Import (chibi match) library from snow-fort.org
This commit is contained in:
		
							parent
							
								
									748cccbd00
								
							
						
					
					
						commit
						978ea23728
					
				| 
						 | 
				
			
			@ -0,0 +1,7 @@
 | 
			
		|||
 | 
			
		||||
(define-library (chibi match)
 | 
			
		||||
  (export match match-lambda match-lambda* match-let match-letrec match-let*)
 | 
			
		||||
  (cond-expand
 | 
			
		||||
   (chibi (import (chibi)))
 | 
			
		||||
   (else (import (scheme base))))
 | 
			
		||||
  (include "match/match.scm"))
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,972 @@
 | 
			
		|||
;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*-
 | 
			
		||||
;;
 | 
			
		||||
;; This code is written by Alex Shinn and placed in the
 | 
			
		||||
;; Public Domain.  All warranties are disclaimed.
 | 
			
		||||
 | 
			
		||||
;;> \example-import[(srfi 9)]
 | 
			
		||||
 | 
			
		||||
;;> A portable hygienic pattern matcher.
 | 
			
		||||
 | 
			
		||||
;;> This is a full superset of the popular \hyperlink[
 | 
			
		||||
;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match}
 | 
			
		||||
;;> package by Andrew Wright, written in fully portable \scheme{syntax-rules}
 | 
			
		||||
;;> and thus preserving hygiene.
 | 
			
		||||
 | 
			
		||||
;;> The most notable extensions are the ability to use \emph{non-linear}
 | 
			
		||||
;;> patterns - patterns in which the same identifier occurs multiple
 | 
			
		||||
;;> times, tail patterns after ellipsis, and the experimental tree patterns.
 | 
			
		||||
 | 
			
		||||
;;> \section{Patterns}
 | 
			
		||||
 | 
			
		||||
;;> Patterns are written to look like the printed representation of
 | 
			
		||||
;;> the objects they match.  The basic usage is
 | 
			
		||||
 | 
			
		||||
;;> \scheme{(match expr (pat body ...) ...)}
 | 
			
		||||
 | 
			
		||||
;;> where the result of \var{expr} is matched against each pattern in
 | 
			
		||||
;;> turn, and the corresponding body is evaluated for the first to
 | 
			
		||||
;;> succeed.  Thus, a list of three elements matches a list of three
 | 
			
		||||
;;> elements.
 | 
			
		||||
 | 
			
		||||
;;> \example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))}
 | 
			
		||||
 | 
			
		||||
;;> If no patterns match an error is signalled.
 | 
			
		||||
 | 
			
		||||
;;> Identifiers will match anything, and make the corresponding
 | 
			
		||||
;;> binding available in the body.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2 3) ((a b c) b))}
 | 
			
		||||
 | 
			
		||||
;;> If the same identifier occurs multiple times, the first instance
 | 
			
		||||
;;> will match anything, but subsequent instances must match a value
 | 
			
		||||
;;> which is \scheme{equal?} to the first.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))}
 | 
			
		||||
 | 
			
		||||
;;> The special identifier \scheme{_} matches anything, no matter how
 | 
			
		||||
;;> many times it is used, and does not bind the result in the body.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))}
 | 
			
		||||
 | 
			
		||||
;;> To match a literal identifier (or list or any other literal), use
 | 
			
		||||
;;> \scheme{quote}.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match 'a ('b 1) ('a 2))}
 | 
			
		||||
 | 
			
		||||
;;> Analogous to its normal usage in scheme, \scheme{quasiquote} can
 | 
			
		||||
;;> be used to quote a mostly literally matching object with selected
 | 
			
		||||
;;> parts unquoted.
 | 
			
		||||
 | 
			
		||||
;;> \example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}|
 | 
			
		||||
 | 
			
		||||
;;> Often you want to match any number of a repeated pattern.  Inside
 | 
			
		||||
;;> a list pattern you can append \scheme{...} after an element to
 | 
			
		||||
;;> match zero or more of that pattern (like a regexp Kleene star).
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2) ((1 2 3 ...) #t))}
 | 
			
		||||
;;> \example{(match (list 1 2 3) ((1 2 3 ...) #t))}
 | 
			
		||||
;;> \example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))}
 | 
			
		||||
 | 
			
		||||
;;> Pattern variables matched inside the repeated pattern are bound to
 | 
			
		||||
;;> a list of each matching instance in the body.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2) ((a b c ...) c))}
 | 
			
		||||
;;> \example{(match (list 1 2 3) ((a b c ...) c))}
 | 
			
		||||
;;> \example{(match (list 1 2 3 4 5) ((a b c ...) c))}
 | 
			
		||||
 | 
			
		||||
;;> More than one \scheme{...} may not be used in the same list, since
 | 
			
		||||
;;> this would require exponential backtracking in the general case.
 | 
			
		||||
;;> However, \scheme{...} need not be the final element in the list,
 | 
			
		||||
;;> and may be succeeded by a fixed number of patterns.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2 3 4) ((a b c ... d e) c))}
 | 
			
		||||
;;> \example{(match (list 1 2 3 4 5) ((a b c ... d e) c))}
 | 
			
		||||
;;> \example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))}
 | 
			
		||||
 | 
			
		||||
;;> \scheme{___} is provided as an alias for \scheme{...} when it is
 | 
			
		||||
;;> inconvenient to use the ellipsis (as in a syntax-rules template).
 | 
			
		||||
 | 
			
		||||
;;> The \scheme{..1} syntax is exactly like the \scheme{...} except
 | 
			
		||||
;;> that it matches one or more repetitions (like a regexp "+").
 | 
			
		||||
 | 
			
		||||
;;> \example{(match (list 1 2) ((a b c ..1) c))}
 | 
			
		||||
;;> \example{(match (list 1 2 3) ((a b c ..1) c))}
 | 
			
		||||
 | 
			
		||||
;;> The boolean operators \scheme{and}, \scheme{or} and \scheme{not}
 | 
			
		||||
;;> can be used to group and negate patterns analogously to their
 | 
			
		||||
;;> Scheme counterparts.
 | 
			
		||||
 | 
			
		||||
;;> The \scheme{and} operator ensures that all subpatterns match.
 | 
			
		||||
;;> This operator is often used with the idiom \scheme{(and x pat)} to
 | 
			
		||||
;;> bind \var{x} to the entire value that matches \var{pat}
 | 
			
		||||
;;> (c.f. "as-patterns" in ML or Haskell).  Another common use is in
 | 
			
		||||
;;> conjunction with \scheme{not} patterns to match a general case
 | 
			
		||||
;;> with certain exceptions.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match 1 ((and) #t))}
 | 
			
		||||
;;> \example{(match 1 ((and x) x))}
 | 
			
		||||
;;> \example{(match 1 ((and x 1) x))}
 | 
			
		||||
 | 
			
		||||
;;> The \scheme{or} operator ensures that at least one subpattern
 | 
			
		||||
;;> matches.  If the same identifier occurs in different subpatterns,
 | 
			
		||||
;;> it is matched independently.  All identifiers from all subpatterns
 | 
			
		||||
;;> are bound if the \scheme{or} operator matches, but the binding is
 | 
			
		||||
;;> only defined for identifiers from the subpattern which matched.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match 1 ((or) #t) (else #f))}
 | 
			
		||||
;;> \example{(match 1 ((or x) x))}
 | 
			
		||||
;;> \example{(match 1 ((or x 2) x))}
 | 
			
		||||
 | 
			
		||||
;;> The \scheme{not} operator succeeds if the given pattern doesn't
 | 
			
		||||
;;> match.  None of the identifiers used are available in the body.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match 1 ((not 2) #t))}
 | 
			
		||||
 | 
			
		||||
;;> The more general operator \scheme{?} can be used to provide a
 | 
			
		||||
;;> predicate.  The usage is \scheme{(? predicate pat ...)} where
 | 
			
		||||
;;> \var{predicate} is a Scheme expression evaluating to a predicate
 | 
			
		||||
;;> called on the value to match, and any optional patterns after the
 | 
			
		||||
;;> predicate are then matched as in an \scheme{and} pattern.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match 1 ((? odd? x) x))}
 | 
			
		||||
 | 
			
		||||
;;> The field operator \scheme{=} is used to extract an arbitrary
 | 
			
		||||
;;> field and match against it.  It is useful for more complex or
 | 
			
		||||
;;> conditional destructuring that can't be more directly expressed in
 | 
			
		||||
;;> the pattern syntax.  The usage is \scheme{(= field pat)}, where
 | 
			
		||||
;;> \var{field} can be any expression, and should result in a
 | 
			
		||||
;;> procedure of one argument, which is applied to the value to match
 | 
			
		||||
;;> to generate a new value to match against \var{pat}.
 | 
			
		||||
 | 
			
		||||
;;> Thus the pattern \scheme{(and (= car x) (= cdr y))} is equivalent
 | 
			
		||||
;;> to \scheme{(x . y)}, except it will result in an immediate error
 | 
			
		||||
;;> if the value isn't a pair.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match '(1 . 2) ((= car x) x))}
 | 
			
		||||
;;> \example{(match 4 ((= square x) x))}
 | 
			
		||||
 | 
			
		||||
;;> The record operator \scheme{$} is used as a concise way to match
 | 
			
		||||
;;> records defined by SRFI-9 (or SRFI-99).  The usage is
 | 
			
		||||
;;> \scheme{($ rtd field ...)}, where \var{rtd} should be the record
 | 
			
		||||
;;> type descriptor specified as the first argument to
 | 
			
		||||
;;> \scheme{define-record-type}, and each \var{field} is a subpattern
 | 
			
		||||
;;> matched against the fields of the record in order.  Not all fields
 | 
			
		||||
;;> must be present.
 | 
			
		||||
 | 
			
		||||
;;> \example{
 | 
			
		||||
;;> (let ()
 | 
			
		||||
;;>   (define-record-type employee
 | 
			
		||||
;;>     (make-employee name title)
 | 
			
		||||
;;>     employee?
 | 
			
		||||
;;>     (name get-name)
 | 
			
		||||
;;>     (title get-title))
 | 
			
		||||
;;>   (match (make-employee "Bob" "Doctor")
 | 
			
		||||
;;>     (($ employee n t) (list t n))))
 | 
			
		||||
;;> }
 | 
			
		||||
 | 
			
		||||
;;> For records with more fields it can be helpful to match them by
 | 
			
		||||
;;> name rather than position.  For this you can use the \scheme{@}
 | 
			
		||||
;;> operator, originally a Gauche extension:
 | 
			
		||||
 | 
			
		||||
;;> \example{
 | 
			
		||||
;;> (let ()
 | 
			
		||||
;;>   (define-record-type employee
 | 
			
		||||
;;>     (make-employee name title)
 | 
			
		||||
;;>     employee?
 | 
			
		||||
;;>     (name get-name)
 | 
			
		||||
;;>     (title get-title))
 | 
			
		||||
;;>   (match (make-employee "Bob" "Doctor")
 | 
			
		||||
;;>     ((@ employee (title t) (name n)) (list t n))))
 | 
			
		||||
;;> }
 | 
			
		||||
 | 
			
		||||
;;> The \scheme{set!} and \scheme{get!} operators are used to bind an
 | 
			
		||||
;;> identifier to the setter and getter of a field, respectively.  The
 | 
			
		||||
;;> setter is a procedure of one argument, which mutates the field to
 | 
			
		||||
;;> that argument.  The getter is a procedure of no arguments which
 | 
			
		||||
;;> returns the current value of the field.
 | 
			
		||||
 | 
			
		||||
;;> \example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))}
 | 
			
		||||
;;> \example{(match '(1 . 2) ((1 . (get! g)) (g)))}
 | 
			
		||||
 | 
			
		||||
;;> The new operator \scheme{***} can be used to search a tree for
 | 
			
		||||
;;> subpatterns.  A pattern of the form \scheme{(x *** y)} represents
 | 
			
		||||
;;> the subpattern \var{y} located somewhere in a tree where the path
 | 
			
		||||
;;> from the current object to \var{y} can be seen as a list of the
 | 
			
		||||
;;> form \scheme{(x ...)}.  \var{y} can immediately match the current
 | 
			
		||||
;;> object in which case the path is the empty list.  In a sense it's
 | 
			
		||||
;;> a 2-dimensional version of the \scheme{...} pattern.
 | 
			
		||||
 | 
			
		||||
;;> As a common case the pattern \scheme{(_ *** y)} can be used to
 | 
			
		||||
;;> search for \var{y} anywhere in a tree, regardless of the path
 | 
			
		||||
;;> used.
 | 
			
		||||
 | 
			
		||||
;;> \example{(match '(a (a (a b))) ((x *** 'b) x))}
 | 
			
		||||
;;> \example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))}
 | 
			
		||||
 | 
			
		||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
			
		||||
;; Notes
 | 
			
		||||
 | 
			
		||||
;; The implementation is a simple generative pattern matcher - each
 | 
			
		||||
;; pattern is expanded into the required tests, calling a failure
 | 
			
		||||
;; continuation if the tests fail.  This makes the logic easy to
 | 
			
		||||
;; follow and extend, but produces sub-optimal code in cases where you
 | 
			
		||||
;; have many similar clauses due to repeating the same tests.
 | 
			
		||||
;; Nonetheless a smart compiler should be able to remove the redundant
 | 
			
		||||
;; tests.  For MATCH-LET and DESTRUCTURING-BIND type uses there is no
 | 
			
		||||
;; performance hit.
 | 
			
		||||
 | 
			
		||||
;; The original version was written on 2006/11/29 and described in the
 | 
			
		||||
;; following Usenet post:
 | 
			
		||||
;;   http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
 | 
			
		||||
;; and is still available at
 | 
			
		||||
;;   http://synthcode.com/scheme/match-simple.scm
 | 
			
		||||
;; It's just 80 lines for the core MATCH, and an extra 40 lines for
 | 
			
		||||
;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar.
 | 
			
		||||
;;
 | 
			
		||||
;; A variant of this file which uses COND-EXPAND in a few places for
 | 
			
		||||
;; performance can be found at
 | 
			
		||||
;;   http://synthcode.com/scheme/match-cond-expand.scm
 | 
			
		||||
;;
 | 
			
		||||
;; 2015/05/09 - fixing bug in var extraction of quasiquote patterns
 | 
			
		||||
;; 2014/11/24 - adding Gauche's `@' pattern for named record field matching
 | 
			
		||||
;; 2012/12/26 - wrapping match-let&co body in lexical closure
 | 
			
		||||
;; 2012/11/28 - fixing typo s/vetor/vector in largely unused set! code
 | 
			
		||||
;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns
 | 
			
		||||
;; 2011/09/25 - fixing bug when directly matching an identifier repeated in
 | 
			
		||||
;;              the pattern (thanks to Stefan Israelsson Tampe)
 | 
			
		||||
;; 2011/01/27 - fixing bug when matching tail patterns against improper lists
 | 
			
		||||
;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès)
 | 
			
		||||
;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns
 | 
			
		||||
;; 2009/11/25 - adding `***' tree search patterns
 | 
			
		||||
;; 2008/03/20 - fixing bug where (a ...) matched non-lists
 | 
			
		||||
;; 2008/03/15 - removing redundant check in vector patterns
 | 
			
		||||
;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
 | 
			
		||||
;; 2007/09/04 - fixing quasiquote patterns
 | 
			
		||||
;; 2007/07/21 - allowing ellipsis patterns in non-final list positions
 | 
			
		||||
;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipsis
 | 
			
		||||
;;              (thanks to Taylor Campbell)
 | 
			
		||||
;; 2007/04/08 - clean up, commenting
 | 
			
		||||
;; 2006/12/24 - bugfixes
 | 
			
		||||
;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
 | 
			
		||||
 | 
			
		||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
			
		||||
;; force compile-time syntax errors with useful messages
 | 
			
		||||
 | 
			
		||||
(define-syntax match-syntax-error
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_) (match-syntax-error "invalid match-syntax-error usage"))))
 | 
			
		||||
 | 
			
		||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
			
		||||
 | 
			
		||||
;;> \section{Syntax}
 | 
			
		||||
 | 
			
		||||
;;> \macro{(match expr (pattern . body) ...)\br{}
 | 
			
		||||
;;> (match expr (pattern (=> failure) . body) ...)}
 | 
			
		||||
 | 
			
		||||
;;> The result of \var{expr} is matched against each \var{pattern} in
 | 
			
		||||
;;> turn, according to the pattern rules described in the previous
 | 
			
		||||
;;> section, until the the first \var{pattern} matches.  When a match is
 | 
			
		||||
;;> found, the corresponding \var{body}s are evaluated in order,
 | 
			
		||||
;;> and the result of the last expression is returned as the result
 | 
			
		||||
;;> of the entire \scheme{match}.  If a \var{failure} is provided,
 | 
			
		||||
;;> then it is bound to a procedure of no arguments which continues,
 | 
			
		||||
;;> processing at the next \var{pattern}.  If no \var{pattern} matches,
 | 
			
		||||
;;> an error is signalled.
 | 
			
		||||
 | 
			
		||||
;; The basic interface.  MATCH just performs some basic syntax
 | 
			
		||||
;; validation, binds the match expression to a temporary variable `v',
 | 
			
		||||
;; and passes it on to MATCH-NEXT.  It's a constant throughout the
 | 
			
		||||
;; code below that the binding `v' is a direct variable reference, not
 | 
			
		||||
;; an expression.
 | 
			
		||||
 | 
			
		||||
(define-syntax match
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((match)
 | 
			
		||||
     (match-syntax-error "missing match expression"))
 | 
			
		||||
    ((match atom)
 | 
			
		||||
     (match-syntax-error "no match clauses"))
 | 
			
		||||
    ((match (app ...) (pat . body) ...)
 | 
			
		||||
     (let ((v (app ...)))
 | 
			
		||||
       (match-next v ((app ...) (set! (app ...))) (pat . body) ...)))
 | 
			
		||||
    ((match #(vec ...) (pat . body) ...)
 | 
			
		||||
     (let ((v #(vec ...)))
 | 
			
		||||
       (match-next v (v (set! v)) (pat . body) ...)))
 | 
			
		||||
    ((match atom (pat . body) ...)
 | 
			
		||||
     (let ((v atom))
 | 
			
		||||
       (match-next v (atom (set! atom)) (pat . body) ...)))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
 | 
			
		||||
;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
 | 
			
		||||
;; clauses.  `g+s' is a list of two elements, the get! and set!
 | 
			
		||||
;; expressions respectively.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-next
 | 
			
		||||
  (syntax-rules (=>)
 | 
			
		||||
    ;; no more clauses, the match failed
 | 
			
		||||
    ((match-next v g+s)
 | 
			
		||||
     (error 'match "no matching pattern"))
 | 
			
		||||
    ;; named failure continuation
 | 
			
		||||
    ((match-next v g+s (pat (=> failure) . body) . rest)
 | 
			
		||||
     (let ((failure (lambda () (match-next v g+s . rest))))
 | 
			
		||||
       ;; match-one analyzes the pattern for us
 | 
			
		||||
       (match-one v pat g+s (match-drop-ids (begin . body)) (failure) ())))
 | 
			
		||||
    ;; anonymous failure continuation, give it a dummy name
 | 
			
		||||
    ((match-next v g+s (pat . body) . rest)
 | 
			
		||||
     (match-next v g+s (pat (=> failure) . body) . rest))))
 | 
			
		||||
 | 
			
		||||
;; MATCH-ONE first checks for ellipsis patterns, otherwise passes on to
 | 
			
		||||
;; MATCH-TWO.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-one
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ;; If it's a list of two or more values, check to see if the
 | 
			
		||||
    ;; second one is an ellipsis and handle accordingly, otherwise go
 | 
			
		||||
    ;; to MATCH-TWO.
 | 
			
		||||
    ((match-one v (p q . r) g+s sk fk i)
 | 
			
		||||
     (match-check-ellipsis
 | 
			
		||||
      q
 | 
			
		||||
      (match-extract-vars p (match-gen-ellipsis v p r  g+s sk fk i) i ())
 | 
			
		||||
      (match-two v (p q . r) g+s sk fk i)))
 | 
			
		||||
    ;; Go directly to MATCH-TWO.
 | 
			
		||||
    ((match-one . x)
 | 
			
		||||
     (match-two . x))))
 | 
			
		||||
 | 
			
		||||
;; This is the guts of the pattern matcher.  We are passed a lot of
 | 
			
		||||
;; information in the form:
 | 
			
		||||
;;
 | 
			
		||||
;;   (match-two var pattern getter setter success-k fail-k (ids ...))
 | 
			
		||||
;;
 | 
			
		||||
;; usually abbreviated
 | 
			
		||||
;;
 | 
			
		||||
;;   (match-two v p g+s sk fk i)
 | 
			
		||||
;;
 | 
			
		||||
;; where VAR is the symbol name of the current variable we are
 | 
			
		||||
;; matching, PATTERN is the current pattern, getter and setter are the
 | 
			
		||||
;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
 | 
			
		||||
;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
 | 
			
		||||
;; continuation (which is just a thunk call and is thus safe to expand
 | 
			
		||||
;; multiple times) and IDS are the list of identifiers bound in the
 | 
			
		||||
;; pattern so far.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-two
 | 
			
		||||
  (syntax-rules (_ ___ ..1 *** quote quasiquote ? $ struct @ object = and or not set! get!)
 | 
			
		||||
    ((match-two v () g+s (sk ...) fk i)
 | 
			
		||||
     (if (null? v) (sk ... i) fk))
 | 
			
		||||
    ((match-two v (quote p) g+s (sk ...) fk i)
 | 
			
		||||
     (if (equal? v 'p) (sk ... i) fk))
 | 
			
		||||
    ((match-two v (quasiquote p) . x)
 | 
			
		||||
     (match-quasiquote v p . x))
 | 
			
		||||
    ((match-two v (and) g+s (sk ...) fk i) (sk ... i))
 | 
			
		||||
    ((match-two v (and p q ...) g+s sk fk i)
 | 
			
		||||
     (match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i))
 | 
			
		||||
    ((match-two v (or) g+s sk fk i) fk)
 | 
			
		||||
    ((match-two v (or p) . x)
 | 
			
		||||
     (match-one v p . x))
 | 
			
		||||
    ((match-two v (or p ...) g+s sk fk i)
 | 
			
		||||
     (match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ()))
 | 
			
		||||
    ((match-two v (not p) g+s (sk ...) fk i)
 | 
			
		||||
     (match-one v p g+s (match-drop-ids fk) (sk ... i) i))
 | 
			
		||||
    ((match-two v (get! getter) (g s) (sk ...) fk i)
 | 
			
		||||
     (let ((getter (lambda () g))) (sk ... i)))
 | 
			
		||||
    ((match-two v (set! setter) (g (s ...)) (sk ...) fk i)
 | 
			
		||||
     (let ((setter (lambda (x) (s ... x)))) (sk ... i)))
 | 
			
		||||
    ((match-two v (? pred . p) g+s sk fk i)
 | 
			
		||||
     (if (pred v) (match-one v (and . p) g+s sk fk i) fk))
 | 
			
		||||
    ((match-two v (= proc p) . x)
 | 
			
		||||
     (let ((w (proc v))) (match-one w p . x)))
 | 
			
		||||
    ((match-two v (p ___ . r) g+s sk fk i)
 | 
			
		||||
     (match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ()))
 | 
			
		||||
    ((match-two v (p) g+s sk fk i)
 | 
			
		||||
     (if (and (pair? v) (null? (cdr v)))
 | 
			
		||||
         (let ((w (car v)))
 | 
			
		||||
           (match-one w p ((car v) (set-car! v)) sk fk i))
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v (p *** q) g+s sk fk i)
 | 
			
		||||
     (match-extract-vars p (match-gen-search v p q g+s sk fk i) i ()))
 | 
			
		||||
    ((match-two v (p *** . q) g+s sk fk i)
 | 
			
		||||
     (match-syntax-error "invalid use of ***" (p *** . q)))
 | 
			
		||||
    ((match-two v (p ..1) g+s sk fk i)
 | 
			
		||||
     (if (pair? v)
 | 
			
		||||
         (match-one v (p ___) g+s sk fk i)
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v ($ rec p ...) g+s sk fk i)
 | 
			
		||||
     (if (is-a? v rec)
 | 
			
		||||
         (match-record-refs v rec 0 (p ...) g+s sk fk i)
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v (struct rec p ...) g+s sk fk i)
 | 
			
		||||
     (if (is-a? v rec)
 | 
			
		||||
         (match-record-refs v rec 0 (p ...) g+s sk fk i)
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v (@ rec p ...) g+s sk fk i)
 | 
			
		||||
     (if (is-a? v rec)
 | 
			
		||||
         (match-record-named-refs v rec (p ...) g+s sk fk i)
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v (object rec p ...) g+s sk fk i)
 | 
			
		||||
     (if (is-a? v rec)
 | 
			
		||||
         (match-record-named-refs v rec (p ...) g+s sk fk i)
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v (p . q) g+s sk fk i)
 | 
			
		||||
     (if (pair? v)
 | 
			
		||||
         (let ((w (car v)) (x (cdr v)))
 | 
			
		||||
           (match-one w p ((car v) (set-car! v))
 | 
			
		||||
                      (match-one x q ((cdr v) (set-cdr! v)) sk fk)
 | 
			
		||||
                      fk
 | 
			
		||||
                      i))
 | 
			
		||||
         fk))
 | 
			
		||||
    ((match-two v #(p ...) g+s . x)
 | 
			
		||||
     (match-vector v 0 () (p ...) . x))
 | 
			
		||||
    ((match-two v _ g+s (sk ...) fk i) (sk ... i))
 | 
			
		||||
    ;; Not a pair or vector or special literal, test to see if it's a
 | 
			
		||||
    ;; new symbol, in which case we just bind it, or if it's an
 | 
			
		||||
    ;; already bound symbol or some other literal, in which case we
 | 
			
		||||
    ;; compare it with EQUAL?.
 | 
			
		||||
    ((match-two v x g+s (sk ...) fk (id ...))
 | 
			
		||||
     (let-syntax
 | 
			
		||||
         ((new-sym?
 | 
			
		||||
           (syntax-rules (id ...)
 | 
			
		||||
             ((new-sym? x sk2 fk2) sk2)
 | 
			
		||||
             ((new-sym? y sk2 fk2) fk2))))
 | 
			
		||||
       (new-sym? random-sym-to-match
 | 
			
		||||
                 (let ((x v)) (sk ... (id ... x)))
 | 
			
		||||
                 (if (equal? v x) (sk ... (id ...)) fk))))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
;; QUASIQUOTE patterns
 | 
			
		||||
 | 
			
		||||
(define-syntax match-quasiquote
 | 
			
		||||
  (syntax-rules (unquote unquote-splicing quasiquote)
 | 
			
		||||
    ((_ v (unquote p) g+s sk fk i)
 | 
			
		||||
     (match-one v p g+s sk fk i))
 | 
			
		||||
    ((_ v ((unquote-splicing p) . rest) g+s sk fk i)
 | 
			
		||||
     (if (pair? v)
 | 
			
		||||
       (match-one v
 | 
			
		||||
                  (p . tmp)
 | 
			
		||||
                  (match-quasiquote tmp rest g+s sk fk)
 | 
			
		||||
                  fk
 | 
			
		||||
                  i)
 | 
			
		||||
       fk))
 | 
			
		||||
    ((_ v (quasiquote p) g+s sk fk i . depth)
 | 
			
		||||
     (match-quasiquote v p g+s sk fk i #f . depth))
 | 
			
		||||
    ((_ v (unquote p) g+s sk fk i x . depth)
 | 
			
		||||
     (match-quasiquote v p g+s sk fk i . depth))
 | 
			
		||||
    ((_ v (unquote-splicing p) g+s sk fk i x . depth)
 | 
			
		||||
     (match-quasiquote v p g+s sk fk i . depth))
 | 
			
		||||
    ((_ v (p . q) g+s sk fk i . depth)
 | 
			
		||||
     (if (pair? v)
 | 
			
		||||
       (let ((w (car v)) (x (cdr v)))
 | 
			
		||||
         (match-quasiquote
 | 
			
		||||
          w p g+s
 | 
			
		||||
          (match-quasiquote-step x q g+s sk fk depth)
 | 
			
		||||
          fk i . depth))
 | 
			
		||||
       fk))
 | 
			
		||||
    ((_ v #(elt ...) g+s sk fk i . depth)
 | 
			
		||||
     (if (vector? v)
 | 
			
		||||
       (let ((ls (vector->list v)))
 | 
			
		||||
         (match-quasiquote ls (elt ...) g+s sk fk i . depth))
 | 
			
		||||
       fk))
 | 
			
		||||
    ((_ v x g+s sk fk i . depth)
 | 
			
		||||
     (match-one v 'x g+s sk fk i))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-quasiquote-step
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((match-quasiquote-step x q g+s sk fk depth i)
 | 
			
		||||
     (match-quasiquote x q g+s sk fk i . depth))))
 | 
			
		||||
 | 
			
		||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
			
		||||
;; Utilities
 | 
			
		||||
 | 
			
		||||
;; Takes two values and just expands into the first.
 | 
			
		||||
(define-syntax match-drop-ids
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ expr ids ...) expr)))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-tuck-ids
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ (letish args (expr ...)) ids ...)
 | 
			
		||||
     (letish args (expr ... ids ...)))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-drop-first-arg
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ arg expr) expr)))
 | 
			
		||||
 | 
			
		||||
;; To expand an OR group we try each clause in succession, passing the
 | 
			
		||||
;; first that succeeds to the success continuation.  On failure for
 | 
			
		||||
;; any clause, we just try the next clause, finally resorting to the
 | 
			
		||||
;; failure continuation fk if all clauses fail.  The only trick is
 | 
			
		||||
;; that we want to unify the identifiers, so that the success
 | 
			
		||||
;; continuation can refer to a variable from any of the OR clauses.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-gen-or
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...))
 | 
			
		||||
     (let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
 | 
			
		||||
       (match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...))))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-gen-or-step
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v () g+s sk fk . x)
 | 
			
		||||
     ;; no OR clauses, call the failure continuation
 | 
			
		||||
     fk)
 | 
			
		||||
    ((_ v (p) . x)
 | 
			
		||||
     ;; last (or only) OR clause, just expand normally
 | 
			
		||||
     (match-one v p . x))
 | 
			
		||||
    ((_ v (p . q) g+s sk fk i)
 | 
			
		||||
     ;; match one and try the remaining on failure
 | 
			
		||||
     (let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i))))
 | 
			
		||||
       (match-one v p g+s sk (fk2) i)))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
;; We match a pattern (p ...) by matching the pattern p in a loop on
 | 
			
		||||
;; each element of the variable, accumulating the bound ids into lists.
 | 
			
		||||
 | 
			
		||||
;; Look at the body of the simple case - it's just a named let loop,
 | 
			
		||||
;; matching each element in turn to the same pattern.  The only trick
 | 
			
		||||
;; is that we want to keep track of the lists of each extracted id, so
 | 
			
		||||
;; when the loop recurses we cons the ids onto their respective list
 | 
			
		||||
;; variables, and on success we bind the ids (what the user input and
 | 
			
		||||
;; expects to see in the success body) to the reversed accumulated
 | 
			
		||||
;; list IDs.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-gen-ellipsis
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v p () g+s (sk ...) fk i ((id id-ls) ...))
 | 
			
		||||
     (match-check-identifier p
 | 
			
		||||
       ;; simplest case equivalent to (p ...), just bind the list
 | 
			
		||||
       (let ((p v))
 | 
			
		||||
         (if (list? p)
 | 
			
		||||
             (sk ... i)
 | 
			
		||||
             fk))
 | 
			
		||||
       ;; simple case, match all elements of the list
 | 
			
		||||
       (let loop ((ls v) (id-ls '()) ...)
 | 
			
		||||
         (cond
 | 
			
		||||
           ((null? ls)
 | 
			
		||||
            (let ((id (reverse id-ls)) ...) (sk ... i)))
 | 
			
		||||
           ((pair? ls)
 | 
			
		||||
            (let ((w (car ls)))
 | 
			
		||||
              (match-one w p ((car ls) (set-car! ls))
 | 
			
		||||
                         (match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
 | 
			
		||||
                         fk i)))
 | 
			
		||||
           (else
 | 
			
		||||
            fk)))))
 | 
			
		||||
    ((_ v p r g+s (sk ...) fk i ((id id-ls) ...))
 | 
			
		||||
     ;; general case, trailing patterns to match, keep track of the
 | 
			
		||||
     ;; remaining list length so we don't need any backtracking
 | 
			
		||||
     (match-verify-no-ellipsis
 | 
			
		||||
      r
 | 
			
		||||
      (let* ((tail-len (length 'r))
 | 
			
		||||
             (ls v)
 | 
			
		||||
             (len (and (list? ls) (length ls))))
 | 
			
		||||
        (if (or (not len) (< len tail-len))
 | 
			
		||||
            fk
 | 
			
		||||
            (let loop ((ls ls) (n len) (id-ls '()) ...)
 | 
			
		||||
              (cond
 | 
			
		||||
                ((= n tail-len)
 | 
			
		||||
                 (let ((id (reverse id-ls)) ...)
 | 
			
		||||
                   (match-one ls r (#f #f) (sk ...) fk i)))
 | 
			
		||||
                ((pair? ls)
 | 
			
		||||
                 (let ((w (car ls)))
 | 
			
		||||
                   (match-one w p ((car ls) (set-car! ls))
 | 
			
		||||
                              (match-drop-ids
 | 
			
		||||
                               (loop (cdr ls) (- n 1) (cons id id-ls) ...))
 | 
			
		||||
                              fk
 | 
			
		||||
                              i)))
 | 
			
		||||
                (else
 | 
			
		||||
                 fk)))))))))
 | 
			
		||||
 | 
			
		||||
;; This is just a safety check.  Although unlike syntax-rules we allow
 | 
			
		||||
;; trailing patterns after an ellipsis, we explicitly disable multiple
 | 
			
		||||
;; ellipsis at the same level.  This is because in the general case
 | 
			
		||||
;; such patterns are exponential in the number of ellipsis, and we
 | 
			
		||||
;; don't want to make it easy to construct very expensive operations
 | 
			
		||||
;; with simple looking patterns.  For example, it would be O(n^2) for
 | 
			
		||||
;; patterns like (a ... b ...) because we must consider every trailing
 | 
			
		||||
;; element for every possible break for the leading "a ...".
 | 
			
		||||
 | 
			
		||||
(define-syntax match-verify-no-ellipsis
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ (x . y) sk)
 | 
			
		||||
     (match-check-ellipsis
 | 
			
		||||
      x
 | 
			
		||||
      (match-syntax-error
 | 
			
		||||
       "multiple ellipsis patterns not allowed at same level")
 | 
			
		||||
      (match-verify-no-ellipsis y sk)))
 | 
			
		||||
    ((_ () sk)
 | 
			
		||||
     sk)
 | 
			
		||||
    ((_ x sk)
 | 
			
		||||
     (match-syntax-error "dotted tail not allowed after ellipsis" x))))
 | 
			
		||||
 | 
			
		||||
;; To implement the tree search, we use two recursive procedures.  TRY
 | 
			
		||||
;; attempts to match Y once, and on success it calls the normal SK on
 | 
			
		||||
;; the accumulated list ids as in MATCH-GEN-ELLIPSIS.  On failure, we
 | 
			
		||||
;; call NEXT which first checks if the current value is a list
 | 
			
		||||
;; beginning with X, then calls TRY on each remaining element of the
 | 
			
		||||
;; list.  Since TRY will recursively call NEXT again on failure, this
 | 
			
		||||
;; effects a full depth-first search.
 | 
			
		||||
;;
 | 
			
		||||
;; The failure continuation throughout is a jump to the next step in
 | 
			
		||||
;; the tree search, initialized with the original failure continuation
 | 
			
		||||
;; FK.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-gen-search
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((match-gen-search v p q g+s sk fk i ((id id-ls) ...))
 | 
			
		||||
     (letrec ((try (lambda (w fail id-ls ...)
 | 
			
		||||
                     (match-one w q g+s
 | 
			
		||||
                                (match-tuck-ids
 | 
			
		||||
                                 (let ((id (reverse id-ls)) ...)
 | 
			
		||||
                                   sk))
 | 
			
		||||
                                (next w fail id-ls ...) i)))
 | 
			
		||||
              (next (lambda (w fail id-ls ...)
 | 
			
		||||
                      (if (not (pair? w))
 | 
			
		||||
                          (fail)
 | 
			
		||||
                          (let ((u (car w)))
 | 
			
		||||
                            (match-one
 | 
			
		||||
                             u p ((car w) (set-car! w))
 | 
			
		||||
                             (match-drop-ids
 | 
			
		||||
                              ;; accumulate the head variables from
 | 
			
		||||
                              ;; the p pattern, and loop over the tail
 | 
			
		||||
                              (let ((id-ls (cons id id-ls)) ...)
 | 
			
		||||
                                (let lp ((ls (cdr w)))
 | 
			
		||||
                                  (if (pair? ls)
 | 
			
		||||
                                      (try (car ls)
 | 
			
		||||
                                           (lambda () (lp (cdr ls)))
 | 
			
		||||
                                           id-ls ...)
 | 
			
		||||
                                      (fail)))))
 | 
			
		||||
                             (fail) i))))))
 | 
			
		||||
       ;; the initial id-ls binding here is a dummy to get the right
 | 
			
		||||
       ;; number of '()s
 | 
			
		||||
       (let ((id-ls '()) ...)
 | 
			
		||||
         (try v (lambda () fk) id-ls ...))))))
 | 
			
		||||
 | 
			
		||||
;; Vector patterns are just more of the same, with the slight
 | 
			
		||||
;; exception that we pass around the current vector index being
 | 
			
		||||
;; matched.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-vector
 | 
			
		||||
  (syntax-rules (___)
 | 
			
		||||
    ((_ v n pats (p q) . x)
 | 
			
		||||
     (match-check-ellipsis q
 | 
			
		||||
                          (match-gen-vector-ellipsis v n pats p . x)
 | 
			
		||||
                          (match-vector-two v n pats (p q) . x)))
 | 
			
		||||
    ((_ v n pats (p ___) sk fk i)
 | 
			
		||||
     (match-gen-vector-ellipsis v n pats p sk fk i))
 | 
			
		||||
    ((_ . x)
 | 
			
		||||
     (match-vector-two . x))))
 | 
			
		||||
 | 
			
		||||
;; Check the exact vector length, then check each element in turn.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-vector-two
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v n ((pat index) ...) () sk fk i)
 | 
			
		||||
     (if (vector? v)
 | 
			
		||||
         (let ((len (vector-length v)))
 | 
			
		||||
           (if (= len n)
 | 
			
		||||
               (match-vector-step v ((pat index) ...) sk fk i)
 | 
			
		||||
               fk))
 | 
			
		||||
         fk))
 | 
			
		||||
    ((_ v n (pats ...) (p . q) . x)
 | 
			
		||||
     (match-vector v (+ n 1) (pats ... (p n)) q . x))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-vector-step
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v () (sk ...) fk i) (sk ... i))
 | 
			
		||||
    ((_ v ((pat index) . rest) sk fk i)
 | 
			
		||||
     (let ((w (vector-ref v index)))
 | 
			
		||||
       (match-one w pat ((vector-ref v index) (vector-set! v index))
 | 
			
		||||
                  (match-vector-step v rest sk fk)
 | 
			
		||||
                  fk i)))))
 | 
			
		||||
 | 
			
		||||
;; With a vector ellipsis pattern we first check to see if the vector
 | 
			
		||||
;; length is at least the required length.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-gen-vector-ellipsis
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v n ((pat index) ...) p sk fk i)
 | 
			
		||||
     (if (vector? v)
 | 
			
		||||
       (let ((len (vector-length v)))
 | 
			
		||||
         (if (>= len n)
 | 
			
		||||
           (match-vector-step v ((pat index) ...)
 | 
			
		||||
                              (match-vector-tail v p n len sk fk)
 | 
			
		||||
                              fk i)
 | 
			
		||||
           fk))
 | 
			
		||||
       fk))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-vector-tail
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v p n len sk fk i)
 | 
			
		||||
     (match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-vector-tail-two
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v p n len (sk ...) fk i ((id id-ls) ...))
 | 
			
		||||
     (let loop ((j n) (id-ls '()) ...)
 | 
			
		||||
       (if (>= j len)
 | 
			
		||||
         (let ((id (reverse id-ls)) ...) (sk ... i))
 | 
			
		||||
         (let ((w (vector-ref v j)))
 | 
			
		||||
           (match-one w p ((vector-ref v j) (vector-set! v j))
 | 
			
		||||
                      (match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
 | 
			
		||||
                      fk i)))))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-record-refs
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v rec n (p . q) g+s sk fk i)
 | 
			
		||||
     (let ((w (slot-ref rec v n)))
 | 
			
		||||
       (match-one w p ((slot-ref rec v n) (slot-set! rec v n))
 | 
			
		||||
                  (match-record-refs v rec (+ n 1) q g+s sk fk) fk i)))
 | 
			
		||||
    ((_ v rec n () g+s (sk ...) fk i)
 | 
			
		||||
     (sk ... i))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-record-named-refs
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ v rec ((f p) . q) g+s sk fk i)
 | 
			
		||||
     (let ((w (slot-ref rec v 'f)))
 | 
			
		||||
       (match-one w p ((slot-ref rec v 'f) (slot-set! rec v 'f))
 | 
			
		||||
                  (match-record-named-refs v rec q g+s sk fk) fk i)))
 | 
			
		||||
    ((_ v rec () g+s (sk ...) fk i)
 | 
			
		||||
     (sk ... i))))
 | 
			
		||||
 | 
			
		||||
;; Extract all identifiers in a pattern.  A little more complicated
 | 
			
		||||
;; than just looking for symbols, we need to ignore special keywords
 | 
			
		||||
;; and non-pattern forms (such as the predicate expression in ?
 | 
			
		||||
;; patterns), and also ignore previously bound identifiers.
 | 
			
		||||
;;
 | 
			
		||||
;; Calls the continuation with all new vars as a list of the form
 | 
			
		||||
;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely
 | 
			
		||||
;; pair with the original variable (e.g. it's used in the ellipsis
 | 
			
		||||
;; generation for list variables).
 | 
			
		||||
;;
 | 
			
		||||
;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-extract-vars
 | 
			
		||||
  (syntax-rules (_ ___ ..1 *** ? $ struct @ object = quote quasiquote and or not get! set!)
 | 
			
		||||
    ((match-extract-vars (? pred . p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ((match-extract-vars ($ rec . p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ((match-extract-vars (struct rec . p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ((match-extract-vars (@ rec (f p) ...) . x)
 | 
			
		||||
     (match-extract-vars (p ...) . x))
 | 
			
		||||
    ((match-extract-vars (object rec (f p) ...) . x)
 | 
			
		||||
     (match-extract-vars (p ...) . x))
 | 
			
		||||
    ((match-extract-vars (= proc p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ((match-extract-vars (quote x) (k ...) i v)
 | 
			
		||||
     (k ... v))
 | 
			
		||||
    ((match-extract-vars (quasiquote x) k i v)
 | 
			
		||||
     (match-extract-quasiquote-vars x k i v (#t)))
 | 
			
		||||
    ((match-extract-vars (and . p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ((match-extract-vars (or . p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ((match-extract-vars (not . p) . x)
 | 
			
		||||
     (match-extract-vars p . x))
 | 
			
		||||
    ;; A non-keyword pair, expand the CAR with a continuation to
 | 
			
		||||
    ;; expand the CDR.
 | 
			
		||||
    ((match-extract-vars (p q . r) k i v)
 | 
			
		||||
     (match-check-ellipsis
 | 
			
		||||
      q
 | 
			
		||||
      (match-extract-vars (p . r) k i v)
 | 
			
		||||
      (match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
 | 
			
		||||
    ((match-extract-vars (p . q) k i v)
 | 
			
		||||
     (match-extract-vars p (match-extract-vars-step q k i v) i ()))
 | 
			
		||||
    ((match-extract-vars #(p ...) . x)
 | 
			
		||||
     (match-extract-vars (p ...) . x))
 | 
			
		||||
    ((match-extract-vars _ (k ...) i v)    (k ... v))
 | 
			
		||||
    ((match-extract-vars ___ (k ...) i v)  (k ... v))
 | 
			
		||||
    ((match-extract-vars *** (k ...) i v)  (k ... v))
 | 
			
		||||
    ((match-extract-vars ..1 (k ...) i v)  (k ... v))
 | 
			
		||||
    ;; This is the main part, the only place where we might add a new
 | 
			
		||||
    ;; var if it's an unbound symbol.
 | 
			
		||||
    ((match-extract-vars p (k ...) (i ...) v)
 | 
			
		||||
     (let-syntax
 | 
			
		||||
         ((new-sym?
 | 
			
		||||
           (syntax-rules (i ...)
 | 
			
		||||
             ((new-sym? p sk fk) sk)
 | 
			
		||||
             ((new-sym? any sk fk) fk))))
 | 
			
		||||
       (new-sym? random-sym-to-match
 | 
			
		||||
                 (k ... ((p p-ls) . v))
 | 
			
		||||
                 (k ... v))))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
;; Stepper used in the above so it can expand the CAR and CDR
 | 
			
		||||
;; separately.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-extract-vars-step
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ p k i v ((v2 v2-ls) ...))
 | 
			
		||||
     (match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-extract-quasiquote-vars
 | 
			
		||||
  (syntax-rules (quasiquote unquote unquote-splicing)
 | 
			
		||||
    ((match-extract-quasiquote-vars (quasiquote x) k i v d)
 | 
			
		||||
     (match-extract-quasiquote-vars x k i v (#t . d)))
 | 
			
		||||
    ((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
 | 
			
		||||
     (match-extract-quasiquote-vars (unquote x) k i v d))
 | 
			
		||||
    ((match-extract-quasiquote-vars (unquote x) k i v (#t))
 | 
			
		||||
     (match-extract-vars x k i v))
 | 
			
		||||
    ((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
 | 
			
		||||
     (match-extract-quasiquote-vars x k i v d))
 | 
			
		||||
    ((match-extract-quasiquote-vars (x . y) k i v d)
 | 
			
		||||
     (match-extract-quasiquote-vars
 | 
			
		||||
      x
 | 
			
		||||
      (match-extract-quasiquote-vars-step y k i v d) i () d))
 | 
			
		||||
    ((match-extract-quasiquote-vars #(x ...) k i v d)
 | 
			
		||||
     (match-extract-quasiquote-vars (x ...) k i v d))
 | 
			
		||||
    ((match-extract-quasiquote-vars x (k ...) i v d)
 | 
			
		||||
     (k ... v))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-extract-quasiquote-vars-step
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ x k i v d ((v2 v2-ls) ...))
 | 
			
		||||
     (match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
 | 
			
		||||
    ))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
			
		||||
;; Gimme some sugar baby.
 | 
			
		||||
 | 
			
		||||
;;> Shortcut for \scheme{lambda} + \scheme{match}.  Creates a
 | 
			
		||||
;;> procedure of one argument, and matches that argument against each
 | 
			
		||||
;;> clause.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-lambda
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...)))))
 | 
			
		||||
 | 
			
		||||
;;> Similar to \scheme{match-lambda}.  Creates a procedure of any
 | 
			
		||||
;;> number of arguments, and matches the argument list against each
 | 
			
		||||
;;> clause.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-lambda*
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...)))))
 | 
			
		||||
 | 
			
		||||
;;> Matches each var to the corresponding expression, and evaluates
 | 
			
		||||
;;> the body with all match variables in scope.  Raises an error if
 | 
			
		||||
;;> any of the expressions fail to match.  Syntax analogous to named
 | 
			
		||||
;;> let can also be used for recursive functions which match on their
 | 
			
		||||
;;> arguments as in \scheme{match-lambda*}.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-let
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ ((var value) ...) . body)
 | 
			
		||||
     (match-let/helper let () () ((var value) ...) . body))
 | 
			
		||||
    ((_ loop ((var init) ...) . body)
 | 
			
		||||
     (match-named-let loop ((var init) ...) . body))))
 | 
			
		||||
 | 
			
		||||
;;> Similar to \scheme{match-let}, but analogously to \scheme{letrec}
 | 
			
		||||
;;> matches and binds the variables with all match variables in scope.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-letrec
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ ((var value) ...) . body)
 | 
			
		||||
     (match-let/helper letrec () () ((var value) ...) . body))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-let/helper
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ let ((var expr) ...) () () . body)
 | 
			
		||||
     (let ((var expr) ...) . body))
 | 
			
		||||
    ((_ let ((var expr) ...) ((pat tmp) ...) () . body)
 | 
			
		||||
     (let ((var expr) ...)
 | 
			
		||||
       (match-let* ((pat tmp) ...)
 | 
			
		||||
         . body)))
 | 
			
		||||
    ((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
 | 
			
		||||
     (match-let/helper
 | 
			
		||||
      let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
 | 
			
		||||
    ((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
 | 
			
		||||
     (match-let/helper
 | 
			
		||||
      let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
 | 
			
		||||
    ((_ let (v ...) (p ...) ((a expr) . rest) . body)
 | 
			
		||||
     (match-let/helper let (v ... (a expr)) (p ...) rest . body))))
 | 
			
		||||
 | 
			
		||||
(define-syntax match-named-let
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ loop ((pat expr var) ...) () . body)
 | 
			
		||||
     (let loop ((var expr) ...)
 | 
			
		||||
       (match-let ((pat var) ...)
 | 
			
		||||
         . body)))
 | 
			
		||||
    ((_ loop (v ...) ((pat expr) . rest) . body)
 | 
			
		||||
     (match-named-let loop (v ... (pat expr tmp)) rest . body))))
 | 
			
		||||
 | 
			
		||||
;;> \macro{(match-let* ((var value) ...) body ...)}
 | 
			
		||||
 | 
			
		||||
;;> Similar to \scheme{match-let}, but analogously to \scheme{let*}
 | 
			
		||||
;;> matches and binds the variables in sequence, with preceding match
 | 
			
		||||
;;> variables in scope.
 | 
			
		||||
 | 
			
		||||
(define-syntax match-let*
 | 
			
		||||
  (syntax-rules ()
 | 
			
		||||
    ((_ () . body)
 | 
			
		||||
     (let () . body))
 | 
			
		||||
    ((_ ((pat expr) . rest) . body)
 | 
			
		||||
     (match expr (pat (match-let* rest . body))))))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
			
		||||
;; Otherwise COND-EXPANDed bits.
 | 
			
		||||
 | 
			
		||||
(cond-expand
 | 
			
		||||
 (chibi
 | 
			
		||||
  (define-syntax match-check-ellipsis
 | 
			
		||||
    (er-macro-transformer
 | 
			
		||||
     (lambda (expr rename compare)
 | 
			
		||||
       (if (compare '... (cadr expr))
 | 
			
		||||
           (car (cddr expr))
 | 
			
		||||
           (cadr (cddr expr))))))
 | 
			
		||||
  (define-syntax match-check-identifier
 | 
			
		||||
    (er-macro-transformer
 | 
			
		||||
     (lambda (expr rename compare)
 | 
			
		||||
       (if (identifier? (cadr expr))
 | 
			
		||||
           (car (cddr expr))
 | 
			
		||||
           (cadr (cddr expr)))))))
 | 
			
		||||
 | 
			
		||||
 (else
 | 
			
		||||
  ;; Portable versions
 | 
			
		||||
  ;;
 | 
			
		||||
  ;; This *should* work, but doesn't :(
 | 
			
		||||
  ;;   (define-syntax match-check-ellipsis
 | 
			
		||||
  ;;     (syntax-rules (...)
 | 
			
		||||
  ;;       ((_ ... sk fk) sk)
 | 
			
		||||
  ;;       ((_ x sk fk) fk)))
 | 
			
		||||
  ;;
 | 
			
		||||
  ;; This is a little more complicated, and introduces a new let-syntax,
 | 
			
		||||
  ;; but should work portably in any R[56]RS Scheme.  Taylor Campbell
 | 
			
		||||
  ;; originally came up with the idea.
 | 
			
		||||
  (define-syntax match-check-ellipsis
 | 
			
		||||
    (syntax-rules ()
 | 
			
		||||
      ;; these two aren't necessary but provide fast-case failures
 | 
			
		||||
      ((match-check-ellipsis (a . b) success-k failure-k) failure-k)
 | 
			
		||||
      ((match-check-ellipsis #(a ...) success-k failure-k) failure-k)
 | 
			
		||||
      ;; matching an atom
 | 
			
		||||
      ((match-check-ellipsis id success-k failure-k)
 | 
			
		||||
       (let-syntax ((ellipsis? (syntax-rules ()
 | 
			
		||||
                                 ;; iff `id' is `...' here then this will
 | 
			
		||||
                                 ;; match a list of any length
 | 
			
		||||
                                 ((ellipsis? (foo id) sk fk) sk)
 | 
			
		||||
                                 ((ellipsis? other sk fk) fk))))
 | 
			
		||||
         ;; this list of three elements will only match the (foo id) list
 | 
			
		||||
         ;; above if `id' is `...'
 | 
			
		||||
         (ellipsis? (a b c) success-k failure-k)))))
 | 
			
		||||
 | 
			
		||||
  ;; This is portable but can be more efficient with non-portable
 | 
			
		||||
  ;; extensions.  This trick was originally discovered by Oleg Kiselyov.
 | 
			
		||||
  (define-syntax match-check-identifier
 | 
			
		||||
    (syntax-rules ()
 | 
			
		||||
      ;; fast-case failures, lists and vectors are not identifiers
 | 
			
		||||
      ((_ (x . y) success-k failure-k) failure-k)
 | 
			
		||||
      ((_ #(x ...) success-k failure-k) failure-k)
 | 
			
		||||
      ;; x is an atom
 | 
			
		||||
      ((_ x success-k failure-k)
 | 
			
		||||
       (let-syntax
 | 
			
		||||
           ((sym?
 | 
			
		||||
             (syntax-rules ()
 | 
			
		||||
               ;; if the symbol `abracadabra' matches x, then x is a
 | 
			
		||||
               ;; symbol
 | 
			
		||||
               ((sym? x sk fk) sk)
 | 
			
		||||
               ;; otherwise x is a non-symbol datum
 | 
			
		||||
               ((sym? y sk fk) fk))))
 | 
			
		||||
         (sym? abracadabra success-k failure-k)))))))
 | 
			
		||||
		Loading…
	
		Reference in New Issue