, int64, T_INT64); NUM_CTOR_T(uint8, uint8, T_UINT8); NUM_CTOR_T(uint16, uint16, T_UINT16); NUM_CTOR_T(uint32, uint32, T_UINT32); NUM_CTOR_T(uint64, uint64, T_UINT64); NUM_CTOR_T(byte, uint8, T_UINT8); NUM_CTOR_T(wchar, int32, T_INT32); #ifdef BITS64 NUM_CTOR_T(long, int64, T_INT64); NUM_CTOR_T(ulong, uint64, T_UINT64); #else NUM_CTOR_T(long, int32, T_INT32); NUM_CTOR_T(ulong, uint32, T_UINT32); #endif NUM_CTOR(float, float, T_FLOAT); NUM_CTOR(double, double, T_DOUBLE); value_t size_wrap(size_t sz) { if (fits_fixnum(sz)) return fixnum(sz); assert(sizeof(void *) == sizeof(size_t)); return mk_ulong(sz); } size_t toulong(value_t n, char *fname) { if (isfixnum(n)) return numval(n); if (iscprim(n)) { struct cprim *cp = (struct cprim *)ptr(n); return conv_to_ulong(cp_data(cp), cp_numtype(cp)); } type_error(fname, "number", n); return 0; } static int cvalue_enum_init(struct fltype *ft, value_t arg, void *dest) { int n = 0; value_t syms; value_t type = ft->type; syms = car(cdr(type)); if (!isvector(syms)) type_error("enum", "vector", syms); if (issymbol(arg)) { for (n = 0; n < (int)vector_size(syms); n++) { if (vector_elt(syms, n) == arg) { *(int *)dest = n; return 0; } } lerror(ArgError, "enum: invalid enum value"); } if (isfixnum(arg)) { n = (int)numval(arg); } else if (iscprim(arg)) { struct cprim *cp = (struct cprim *)ptr(arg); n = conv_to_int32(cp_data(cp), cp_numtype(cp)); } else { type_error("enum", "number", arg); } if ((unsigned)n >= vector_size(syms)) lerror(ArgError, "enum: value out of range"); *(int *)dest = n; return 0; } value_t cvalue_enum(value_t *args, uint32_t nargs) { value_t cv, type; struct fltype *ft; argcount("enum", nargs, 2); type = fl_list2(enumsym, args[0]); ft = get_type(type); cv = cvalue(ft, sizeof(int32_t)); cvalue_enum_init(ft, args[1], cp_data((struct cprim *)ptr(cv))); return cv; } static int isarray(value_t v) { return iscvalue(v) && cv_class((struct cvalue *)ptr(v))->eltype != NULL; } static size_t predict_arraylen(value_t arg) { if (isvector(arg)) return vector_size(arg); else if (iscons(arg)) return llength(arg); else if (arg == NIL) return 0; if (isarray(arg)) return cvalue_arraylen(arg); return 1; } static int cvalue_array_init(struct fltype *ft, value_t arg, void *dest) { value_t type = ft->type; size_t elsize, i, cnt, sz; struct fltype *eltype = ft->eltype; elsize = ft->elsz; cnt = predict_arraylen(arg); if (iscons(cdr_(cdr_(type)))) { size_t tc = toulong(car_(cdr_(cdr_(type))), "array"); if (tc != cnt) lerror(ArgError, "array: size mismatch"); } sz = elsize * cnt; if (isvector(arg)) { assert(cnt <= vector_size(arg)); for (i = 0; i < cnt; i++) { cvalue_init(eltype, vector_elt(arg, i), dest); dest = (char *)dest + elsize; } return 0; } else if (iscons(arg) || arg == NIL) { i = 0; while (iscons(arg)) { if (i == cnt) { i++; break; } // trigger error cvalue_init(eltype, car_(arg), dest); i++; dest = (char *)dest + elsize; arg = cdr_(arg); } if (i != cnt) lerror(ArgError, "array: size mismatch"); return 0; } else if (iscvalue(arg)) { struct cvalue *cv = (struct cvalue *)ptr(arg); if (isarray(arg)) { struct fltype *aet = cv_class(cv)->eltype; if (aet == eltype) { if (cv_len(cv) == sz) memcpy(dest, cv_data(cv), sz); else lerror(ArgError, "array: size mismatch"); return 0; } else { // TODO: initialize array from different type elements lerror(ArgError, "array: element type mismatch"); } } } if (cnt == 1) cvalue_init(eltype, arg, dest); else type_error("array", "sequence", arg); return 0; } value_t cvalue_array(value_t *args, uint32_t nargs) { size_t elsize, cnt, sz, i; value_t arg, cv; struct fltype *type; char *dest; if (nargs < 1) argcount("array", nargs, 1); cnt = nargs - 1; type = get_array_type(args[0]); elsize = type->elsz; sz = elsize * cnt; cv = cvalue(type, sz); dest = cv_data((struct cvalue *)ptr(cv)); FOR_ARGS(i, 1, arg, args) { cvalue_init(type->eltype, arg, dest); dest += elsize; } return cv; } // NOTE: v must be an array size_t cvalue_arraylen(value_t v) { struct cvalue *cv = (struct cvalue *)ptr(v); return cv_len(cv) / (cv_class(cv)->elsz); } static size_t cvalue_struct_offs(value_t type, value_t field, int computeTotal, int *palign) { value_t fld = car(cdr_(type)); size_t fsz, ssz = 0; int al; *palign = 0; while (iscons(fld)) { fsz = ctype_sizeof(car(cdr(car_(fld))), &al); ssz = ALIGN(ssz, al); if (al > *palign) *palign = al; if (!computeTotal && field == car_(car_(fld))) { // found target field return ssz; } ssz += fsz; fld = cdr_(fld); } return ALIGN(ssz, *palign); } static size_t cvalue_union_size(value_t type, int *palign) { value_t fld = car(cdr_(type)); size_t fsz, usz = 0; int al; *palign = 0; while (iscons(fld)) { fsz = ctype_sizeof(car(cdr(car_(fld))), &al); if (al > *palign) *palign = al; if (fsz > usz) usz = fsz; fld = cdr_(fld); } return ALIGN(usz, *palign); } // *palign is an output argument giving the alignment required by type size_t ctype_sizeof(value_t type, int *palign) { value_t hed, t, n; size_t sz; if (type == int8sym || type == uint8sym || type == bytesym) { *palign = 1; return 1; } if (type == int16sym || type == uint16sym) { *palign = ALIGN2; return 2; } if (type == int32sym || type == uint32sym || type == wcharsym || type == floatsym) { *palign = ALIGN4; return 4; } if (type == int64sym || type == uint64sym || type == doublesym) { *palign = ALIGN8; return 8; } if (type == longsym || type == ulongsym) { #ifdef BITS64 *palign = ALIGN8; return 8; #else *palign = ALIGN4; return 4; #endif } if (iscons(type)) { hed = car_(type); if (hed == pointersym || hed == cfunctionsym) { *palign = ALIGNPTR; return sizeof(void *); } if (hed == arraysym) { t = car(cdr_(type)); if (!iscons(cdr_(cdr_(type)))) lerror(ArgError, "sizeof: incomplete type"); n = car_(cdr_(cdr_(type))); sz = toulong(n, "sizeof"); return sz * ctype_sizeof(t, palign); } else if (hed == structsym) { return cvalue_struct_offs(type, NIL, 1, palign); } else if (hed == unionsym) { return cvalue_union_size(type, palign); } else if (hed == enumsym) { *palign = ALIGN4; return 4; } } lerror(ArgError, "sizeof: invalid c type"); return 0; } extern struct fltype *iostreamtype; // get pointer and size for any plain-old-data value void to_sized_ptr(value_t v, char *fname, char **pdata, size_t *psz) { if (iscvalue(v)) { struct cvalue *pcv = (struct cvalue *)ptr(v); struct ios *x = value2c(struct ios *, v); if (cv_class(pcv) == iostreamtype && (x->bm == bm_mem)) { *pdata = x->buf; *psz = x->size; return; } else if (cv_isPOD(pcv)) { *pdata = cv_data(pcv); *psz = cv_len(pcv); return; } } else if (iscprim(v)) { struct cprim *pcp = (struct cprim *)ptr(v); *pdata = cp_data(pcp); *psz = cp_class(pcp)->size; return; } type_error(fname, "plain-old-data", v); } value_t cvalue_sizeof(value_t *args, uint32_t nargs) { char *data; size_t n; int a; argcount("sizeof", nargs, 1); if (issymbol(args[0]) || iscons(args[0])) { return size_wrap(ctype_sizeof(args[0], &a)); } to_sized_ptr(args[0], "sizeof", &data, &n); return size_wrap(n); } value_t cvalue_typeof(value_t *args, uint32_t nargs) { argcount("typeof", nargs, 1); switch (tag(args[0])) { case TAG_CONS: return pairsym; case TAG_NUM1: case TAG_NUM: return fixnumsym; case TAG_SYM: return symbolsym; case TAG_VECTOR: return vectorsym; case TAG_FUNCTION: if (args[0] == FL_T || args[0] == FL_F) return booleansym; if (args[0] == NIL) return nullsym; if (args[0] == FL_EOF) return symbol("eof-object"); if (isbuiltin(args[0])) return builtinsym; return FUNCTION; } return cv_type((struct cvalue *)ptr(args[0])); } static value_t cvalue_relocate(value_t v) { struct cvalue *cv = (struct cvalue *)ptr(v); struct cvalue *nv; struct fltype *t; value_t ncv; size_t nw; nw = cv_nwords(cv); nv = (struct cvalue *)alloc_words(nw); memcpy(nv, cv, nw * sizeof(value_t)); if (isinlined(cv)) nv->data = &nv->_space[0]; ncv = tagptr(nv, TAG_CVALUE); t = cv_class(cv); if (t->vtable != NULL && t->vtable->relocate != NULL) t->vtable->relocate(v, ncv); forward(v, ncv); return ncv; } value_t cvalue_copy(value_t v) { struct cvalue *ncv; struct cvalue *cv; size_t nw, len; assert(iscvalue(v)); PUSH(v); cv = (struct cvalue *)ptr(v); nw = cv_nwords(cv); ncv = (struct cvalue *)alloc_words(nw); v = POP(); cv = (struct cvalue *)ptr(v); memcpy(ncv, cv, nw * sizeof(value_t)); if (!isinlined(cv)) { len = cv_len(cv); if (cv_isstr(cv)) len++; ncv->data = malloc(len); memcpy(ncv->data, cv_data(cv), len); autorelease(ncv); if (hasparent(cv)) { ncv->type = (struct fltype *)(((uintptr_t)ncv->type) & ~CV_PARENT_BIT); ncv->parent = NIL; } } else { ncv->data = &ncv->_space[0]; } return tagptr(ncv, TAG_CVALUE); } value_t fl_copy(value_t *args, uint32_t nargs) { argcount("copy", nargs, 1); if (iscons(args[0]) || isvector(args[0])) lerror(ArgError, "copy: argument must be a leaf atom"); if (!iscvalue(args[0])) return args[0]; if (!cv_isPOD((struct cvalue *)ptr(args[0]))) lerror(ArgError, "copy: argument must be a plain-old-data type"); return cvalue_copy(args[0]); } value_t fl_podp(value_t *args, uint32_t nargs) { argcount("plain-old-data?", nargs, 1); return (iscprim(args[0]) || (iscvalue(args[0]) && cv_isPOD((struct cvalue *)ptr(args[0])))) ? FL_T : FL_F; } static void cvalue_init(struct fltype *type, value_t v, void *dest) { cvinitfunc_t f = type->init; if (f == NULL) lerror(ArgError, "c-value: invalid c type"); f(type, v, dest); } static numerictype_t sym_to_numtype(value_t type) { if (type == int8sym) return T_INT8; else if (type == uint8sym || type == bytesym) return T_UINT8; else if (type == int16sym) return T_INT16; else if (type == uint16sym) return T_UINT16; #ifdef BITS64 else if (type == int32sym || type == wcharsym) #else else if (type == int32sym || type == wcharsym || type == longsym) #endif return T_INT32; #ifdef BITS64 else if (type == uint32sym) #else else if (type == uint32sym || type == ulongsym) #endif return T_UINT32; #ifdef BITS64 else if (type == int64sym || type == longsym) #else else if (type == int64sym) #endif return T_INT64; #ifdef BITS64 else if (type == uint64sym || type == ulongsym) #else else if (type == uint64sym) #endif return T_UINT64; else if (type == floatsym) return T_FLOAT; else if (type == doublesym) return T_DOUBLE; return N_NUMTYPES; } // (new type . args) // this provides (1) a way to allocate values with a shared type for // efficiency, (2) a uniform interface for allocating cvalues of any // type, including user-defined. value_t cvalue_new(value_t *args, uint32_t nargs) { struct fltype *ft; value_t cv, type; size_t elsz, cnt; if (nargs < 1 || nargs > 2) argcount("c-value", nargs, 2); type = args[0]; ft = get_type(type); if (ft->eltype != NULL) { // special case to handle incomplete array types bla[] elsz = ft->elsz; if (iscons(cdr_(cdr_(type)))) cnt = toulong(car_(cdr_(cdr_(type))), "array"); else if (nargs == 2) cnt = predict_arraylen(args[1]); else cnt = 0; cv = cvalue(ft, elsz * cnt); if (nargs == 2) cvalue_array_init(ft, args[1], cv_data((struct cvalue *)ptr(cv))); } else { cv = cvalue(ft, ft->size); if (nargs == 2) cvalue_init(ft, args[1], cptr(cv)); } return cv; } // NOTE: this only compares lexicographically; it ignores numeric formats value_t cvalue_compare(value_t a, value_t b) { struct cvalue *ca = (struct cvalue *)ptr(a); struct cvalue *cb = (struct cvalue *)ptr(b); char *adata = cv_data(ca); char *bdata = cv_data(cb); size_t asz = cv_len(ca); size_t bsz = cv_len(cb); size_t minsz = asz < bsz ? asz : bsz; int diff = memcmp(adata, bdata, minsz); if (diff == 0) { if (asz > bsz) return fixnum(1); else if (asz < bsz) return fixnum(-1); } return fixnum(diff); } static void check_addr_args(char *fname, value_t arr, value_t ind, char **data, unsigned long *index) { size_t numel; struct cvalue *cv; cv = (struct cvalue *)ptr(arr); *data = cv_data(cv); numel = cv_len(cv) / (cv_class(cv)->elsz); *index = toulong(ind, fname); if (*index >= numel) bounds_error(fname, arr, ind); } static value_t cvalue_array_aref(value_t *args) { char *data; unsigned long index; struct fltype *eltype = cv_class((struct cvalue *)ptr(args[0]))->eltype; value_t el = 0; numerictype_t nt = eltype->numtype; char *dest; size_t sz; if (nt >= T_INT32) el = cvalue(eltype, eltype->size); check_addr_args("aref", args[0], args[1], &data, &index); if (nt < T_INT32) { if (nt == T_INT8) return fixnum((int8_t)data[index]); else if (nt == T_UINT8) return fixnum((uint8_t)data[index]); else if (nt == T_INT16) return fixnum(((int16_t *)data)[index]); return fixnum(((uint16_t *)data)[index]); } dest = cptr(el); sz = eltype->size; if (sz == 1) *dest = data[index]; else if (sz == 2) *(int16_t *)dest = ((int16_t *)data)[index]; else if (sz == 4) *(int32_t *)dest = ((int32_t *)data)[index]; else if (sz == 8) *(int64_t *)dest = ((int64_t *)data)[index]; else memcpy(dest, data + index * sz, sz); return el; } static value_t cvalue_array_aset(value_t *args) { char *data; char *dest; unsigned long index; struct fltype *eltype; eltype = cv_class((struct cvalue *)ptr(args[0]))->eltype; check_addr_args("aset!", args[0], args[1], &data, &index); dest = data + index * eltype->size; cvalue_init(eltype, args[2], dest); return args[2]; } value_t fl_builtin(value_t *args, uint32_t nargs) { struct symbol *name; struct cvalue *cv; argcount("builtin", nargs, 1); name = tosymbol(args[0], "builtin"); if (ismanaged(args[0]) || (cv = name->dlcache) == NULL) { lerrorf(ArgError, "builtin: function %s not found", name->name); } return tagptr(cv, TAG_CVALUE); } value_t cbuiltin(char *name, builtin_t f) { struct cvalue *cv; value_t sym; cv = (struct cvalue *)malloc(CVALUE_NWORDS * sizeof(value_t)); cv->type = builtintype; cv->data = &cv->_space[0]; cv->len = sizeof(value_t); *(void **)cv->data = f; sym = symbol(name); ((struct symbol *)ptr(sym))->dlcache = cv; ptrhash_put(&reverse_dlsym_lookup_table, cv, (void *)sym); return tagptr(cv, TAG_CVALUE); } static value_t fl_logand(value_t *args, uint32_t nargs); static value_t fl_logior(value_t *args, uint32_t nargs); static value_t fl_logxor(value_t *args, uint32_t nargs); static value_t fl_lognot(value_t *args, uint32_t nargs); static value_t fl_ash(value_t *args, uint32_t nargs); static struct builtinspec cvalues_builtin_info[] = { { "c-value", cvalue_new }, { "typeof", cvalue_typeof }, { "sizeof", cvalue_sizeof }, { "builtin", fl_builtin }, { "copy", fl_copy }, { "plain-old-data?", fl_podp }, { "logand", fl_logand }, { "logior", fl_logior }, { "logxor", fl_logxor }, { "lognot", fl_lognot }, { "ash", fl_ash }, // todo: autorelease { NULL, NULL } }; #define cv_intern(tok) tok##sym = symbol(#tok) #define ctor_cv_intern(tok) \ cv_intern(tok); \ set(tok##sym, cbuiltin(#tok, cvalue_##tok)) #define mk_primtype(name) \ name##type = get_type(name##sym); \ name##type->init = &cvalue_##name##_init #define mk_primtype_(name, ctype) \ name##type = get_type(name##sym); \ name##type->init = &cvalue_##ctype##_init static void cvalues_init(void) { htable_new(&TypeTable, 256); htable_new(&reverse_dlsym_lookup_table, 256); // compute struct field alignment required for primitives ALIGN2 = sizeof(struct { char a; int16_t i; }) - 2; ALIGN4 = sizeof(struct { char a; int32_t i; }) - 4; ALIGN8 = sizeof(struct { char a; int64_t i; }) - 8; ALIGNPTR = sizeof(struct { char a; void *i; }) - sizeof(void *); builtintype = define_opaque_type(builtinsym, sizeof(builtin_t), NULL, NULL); ctor_cv_intern(int8); ctor_cv_intern(uint8); ctor_cv_intern(int16); ctor_cv_intern(uint16); ctor_cv_intern(int32); ctor_cv_intern(uint32); ctor_cv_intern(int64); ctor_cv_intern(uint64); ctor_cv_intern(byte); ctor_cv_intern(wchar); ctor_cv_intern(long); ctor_cv_intern(ulong); ctor_cv_intern(float); ctor_cv_intern(double); ctor_cv_intern(array); ctor_cv_intern(enum); cv_intern(pointer); cv_intern(struct); cv_intern(union); cv_intern(void); cfunctionsym = symbol("c-function"); assign_global_builtins(cvalues_builtin_info); stringtypesym = symbol("*string-type*"); setc(stringtypesym, fl_list2(arraysym, bytesym)); wcstringtypesym = symbol("*wcstring-type*"); setc(wcstringtypesym, fl_list2(arraysym, wcharsym)); mk_primtype(int8); mk_primtype(uint8); mk_primtype(int16); mk_primtype(uint16); mk_primtype(int32); mk_primtype(uint32); mk_primtype(int64); mk_primtype(uint64); #ifdef BITS64 mk_primtype_(long, int64); mk_primtype_(ulong, uint64); #else mk_primtype_(long, int32); mk_primtype_(ulong, uint32); #endif mk_primtype_(byte, uint8); mk_primtype_(wchar, int32); mk_primtype(float); mk_primtype(double); stringtype = get_type(symbol_value(stringtypesym)); wcstringtype = get_type(symbol_value(wcstringtypesym)); emptystringsym = symbol("*empty-string*"); setc(emptystringsym, cvalue_static_cstring("")); } #define RETURN_INT_AS(var, type) return (mk_##type((type##_t)var)) value_t return_from_uint64(uint64_t Uaccum) { if (fits_fixnum(Uaccum)) { return fixnum((fixnum_t)Uaccum); } if (Uaccum > (uint64_t)S64_MAX) { RETURN_INT_AS(Uaccum, uint64); } else if (Uaccum > (uint64_t)UINT_MAX) { RETURN_INT_AS(Uaccum, int64); } else if (Uaccum > (uint64_t)INT_MAX) { RETURN_INT_AS(Uaccum, uint32); } RETURN_INT_AS(Uaccum, int32); } value_t return_from_int64(int64_t Saccum) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } if (Saccum > (int64_t)UINT_MAX || Saccum < (int64_t)INT_MIN) { RETURN_INT_AS(Saccum, int64); } else if (Saccum > (int64_t)INT_MAX) { RETURN_INT_AS(Saccum, uint32); } RETURN_INT_AS(Saccum, int32); } static value_t fl_add_any(value_t *args, uint32_t nargs, fixnum_t carryIn) { uint64_t Uaccum = 0; int64_t Saccum = carryIn; double Faccum = 0; int32_t inexact = 0; uint32_t i; value_t arg = NIL; FOR_ARGS(i, 0, arg, args) { if (isfixnum(arg)) { Saccum += numval(arg); continue; } else if (iscprim(arg)) { struct cprim *cp = (struct cprim *)ptr(arg); void *a = cp_data(cp); int64_t i64; switch (cp_numtype(cp)) { case T_INT8: Saccum += *(int8_t *)a; break; case T_UINT8: Saccum += *(uint8_t *)a; break; case T_INT16: Saccum += *(int16_t *)a; break; case T_UINT16: Saccum += *(uint16_t *)a; break; case T_INT32: Saccum += *(int32_t *)a; break; case T_UINT32: Saccum += *(uint32_t *)a; break; case T_INT64: i64 = *(int64_t *)a; if (i64 > 0) Uaccum += (uint64_t)i64; else Saccum += i64; break; case T_UINT64: Uaccum += *(uint64_t *)a; break; case T_FLOAT: Faccum += *(float *)a; inexact = 1; break; case T_DOUBLE: Faccum += *(double *)a; inexact = 1; break; default: goto add_type_error; } continue; } add_type_error: type_error("+", "number", arg); } if (inexact) { Faccum += Uaccum; Faccum += Saccum; return mk_double(Faccum); } else if (Saccum < 0) { uint64_t negpart = (uint64_t)(-Saccum); if (negpart > Uaccum) { Saccum += (int64_t)Uaccum; // return value in Saccum if (Saccum >= INT_MIN) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } RETURN_INT_AS(Saccum, int32); } RETURN_INT_AS(Saccum, int64); } Uaccum -= negpart; } else { Uaccum += (uint64_t)Saccum; } // return value in Uaccum return return_from_uint64(Uaccum); } static value_t fl_neg(value_t n) { if (isfixnum(n)) { fixnum_t s = fixnum(-numval(n)); if (__unlikely(n == (ufixnum_t)s)) return mk_long(-numval(n)); // negate overflows else return s; } else if (iscprim(n)) { struct cprim *cp = (struct cprim *)ptr(n); void *a = cp_data(cp); uint32_t ui32; int32_t i32; int64_t i64; switch (cp_numtype(cp)) { case T_INT8: return fixnum(-(int32_t) * (int8_t *)a); case T_UINT8: return fixnum(-(int32_t) * (uint8_t *)a); case T_INT16: return fixnum(-(int32_t) * (int16_t *)a); case T_UINT16: return fixnum(-(int32_t) * (uint16_t *)a); case T_INT32: i32 = *(int32_t *)a; if (i32 == (int32_t)INT32_TOP_BIT) return mk_uint32((uint32_t)INT32_TOP_BIT); return mk_int32(-i32); case T_UINT32: ui32 = *(uint32_t *)a; if (ui32 <= ((uint32_t)INT_MAX) + 1) return mk_int32(-(int32_t)ui32); return mk_int64(-(int64_t)ui32); case T_INT64: i64 = *(int64_t *)a; if (i64 == (int64_t)INT64_TOP_BIT) return mk_uint64((uint64_t)INT64_TOP_BIT); return mk_int64(-i64); case T_UINT64: return mk_int64(-(int64_t) * (uint64_t *)a); case T_FLOAT: return mk_float(-*(float *)a); case T_DOUBLE: return mk_double(-*(double *)a); break; } } type_error("-", "number", n); return FL_NIL; // TODO: remove } static value_t fl_mul_any(value_t *args, uint32_t nargs, int64_t Saccum) { uint64_t Uaccum = 1; double Faccum = 1; int32_t inexact = 0; uint32_t i; value_t arg = NIL; FOR_ARGS(i, 0, arg, args) { if (isfixnum(arg)) { Saccum *= numval(arg); continue; } else if (iscprim(arg)) { struct cprim *cp = (struct cprim *)ptr(arg); void *a = cp_data(cp); int64_t i64; switch (cp_numtype(cp)) { case T_INT8: Saccum *= *(int8_t *)a; break; case T_UINT8: Saccum *= *(uint8_t *)a; break; case T_INT16: Saccum *= *(int16_t *)a; break; case T_UINT16: Saccum *= *(uint16_t *)a; break; case T_INT32: Saccum *= *(int32_t *)a; break; case T_UINT32: Saccum *= *(uint32_t *)a; break; case T_INT64: i64 = *(int64_t *)a; if (i64 > 0) Uaccum *= (uint64_t)i64; else Saccum *= i64; break; case T_UINT64: Uaccum *= *(uint64_t *)a; break; case T_FLOAT: Faccum *= *(float *)a; inexact = 1; break; case T_DOUBLE: Faccum *= *(double *)a; inexact = 1; break; default: goto mul_type_error; } continue; } mul_type_error: type_error("*", "number", arg); } if (inexact) { Faccum *= Uaccum; Faccum *= Saccum; return mk_double(Faccum); } else if (Saccum < 0) { Saccum *= (int64_t)Uaccum; if (Saccum >= INT_MIN) { if (fits_fixnum(Saccum)) { return fixnum((fixnum_t)Saccum); } RETURN_INT_AS(Saccum, int32); } RETURN_INT_AS(Saccum, int64); } else { Uaccum *= (uint64_t)Saccum; } return return_from_uint64(Uaccum); } static int num_to_ptr(value_t a, fixnum_t *pi, numerictype_t *pt, void **pp) { struct cprim *cp; if (isfixnum(a)) { *pi = numval(a); *pp = pi; *pt = T_FIXNUM; } else if (iscprim(a)) { cp = (struct cprim *)ptr(a); *pp = cp_data(cp); *pt = cp_numtype(cp); } else { return 0; } return 1; } /* returns -1, 0, or 1 based on ordering of a and b eq: consider equality only, returning 0 or nonzero eqnans: NaNs considered equal to each other -0.0 not considered equal to 0.0 inexact not considered equal to exact fname: if not NULL, throws type errors, else returns 2 for type errors */ int numeric_compare(value_t a, value_t b, int eq, int eqnans, char *fname) { intptr_t ai, bi; numerictype_t ta, tb; void *aptr, *bptr; if (bothfixnums(a, b)) { if (a == b) return 0; if (numval(a) < numval(b)) return -1; return 1; } if (!num_to_ptr(a, &ai, &ta, &aptr)) { if (fname) type_error(fname, "number", a); else return 2; } if (!num_to_ptr(b, &bi, &tb, &bptr)) { if (fname) type_error(fname, "number", b); else return 2; } if (eq && eqnans && ((ta >= T_FLOAT) != (tb >= T_FLOAT))) return 1; if (cmp_eq(aptr, ta, bptr, tb, eqnans)) return 0; if (eq) return 1; if (cmp_lt(aptr, ta, bptr, tb)) return -1; return 1; } static value_t fl_div2(value_t a, value_t b) { double da, db; intptr_t ai, bi; numerictype_t ta, tb; void *aptr, *bptr; if (!num_to_ptr(a, &ai, &ta, &aptr)) type_error("/", "number", a); if (!num_to_ptr(b, &bi, &tb, &bptr)) type_error("/", "number", b); da = conv_to_double(aptr, ta); db = conv_to_double(bptr, tb); if (db == 0 && tb < T_FLOAT) // exact 0 DivideByZeroError(); da = da / db; if (ta < T_FLOAT && tb < T_FLOAT && (double)(int64_t)da == da) return return_from_int64((int64_t)da); return mk_double(da); } static value_t fl_idiv2(value_t a, value_t b) { intptr_t ai, bi; numerictype_t ta, tb; void *aptr, *bptr; int64_t a64, b64; if (!num_to_ptr(a, &ai, &ta, &aptr)) type_error("div0", "number", a); if (!num_to_ptr(b, &bi, &tb, &bptr)) type_error("div0", "number", b); if (ta == T_UINT64) { if (tb == T_UINT64) { if (*(uint64_t *)bptr == 0) goto div_error; return return_from_uint64(*(uint64_t *)aptr / *(uint64_t *)bptr); } b64 = conv_to_int64(bptr, tb); if (b64 < 0) { return return_from_int64( -(int64_t)(*(uint64_t *)aptr / (uint64_t)(-b64))); } if (b64 == 0) goto div_error; return return_from_uint64(*(uint64_t *)aptr / (uint64_t)b64); } if (tb == T_UINT64) { if (*(uint64_t *)bptr == 0) goto div_error; a64 = conv_to_int64(aptr, ta); if (a64 < 0) { return return_from_int64( -((int64_t)((uint64_t)(-a64) / *(uint64_t *)bptr))); } return return_from_uint64((uint64_t)a64 / *(uint64_t *)bptr); } b64 = conv_to_int64(bptr, tb); if (b64 == 0) goto div_error; return return_from_int64(conv_to_int64(aptr, ta) / b64); div_error: DivideByZeroError(); } static value_t fl_bitwise_op(value_t a, value_t b, int opcode, char *fname) { intptr_t ai, bi; numerictype_t ta, tb, itmp; void *aptr = NULL, *bptr = NULL, *ptmp; int64_t b64; if (!num_to_ptr(a, &ai, &ta, &aptr) || ta >= T_FLOAT) type_error(fname, "integer", a); if (!num_to_ptr(b, &bi, &tb, &bptr) || tb >= T_FLOAT) type_error(fname, "integer", b); if (ta < tb) { itmp = ta; ta = tb; tb = itmp; ptmp = aptr; aptr = bptr; bptr = ptmp; } // now a's type is larger than or same as b's b64 = conv_to_int64(bptr, tb); switch (opcode) { case 0: switch (ta) { case T_INT8: return fixnum(*(int8_t *)aptr & (int8_t)b64); case T_UINT8: return fixnum(*(uint8_t *)aptr & (uint8_t)b64); case T_INT16: return fixnum(*(int16_t *)aptr & (int16_t)b64); case T_UINT16: return fixnum(*(uint16_t *)aptr & (uint16_t)b64); case T_INT32: return mk_int32(*(int32_t *)aptr & (int32_t)b64); case T_UINT32: return mk_uint32(*(uint32_t *)aptr & (uint32_t)b64); case T_INT64: return mk_int64(*(int64_t *)aptr & (int64_t)b64); case T_UINT64: return mk_uint64(*(uint64_t *)aptr & (uint64_t)b64); case T_FLOAT: case T_DOUBLE: assert(0); } break; case 1: switch (ta) { case T_INT8: return fixnum(*(int8_t *)aptr | (int8_t)b64); case T_UINT8: return fixnum(*(uint8_t *)aptr | (uint8_t)b64); case T_INT16: return fixnum(*(int16_t *)aptr | (int16_t)b64); case T_UINT16: return fixnum(*(uint16_t *)aptr | (uint16_t)b64); case T_INT32: return mk_int32(*(int32_t *)aptr | (int32_t)b64); case T_UINT32: return mk_uint32(*(uint32_t *)aptr | (uint32_t)b64); case T_INT64: return mk_int64(*(int64_t *)aptr | (int64_t)b64); case T_UINT64: return mk_uint64(*(uint64_t *)aptr | (uint64_t)b64); case T_FLOAT: case T_DOUBLE: assert(0); } break; case 2: switch (ta) { case T_INT8: return fixnum(*(int8_t *)aptr ^ (int8_t)b64); case T_UINT8: return fixnum(*(uint8_t *)aptr ^ (uint8_t)b64); case T_INT16: return fixnum(*(int16_t *)aptr ^ (int16_t)b64); case T_UINT16: return fixnum(*(uint16_t *)aptr ^ (uint16_t)b64); case T_INT32: return mk_int32(*(int32_t *)aptr ^ (int32_t)b64); case T_UINT32: return mk_uint32(*(uint32_t *)aptr ^ (uint32_t)b64); case T_INT64: return mk_int64(*(int64_t *)aptr ^ (int64_t)b64); case T_UINT64: return mk_uint64(*(uint64_t *)aptr ^ (uint64_t)b64); case T_FLOAT: case T_DOUBLE: assert(0); } } assert(0); return NIL; } static value_t fl_logand(value_t *args, uint32_t nargs) { value_t v, e; int i; if (nargs == 0) return fixnum(-1); v = args[0]; FOR_ARGS(i, 1, e, args) { if (bothfixnums(v, e)) v = v & e; else v = fl_bitwise_op(v, e, 0, "logand"); } return v; } static value_t fl_logior(value_t *args, uint32_t nargs) { value_t v, e; int i; if (nargs == 0) return fixnum(0); v = args[0]; FOR_ARGS(i, 1, e, args) { if (bothfixnums(v, e)) v = v | e; else v = fl_bitwise_op(v, e, 1, "logior"); } return v; } static value_t fl_logxor(value_t *args, uint32_t nargs) { value_t v, e; int i; if (nargs == 0) return fixnum(0); v = args[0]; FOR_ARGS(i, 1, e, args) { if (bothfixnums(v, e)) v = fixnum(numval(v) ^ numval(e)); else v = fl_bitwise_op(v, e, 2, "logxor"); } return v; } static value_t fl_lognot(value_t *args, uint32_t nargs) { struct cprim *cp; void *aptr; value_t a; int ta; argcount("lognot", nargs, 1); a = args[0]; if (isfixnum(a)) return fixnum(~numval(a)); if (iscprim(a)) { cp = (struct cprim *)ptr(a); ta = cp_numtype(cp); aptr = cp_data(cp); switch (ta) { case T_INT8: return fixnum(~*(int8_t *)aptr); case T_UINT8: return fixnum(~*(uint8_t *)aptr); case T_INT16: return fixnum(~*(int16_t *)aptr); case T_UINT16: return fixnum(~*(uint16_t *)aptr); case T_INT32: return mk_int32(~*(int32_t *)aptr); case T_UINT32: return mk_uint32(~*(uint32_t *)aptr); case T_INT64: return mk_int64(~*(int64_t *)aptr); case T_UINT64: return mk_uint64(~*(uint64_t *)aptr); } } type_error("lognot", "integer", a); return FL_NIL; // TODO: remove } static value_t fl_ash(value_t *args, uint32_t nargs) { int64_t accum, i64; value_t a; fixnum_t n; struct cprim *cp; void *aptr; int ta; argcount("ash", nargs, 2); a = args[0]; n = tofixnum(args[1], "ash"); if (isfixnum(a)) { if (n <= 0) return fixnum(numval(a) >> (-n)); accum = ((int64_t)numval(a)) << n; if (fits_fixnum(accum)) return fixnum(accum); else return return_from_int64(accum); } if (iscprim(a)) { if (n == 0) return a; cp = (struct cprim *)ptr(a); ta = cp_numtype(cp); aptr = cp_data(cp); if (n < 0) { n = -n; switch (ta) { case T_INT8: return fixnum((*(int8_t *)aptr) >> n); case T_UINT8: return fixnum((*(uint8_t *)aptr) >> n); case T_INT16: return fixnum((*(int16_t *)aptr) >> n); case T_UINT16: return fixnum((*(uint16_t *)aptr) >> n); case T_INT32: return mk_int32((*(int32_t *)aptr) >> n); case T_UINT32: return mk_uint32((*(uint32_t *)aptr) >> n); case T_INT64: return mk_int64((*(int64_t *)aptr) >> n); case T_UINT64: return mk_uint64((*(uint64_t *)aptr) >> n); } } else { if (ta == T_UINT64) return return_from_uint64((*(uint64_t *)aptr) << n); else if (ta < T_FLOAT) { i64 = conv_to_int64(aptr, ta); return return_from_int64(i64 << n); } } } type_error("ash", "integer", a); return NIL; }