Import (chibi match) library from snow-fort.org

This commit is contained in:
Lassi Kortela 2019-11-18 00:49:11 +02:00
parent 748cccbd00
commit 978ea23728
2 changed files with 979 additions and 0 deletions

7
chibi/match.sld Normal file
View File

@ -0,0 +1,7 @@
(define-library (chibi match)
(export match match-lambda match-lambda* match-let match-letrec match-let*)
(cond-expand
(chibi (import (chibi)))
(else (import (scheme base))))
(include "match/match.scm"))

972
chibi/match/match.scm Normal file
View File

@ -0,0 +1,972 @@
;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*-
;;
;; This code is written by Alex Shinn and placed in the
;; Public Domain. All warranties are disclaimed.
;;> \example-import[(srfi 9)]
;;> A portable hygienic pattern matcher.
;;> This is a full superset of the popular \hyperlink[
;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match}
;;> package by Andrew Wright, written in fully portable \scheme{syntax-rules}
;;> and thus preserving hygiene.
;;> The most notable extensions are the ability to use \emph{non-linear}
;;> patterns - patterns in which the same identifier occurs multiple
;;> times, tail patterns after ellipsis, and the experimental tree patterns.
;;> \section{Patterns}
;;> Patterns are written to look like the printed representation of
;;> the objects they match. The basic usage is
;;> \scheme{(match expr (pat body ...) ...)}
;;> where the result of \var{expr} is matched against each pattern in
;;> turn, and the corresponding body is evaluated for the first to
;;> succeed. Thus, a list of three elements matches a list of three
;;> elements.
;;> \example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))}
;;> If no patterns match an error is signalled.
;;> Identifiers will match anything, and make the corresponding
;;> binding available in the body.
;;> \example{(match (list 1 2 3) ((a b c) b))}
;;> If the same identifier occurs multiple times, the first instance
;;> will match anything, but subsequent instances must match a value
;;> which is \scheme{equal?} to the first.
;;> \example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))}
;;> The special identifier \scheme{_} matches anything, no matter how
;;> many times it is used, and does not bind the result in the body.
;;> \example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))}
;;> To match a literal identifier (or list or any other literal), use
;;> \scheme{quote}.
;;> \example{(match 'a ('b 1) ('a 2))}
;;> Analogous to its normal usage in scheme, \scheme{quasiquote} can
;;> be used to quote a mostly literally matching object with selected
;;> parts unquoted.
;;> \example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}|
;;> Often you want to match any number of a repeated pattern. Inside
;;> a list pattern you can append \scheme{...} after an element to
;;> match zero or more of that pattern (like a regexp Kleene star).
;;> \example{(match (list 1 2) ((1 2 3 ...) #t))}
;;> \example{(match (list 1 2 3) ((1 2 3 ...) #t))}
;;> \example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))}
;;> Pattern variables matched inside the repeated pattern are bound to
;;> a list of each matching instance in the body.
;;> \example{(match (list 1 2) ((a b c ...) c))}
;;> \example{(match (list 1 2 3) ((a b c ...) c))}
;;> \example{(match (list 1 2 3 4 5) ((a b c ...) c))}
;;> More than one \scheme{...} may not be used in the same list, since
;;> this would require exponential backtracking in the general case.
;;> However, \scheme{...} need not be the final element in the list,
;;> and may be succeeded by a fixed number of patterns.
;;> \example{(match (list 1 2 3 4) ((a b c ... d e) c))}
;;> \example{(match (list 1 2 3 4 5) ((a b c ... d e) c))}
;;> \example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))}
;;> \scheme{___} is provided as an alias for \scheme{...} when it is
;;> inconvenient to use the ellipsis (as in a syntax-rules template).
;;> The \scheme{..1} syntax is exactly like the \scheme{...} except
;;> that it matches one or more repetitions (like a regexp "+").
;;> \example{(match (list 1 2) ((a b c ..1) c))}
;;> \example{(match (list 1 2 3) ((a b c ..1) c))}
;;> The boolean operators \scheme{and}, \scheme{or} and \scheme{not}
;;> can be used to group and negate patterns analogously to their
;;> Scheme counterparts.
;;> The \scheme{and} operator ensures that all subpatterns match.
;;> This operator is often used with the idiom \scheme{(and x pat)} to
;;> bind \var{x} to the entire value that matches \var{pat}
;;> (c.f. "as-patterns" in ML or Haskell). Another common use is in
;;> conjunction with \scheme{not} patterns to match a general case
;;> with certain exceptions.
;;> \example{(match 1 ((and) #t))}
;;> \example{(match 1 ((and x) x))}
;;> \example{(match 1 ((and x 1) x))}
;;> The \scheme{or} operator ensures that at least one subpattern
;;> matches. If the same identifier occurs in different subpatterns,
;;> it is matched independently. All identifiers from all subpatterns
;;> are bound if the \scheme{or} operator matches, but the binding is
;;> only defined for identifiers from the subpattern which matched.
;;> \example{(match 1 ((or) #t) (else #f))}
;;> \example{(match 1 ((or x) x))}
;;> \example{(match 1 ((or x 2) x))}
;;> The \scheme{not} operator succeeds if the given pattern doesn't
;;> match. None of the identifiers used are available in the body.
;;> \example{(match 1 ((not 2) #t))}
;;> The more general operator \scheme{?} can be used to provide a
;;> predicate. The usage is \scheme{(? predicate pat ...)} where
;;> \var{predicate} is a Scheme expression evaluating to a predicate
;;> called on the value to match, and any optional patterns after the
;;> predicate are then matched as in an \scheme{and} pattern.
;;> \example{(match 1 ((? odd? x) x))}
;;> The field operator \scheme{=} is used to extract an arbitrary
;;> field and match against it. It is useful for more complex or
;;> conditional destructuring that can't be more directly expressed in
;;> the pattern syntax. The usage is \scheme{(= field pat)}, where
;;> \var{field} can be any expression, and should result in a
;;> procedure of one argument, which is applied to the value to match
;;> to generate a new value to match against \var{pat}.
;;> Thus the pattern \scheme{(and (= car x) (= cdr y))} is equivalent
;;> to \scheme{(x . y)}, except it will result in an immediate error
;;> if the value isn't a pair.
;;> \example{(match '(1 . 2) ((= car x) x))}
;;> \example{(match 4 ((= square x) x))}
;;> The record operator \scheme{$} is used as a concise way to match
;;> records defined by SRFI-9 (or SRFI-99). The usage is
;;> \scheme{($ rtd field ...)}, where \var{rtd} should be the record
;;> type descriptor specified as the first argument to
;;> \scheme{define-record-type}, and each \var{field} is a subpattern
;;> matched against the fields of the record in order. Not all fields
;;> must be present.
;;> \example{
;;> (let ()
;;> (define-record-type employee
;;> (make-employee name title)
;;> employee?
;;> (name get-name)
;;> (title get-title))
;;> (match (make-employee "Bob" "Doctor")
;;> (($ employee n t) (list t n))))
;;> }
;;> For records with more fields it can be helpful to match them by
;;> name rather than position. For this you can use the \scheme{@}
;;> operator, originally a Gauche extension:
;;> \example{
;;> (let ()
;;> (define-record-type employee
;;> (make-employee name title)
;;> employee?
;;> (name get-name)
;;> (title get-title))
;;> (match (make-employee "Bob" "Doctor")
;;> ((@ employee (title t) (name n)) (list t n))))
;;> }
;;> The \scheme{set!} and \scheme{get!} operators are used to bind an
;;> identifier to the setter and getter of a field, respectively. The
;;> setter is a procedure of one argument, which mutates the field to
;;> that argument. The getter is a procedure of no arguments which
;;> returns the current value of the field.
;;> \example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))}
;;> \example{(match '(1 . 2) ((1 . (get! g)) (g)))}
;;> The new operator \scheme{***} can be used to search a tree for
;;> subpatterns. A pattern of the form \scheme{(x *** y)} represents
;;> the subpattern \var{y} located somewhere in a tree where the path
;;> from the current object to \var{y} can be seen as a list of the
;;> form \scheme{(x ...)}. \var{y} can immediately match the current
;;> object in which case the path is the empty list. In a sense it's
;;> a 2-dimensional version of the \scheme{...} pattern.
;;> As a common case the pattern \scheme{(_ *** y)} can be used to
;;> search for \var{y} anywhere in a tree, regardless of the path
;;> used.
;;> \example{(match '(a (a (a b))) ((x *** 'b) x))}
;;> \example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Notes
;; The implementation is a simple generative pattern matcher - each
;; pattern is expanded into the required tests, calling a failure
;; continuation if the tests fail. This makes the logic easy to
;; follow and extend, but produces sub-optimal code in cases where you
;; have many similar clauses due to repeating the same tests.
;; Nonetheless a smart compiler should be able to remove the redundant
;; tests. For MATCH-LET and DESTRUCTURING-BIND type uses there is no
;; performance hit.
;; The original version was written on 2006/11/29 and described in the
;; following Usenet post:
;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
;; and is still available at
;; http://synthcode.com/scheme/match-simple.scm
;; It's just 80 lines for the core MATCH, and an extra 40 lines for
;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar.
;;
;; A variant of this file which uses COND-EXPAND in a few places for
;; performance can be found at
;; http://synthcode.com/scheme/match-cond-expand.scm
;;
;; 2015/05/09 - fixing bug in var extraction of quasiquote patterns
;; 2014/11/24 - adding Gauche's `@' pattern for named record field matching
;; 2012/12/26 - wrapping match-let&co body in lexical closure
;; 2012/11/28 - fixing typo s/vetor/vector in largely unused set! code
;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns
;; 2011/09/25 - fixing bug when directly matching an identifier repeated in
;; the pattern (thanks to Stefan Israelsson Tampe)
;; 2011/01/27 - fixing bug when matching tail patterns against improper lists
;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès)
;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns
;; 2009/11/25 - adding `***' tree search patterns
;; 2008/03/20 - fixing bug where (a ...) matched non-lists
;; 2008/03/15 - removing redundant check in vector patterns
;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
;; 2007/09/04 - fixing quasiquote patterns
;; 2007/07/21 - allowing ellipsis patterns in non-final list positions
;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipsis
;; (thanks to Taylor Campbell)
;; 2007/04/08 - clean up, commenting
;; 2006/12/24 - bugfixes
;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; force compile-time syntax errors with useful messages
(define-syntax match-syntax-error
(syntax-rules ()
((_) (match-syntax-error "invalid match-syntax-error usage"))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;> \section{Syntax}
;;> \macro{(match expr (pattern . body) ...)\br{}
;;> (match expr (pattern (=> failure) . body) ...)}
;;> The result of \var{expr} is matched against each \var{pattern} in
;;> turn, according to the pattern rules described in the previous
;;> section, until the the first \var{pattern} matches. When a match is
;;> found, the corresponding \var{body}s are evaluated in order,
;;> and the result of the last expression is returned as the result
;;> of the entire \scheme{match}. If a \var{failure} is provided,
;;> then it is bound to a procedure of no arguments which continues,
;;> processing at the next \var{pattern}. If no \var{pattern} matches,
;;> an error is signalled.
;; The basic interface. MATCH just performs some basic syntax
;; validation, binds the match expression to a temporary variable `v',
;; and passes it on to MATCH-NEXT. It's a constant throughout the
;; code below that the binding `v' is a direct variable reference, not
;; an expression.
(define-syntax match
(syntax-rules ()
((match)
(match-syntax-error "missing match expression"))
((match atom)
(match-syntax-error "no match clauses"))
((match (app ...) (pat . body) ...)
(let ((v (app ...)))
(match-next v ((app ...) (set! (app ...))) (pat . body) ...)))
((match #(vec ...) (pat . body) ...)
(let ((v #(vec ...)))
(match-next v (v (set! v)) (pat . body) ...)))
((match atom (pat . body) ...)
(let ((v atom))
(match-next v (atom (set! atom)) (pat . body) ...)))
))
;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
;; clauses. `g+s' is a list of two elements, the get! and set!
;; expressions respectively.
(define-syntax match-next
(syntax-rules (=>)
;; no more clauses, the match failed
((match-next v g+s)
(error 'match "no matching pattern"))
;; named failure continuation
((match-next v g+s (pat (=> failure) . body) . rest)
(let ((failure (lambda () (match-next v g+s . rest))))
;; match-one analyzes the pattern for us
(match-one v pat g+s (match-drop-ids (begin . body)) (failure) ())))
;; anonymous failure continuation, give it a dummy name
((match-next v g+s (pat . body) . rest)
(match-next v g+s (pat (=> failure) . body) . rest))))
;; MATCH-ONE first checks for ellipsis patterns, otherwise passes on to
;; MATCH-TWO.
(define-syntax match-one
(syntax-rules ()
;; If it's a list of two or more values, check to see if the
;; second one is an ellipsis and handle accordingly, otherwise go
;; to MATCH-TWO.
((match-one v (p q . r) g+s sk fk i)
(match-check-ellipsis
q
(match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ())
(match-two v (p q . r) g+s sk fk i)))
;; Go directly to MATCH-TWO.
((match-one . x)
(match-two . x))))
;; This is the guts of the pattern matcher. We are passed a lot of
;; information in the form:
;;
;; (match-two var pattern getter setter success-k fail-k (ids ...))
;;
;; usually abbreviated
;;
;; (match-two v p g+s sk fk i)
;;
;; where VAR is the symbol name of the current variable we are
;; matching, PATTERN is the current pattern, getter and setter are the
;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
;; continuation (which is just a thunk call and is thus safe to expand
;; multiple times) and IDS are the list of identifiers bound in the
;; pattern so far.
(define-syntax match-two
(syntax-rules (_ ___ ..1 *** quote quasiquote ? $ struct @ object = and or not set! get!)
((match-two v () g+s (sk ...) fk i)
(if (null? v) (sk ... i) fk))
((match-two v (quote p) g+s (sk ...) fk i)
(if (equal? v 'p) (sk ... i) fk))
((match-two v (quasiquote p) . x)
(match-quasiquote v p . x))
((match-two v (and) g+s (sk ...) fk i) (sk ... i))
((match-two v (and p q ...) g+s sk fk i)
(match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i))
((match-two v (or) g+s sk fk i) fk)
((match-two v (or p) . x)
(match-one v p . x))
((match-two v (or p ...) g+s sk fk i)
(match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ()))
((match-two v (not p) g+s (sk ...) fk i)
(match-one v p g+s (match-drop-ids fk) (sk ... i) i))
((match-two v (get! getter) (g s) (sk ...) fk i)
(let ((getter (lambda () g))) (sk ... i)))
((match-two v (set! setter) (g (s ...)) (sk ...) fk i)
(let ((setter (lambda (x) (s ... x)))) (sk ... i)))
((match-two v (? pred . p) g+s sk fk i)
(if (pred v) (match-one v (and . p) g+s sk fk i) fk))
((match-two v (= proc p) . x)
(let ((w (proc v))) (match-one w p . x)))
((match-two v (p ___ . r) g+s sk fk i)
(match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ()))
((match-two v (p) g+s sk fk i)
(if (and (pair? v) (null? (cdr v)))
(let ((w (car v)))
(match-one w p ((car v) (set-car! v)) sk fk i))
fk))
((match-two v (p *** q) g+s sk fk i)
(match-extract-vars p (match-gen-search v p q g+s sk fk i) i ()))
((match-two v (p *** . q) g+s sk fk i)
(match-syntax-error "invalid use of ***" (p *** . q)))
((match-two v (p ..1) g+s sk fk i)
(if (pair? v)
(match-one v (p ___) g+s sk fk i)
fk))
((match-two v ($ rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-refs v rec 0 (p ...) g+s sk fk i)
fk))
((match-two v (struct rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-refs v rec 0 (p ...) g+s sk fk i)
fk))
((match-two v (@ rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-named-refs v rec (p ...) g+s sk fk i)
fk))
((match-two v (object rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-named-refs v rec (p ...) g+s sk fk i)
fk))
((match-two v (p . q) g+s sk fk i)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-one w p ((car v) (set-car! v))
(match-one x q ((cdr v) (set-cdr! v)) sk fk)
fk
i))
fk))
((match-two v #(p ...) g+s . x)
(match-vector v 0 () (p ...) . x))
((match-two v _ g+s (sk ...) fk i) (sk ... i))
;; Not a pair or vector or special literal, test to see if it's a
;; new symbol, in which case we just bind it, or if it's an
;; already bound symbol or some other literal, in which case we
;; compare it with EQUAL?.
((match-two v x g+s (sk ...) fk (id ...))
(let-syntax
((new-sym?
(syntax-rules (id ...)
((new-sym? x sk2 fk2) sk2)
((new-sym? y sk2 fk2) fk2))))
(new-sym? random-sym-to-match
(let ((x v)) (sk ... (id ... x)))
(if (equal? v x) (sk ... (id ...)) fk))))
))
;; QUASIQUOTE patterns
(define-syntax match-quasiquote
(syntax-rules (unquote unquote-splicing quasiquote)
((_ v (unquote p) g+s sk fk i)
(match-one v p g+s sk fk i))
((_ v ((unquote-splicing p) . rest) g+s sk fk i)
(if (pair? v)
(match-one v
(p . tmp)
(match-quasiquote tmp rest g+s sk fk)
fk
i)
fk))
((_ v (quasiquote p) g+s sk fk i . depth)
(match-quasiquote v p g+s sk fk i #f . depth))
((_ v (unquote p) g+s sk fk i x . depth)
(match-quasiquote v p g+s sk fk i . depth))
((_ v (unquote-splicing p) g+s sk fk i x . depth)
(match-quasiquote v p g+s sk fk i . depth))
((_ v (p . q) g+s sk fk i . depth)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-quasiquote
w p g+s
(match-quasiquote-step x q g+s sk fk depth)
fk i . depth))
fk))
((_ v #(elt ...) g+s sk fk i . depth)
(if (vector? v)
(let ((ls (vector->list v)))
(match-quasiquote ls (elt ...) g+s sk fk i . depth))
fk))
((_ v x g+s sk fk i . depth)
(match-one v 'x g+s sk fk i))))
(define-syntax match-quasiquote-step
(syntax-rules ()
((match-quasiquote-step x q g+s sk fk depth i)
(match-quasiquote x q g+s sk fk i . depth))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Utilities
;; Takes two values and just expands into the first.
(define-syntax match-drop-ids
(syntax-rules ()
((_ expr ids ...) expr)))
(define-syntax match-tuck-ids
(syntax-rules ()
((_ (letish args (expr ...)) ids ...)
(letish args (expr ... ids ...)))))
(define-syntax match-drop-first-arg
(syntax-rules ()
((_ arg expr) expr)))
;; To expand an OR group we try each clause in succession, passing the
;; first that succeeds to the success continuation. On failure for
;; any clause, we just try the next clause, finally resorting to the
;; failure continuation fk if all clauses fail. The only trick is
;; that we want to unify the identifiers, so that the success
;; continuation can refer to a variable from any of the OR clauses.
(define-syntax match-gen-or
(syntax-rules ()
((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...))
(let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
(match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...))))))
(define-syntax match-gen-or-step
(syntax-rules ()
((_ v () g+s sk fk . x)
;; no OR clauses, call the failure continuation
fk)
((_ v (p) . x)
;; last (or only) OR clause, just expand normally
(match-one v p . x))
((_ v (p . q) g+s sk fk i)
;; match one and try the remaining on failure
(let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i))))
(match-one v p g+s sk (fk2) i)))
))
;; We match a pattern (p ...) by matching the pattern p in a loop on
;; each element of the variable, accumulating the bound ids into lists.
;; Look at the body of the simple case - it's just a named let loop,
;; matching each element in turn to the same pattern. The only trick
;; is that we want to keep track of the lists of each extracted id, so
;; when the loop recurses we cons the ids onto their respective list
;; variables, and on success we bind the ids (what the user input and
;; expects to see in the success body) to the reversed accumulated
;; list IDs.
(define-syntax match-gen-ellipsis
(syntax-rules ()
((_ v p () g+s (sk ...) fk i ((id id-ls) ...))
(match-check-identifier p
;; simplest case equivalent to (p ...), just bind the list
(let ((p v))
(if (list? p)
(sk ... i)
fk))
;; simple case, match all elements of the list
(let loop ((ls v) (id-ls '()) ...)
(cond
((null? ls)
(let ((id (reverse id-ls)) ...) (sk ... i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p ((car ls) (set-car! ls))
(match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
fk i)))
(else
fk)))))
((_ v p r g+s (sk ...) fk i ((id id-ls) ...))
;; general case, trailing patterns to match, keep track of the
;; remaining list length so we don't need any backtracking
(match-verify-no-ellipsis
r
(let* ((tail-len (length 'r))
(ls v)
(len (and (list? ls) (length ls))))
(if (or (not len) (< len tail-len))
fk
(let loop ((ls ls) (n len) (id-ls '()) ...)
(cond
((= n tail-len)
(let ((id (reverse id-ls)) ...)
(match-one ls r (#f #f) (sk ...) fk i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p ((car ls) (set-car! ls))
(match-drop-ids
(loop (cdr ls) (- n 1) (cons id id-ls) ...))
fk
i)))
(else
fk)))))))))
;; This is just a safety check. Although unlike syntax-rules we allow
;; trailing patterns after an ellipsis, we explicitly disable multiple
;; ellipsis at the same level. This is because in the general case
;; such patterns are exponential in the number of ellipsis, and we
;; don't want to make it easy to construct very expensive operations
;; with simple looking patterns. For example, it would be O(n^2) for
;; patterns like (a ... b ...) because we must consider every trailing
;; element for every possible break for the leading "a ...".
(define-syntax match-verify-no-ellipsis
(syntax-rules ()
((_ (x . y) sk)
(match-check-ellipsis
x
(match-syntax-error
"multiple ellipsis patterns not allowed at same level")
(match-verify-no-ellipsis y sk)))
((_ () sk)
sk)
((_ x sk)
(match-syntax-error "dotted tail not allowed after ellipsis" x))))
;; To implement the tree search, we use two recursive procedures. TRY
;; attempts to match Y once, and on success it calls the normal SK on
;; the accumulated list ids as in MATCH-GEN-ELLIPSIS. On failure, we
;; call NEXT which first checks if the current value is a list
;; beginning with X, then calls TRY on each remaining element of the
;; list. Since TRY will recursively call NEXT again on failure, this
;; effects a full depth-first search.
;;
;; The failure continuation throughout is a jump to the next step in
;; the tree search, initialized with the original failure continuation
;; FK.
(define-syntax match-gen-search
(syntax-rules ()
((match-gen-search v p q g+s sk fk i ((id id-ls) ...))
(letrec ((try (lambda (w fail id-ls ...)
(match-one w q g+s
(match-tuck-ids
(let ((id (reverse id-ls)) ...)
sk))
(next w fail id-ls ...) i)))
(next (lambda (w fail id-ls ...)
(if (not (pair? w))
(fail)
(let ((u (car w)))
(match-one
u p ((car w) (set-car! w))
(match-drop-ids
;; accumulate the head variables from
;; the p pattern, and loop over the tail
(let ((id-ls (cons id id-ls)) ...)
(let lp ((ls (cdr w)))
(if (pair? ls)
(try (car ls)
(lambda () (lp (cdr ls)))
id-ls ...)
(fail)))))
(fail) i))))))
;; the initial id-ls binding here is a dummy to get the right
;; number of '()s
(let ((id-ls '()) ...)
(try v (lambda () fk) id-ls ...))))))
;; Vector patterns are just more of the same, with the slight
;; exception that we pass around the current vector index being
;; matched.
(define-syntax match-vector
(syntax-rules (___)
((_ v n pats (p q) . x)
(match-check-ellipsis q
(match-gen-vector-ellipsis v n pats p . x)
(match-vector-two v n pats (p q) . x)))
((_ v n pats (p ___) sk fk i)
(match-gen-vector-ellipsis v n pats p sk fk i))
((_ . x)
(match-vector-two . x))))
;; Check the exact vector length, then check each element in turn.
(define-syntax match-vector-two
(syntax-rules ()
((_ v n ((pat index) ...) () sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (= len n)
(match-vector-step v ((pat index) ...) sk fk i)
fk))
fk))
((_ v n (pats ...) (p . q) . x)
(match-vector v (+ n 1) (pats ... (p n)) q . x))))
(define-syntax match-vector-step
(syntax-rules ()
((_ v () (sk ...) fk i) (sk ... i))
((_ v ((pat index) . rest) sk fk i)
(let ((w (vector-ref v index)))
(match-one w pat ((vector-ref v index) (vector-set! v index))
(match-vector-step v rest sk fk)
fk i)))))
;; With a vector ellipsis pattern we first check to see if the vector
;; length is at least the required length.
(define-syntax match-gen-vector-ellipsis
(syntax-rules ()
((_ v n ((pat index) ...) p sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (>= len n)
(match-vector-step v ((pat index) ...)
(match-vector-tail v p n len sk fk)
fk i)
fk))
fk))))
(define-syntax match-vector-tail
(syntax-rules ()
((_ v p n len sk fk i)
(match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
(define-syntax match-vector-tail-two
(syntax-rules ()
((_ v p n len (sk ...) fk i ((id id-ls) ...))
(let loop ((j n) (id-ls '()) ...)
(if (>= j len)
(let ((id (reverse id-ls)) ...) (sk ... i))
(let ((w (vector-ref v j)))
(match-one w p ((vector-ref v j) (vector-set! v j))
(match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
fk i)))))))
(define-syntax match-record-refs
(syntax-rules ()
((_ v rec n (p . q) g+s sk fk i)
(let ((w (slot-ref rec v n)))
(match-one w p ((slot-ref rec v n) (slot-set! rec v n))
(match-record-refs v rec (+ n 1) q g+s sk fk) fk i)))
((_ v rec n () g+s (sk ...) fk i)
(sk ... i))))
(define-syntax match-record-named-refs
(syntax-rules ()
((_ v rec ((f p) . q) g+s sk fk i)
(let ((w (slot-ref rec v 'f)))
(match-one w p ((slot-ref rec v 'f) (slot-set! rec v 'f))
(match-record-named-refs v rec q g+s sk fk) fk i)))
((_ v rec () g+s (sk ...) fk i)
(sk ... i))))
;; Extract all identifiers in a pattern. A little more complicated
;; than just looking for symbols, we need to ignore special keywords
;; and non-pattern forms (such as the predicate expression in ?
;; patterns), and also ignore previously bound identifiers.
;;
;; Calls the continuation with all new vars as a list of the form
;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely
;; pair with the original variable (e.g. it's used in the ellipsis
;; generation for list variables).
;;
;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
(define-syntax match-extract-vars
(syntax-rules (_ ___ ..1 *** ? $ struct @ object = quote quasiquote and or not get! set!)
((match-extract-vars (? pred . p) . x)
(match-extract-vars p . x))
((match-extract-vars ($ rec . p) . x)
(match-extract-vars p . x))
((match-extract-vars (struct rec . p) . x)
(match-extract-vars p . x))
((match-extract-vars (@ rec (f p) ...) . x)
(match-extract-vars (p ...) . x))
((match-extract-vars (object rec (f p) ...) . x)
(match-extract-vars (p ...) . x))
((match-extract-vars (= proc p) . x)
(match-extract-vars p . x))
((match-extract-vars (quote x) (k ...) i v)
(k ... v))
((match-extract-vars (quasiquote x) k i v)
(match-extract-quasiquote-vars x k i v (#t)))
((match-extract-vars (and . p) . x)
(match-extract-vars p . x))
((match-extract-vars (or . p) . x)
(match-extract-vars p . x))
((match-extract-vars (not . p) . x)
(match-extract-vars p . x))
;; A non-keyword pair, expand the CAR with a continuation to
;; expand the CDR.
((match-extract-vars (p q . r) k i v)
(match-check-ellipsis
q
(match-extract-vars (p . r) k i v)
(match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
((match-extract-vars (p . q) k i v)
(match-extract-vars p (match-extract-vars-step q k i v) i ()))
((match-extract-vars #(p ...) . x)
(match-extract-vars (p ...) . x))
((match-extract-vars _ (k ...) i v) (k ... v))
((match-extract-vars ___ (k ...) i v) (k ... v))
((match-extract-vars *** (k ...) i v) (k ... v))
((match-extract-vars ..1 (k ...) i v) (k ... v))
;; This is the main part, the only place where we might add a new
;; var if it's an unbound symbol.
((match-extract-vars p (k ...) (i ...) v)
(let-syntax
((new-sym?
(syntax-rules (i ...)
((new-sym? p sk fk) sk)
((new-sym? any sk fk) fk))))
(new-sym? random-sym-to-match
(k ... ((p p-ls) . v))
(k ... v))))
))
;; Stepper used in the above so it can expand the CAR and CDR
;; separately.
(define-syntax match-extract-vars-step
(syntax-rules ()
((_ p k i v ((v2 v2-ls) ...))
(match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
))
(define-syntax match-extract-quasiquote-vars
(syntax-rules (quasiquote unquote unquote-splicing)
((match-extract-quasiquote-vars (quasiquote x) k i v d)
(match-extract-quasiquote-vars x k i v (#t . d)))
((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
(match-extract-quasiquote-vars (unquote x) k i v d))
((match-extract-quasiquote-vars (unquote x) k i v (#t))
(match-extract-vars x k i v))
((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
(match-extract-quasiquote-vars x k i v d))
((match-extract-quasiquote-vars (x . y) k i v d)
(match-extract-quasiquote-vars
x
(match-extract-quasiquote-vars-step y k i v d) i () d))
((match-extract-quasiquote-vars #(x ...) k i v d)
(match-extract-quasiquote-vars (x ...) k i v d))
((match-extract-quasiquote-vars x (k ...) i v d)
(k ... v))
))
(define-syntax match-extract-quasiquote-vars-step
(syntax-rules ()
((_ x k i v d ((v2 v2-ls) ...))
(match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Gimme some sugar baby.
;;> Shortcut for \scheme{lambda} + \scheme{match}. Creates a
;;> procedure of one argument, and matches that argument against each
;;> clause.
(define-syntax match-lambda
(syntax-rules ()
((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...)))))
;;> Similar to \scheme{match-lambda}. Creates a procedure of any
;;> number of arguments, and matches the argument list against each
;;> clause.
(define-syntax match-lambda*
(syntax-rules ()
((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...)))))
;;> Matches each var to the corresponding expression, and evaluates
;;> the body with all match variables in scope. Raises an error if
;;> any of the expressions fail to match. Syntax analogous to named
;;> let can also be used for recursive functions which match on their
;;> arguments as in \scheme{match-lambda*}.
(define-syntax match-let
(syntax-rules ()
((_ ((var value) ...) . body)
(match-let/helper let () () ((var value) ...) . body))
((_ loop ((var init) ...) . body)
(match-named-let loop ((var init) ...) . body))))
;;> Similar to \scheme{match-let}, but analogously to \scheme{letrec}
;;> matches and binds the variables with all match variables in scope.
(define-syntax match-letrec
(syntax-rules ()
((_ ((var value) ...) . body)
(match-let/helper letrec () () ((var value) ...) . body))))
(define-syntax match-let/helper
(syntax-rules ()
((_ let ((var expr) ...) () () . body)
(let ((var expr) ...) . body))
((_ let ((var expr) ...) ((pat tmp) ...) () . body)
(let ((var expr) ...)
(match-let* ((pat tmp) ...)
. body)))
((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
((_ let (v ...) (p ...) ((a expr) . rest) . body)
(match-let/helper let (v ... (a expr)) (p ...) rest . body))))
(define-syntax match-named-let
(syntax-rules ()
((_ loop ((pat expr var) ...) () . body)
(let loop ((var expr) ...)
(match-let ((pat var) ...)
. body)))
((_ loop (v ...) ((pat expr) . rest) . body)
(match-named-let loop (v ... (pat expr tmp)) rest . body))))
;;> \macro{(match-let* ((var value) ...) body ...)}
;;> Similar to \scheme{match-let}, but analogously to \scheme{let*}
;;> matches and binds the variables in sequence, with preceding match
;;> variables in scope.
(define-syntax match-let*
(syntax-rules ()
((_ () . body)
(let () . body))
((_ ((pat expr) . rest) . body)
(match expr (pat (match-let* rest . body))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Otherwise COND-EXPANDed bits.
(cond-expand
(chibi
(define-syntax match-check-ellipsis
(er-macro-transformer
(lambda (expr rename compare)
(if (compare '... (cadr expr))
(car (cddr expr))
(cadr (cddr expr))))))
(define-syntax match-check-identifier
(er-macro-transformer
(lambda (expr rename compare)
(if (identifier? (cadr expr))
(car (cddr expr))
(cadr (cddr expr)))))))
(else
;; Portable versions
;;
;; This *should* work, but doesn't :(
;; (define-syntax match-check-ellipsis
;; (syntax-rules (...)
;; ((_ ... sk fk) sk)
;; ((_ x sk fk) fk)))
;;
;; This is a little more complicated, and introduces a new let-syntax,
;; but should work portably in any R[56]RS Scheme. Taylor Campbell
;; originally came up with the idea.
(define-syntax match-check-ellipsis
(syntax-rules ()
;; these two aren't necessary but provide fast-case failures
((match-check-ellipsis (a . b) success-k failure-k) failure-k)
((match-check-ellipsis #(a ...) success-k failure-k) failure-k)
;; matching an atom
((match-check-ellipsis id success-k failure-k)
(let-syntax ((ellipsis? (syntax-rules ()
;; iff `id' is `...' here then this will
;; match a list of any length
((ellipsis? (foo id) sk fk) sk)
((ellipsis? other sk fk) fk))))
;; this list of three elements will only match the (foo id) list
;; above if `id' is `...'
(ellipsis? (a b c) success-k failure-k)))))
;; This is portable but can be more efficient with non-portable
;; extensions. This trick was originally discovered by Oleg Kiselyov.
(define-syntax match-check-identifier
(syntax-rules ()
;; fast-case failures, lists and vectors are not identifiers
((_ (x . y) success-k failure-k) failure-k)
((_ #(x ...) success-k failure-k) failure-k)
;; x is an atom
((_ x success-k failure-k)
(let-syntax
((sym?
(syntax-rules ()
;; if the symbol `abracadabra' matches x, then x is a
;; symbol
((sym? x sk fk) sk)
;; otherwise x is a non-symbol datum
((sym? y sk fk) fk))))
(sym? abracadabra success-k failure-k)))))))