292 lines
12 KiB

;;; File: boyer.sc
;;; Description: The Boyer benchmark
;;; Author: Bob Boyer
;;; Created: 5-Apr-85
;;; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
;;; 22-Jul-87 (Will Clinger)
;;; 23-May-94 (Qobi)
;;; 31-Mar-98 (Qobi)
;;; 26-Mar-00 (flw)
;;; Language: Scheme (but see note)
;;; Status: Public Domain
;;; Note: This benchmark uses property lists. The procedures that must
;;; be supplied are get and put, where (put x y z) is equivalent to Common
;;; Lisp's (setf (get x y) z).
;;; Note: The Common Lisp version of this benchmark returns the wrong
;;; answer because it uses the Common Lisp equivalent of memv instead of
;;; member in the falsep and truep procedures. (The error arose because
;;; memv is called member in Common Lisp. Don't ask what member is called,
;;; unless you want to learn about keyword arguments.) This Scheme version
;;; may run a few percent slower than it would if it were equivalent to
;;; the Common Lisp version, but it works.
;;; BOYER -- Logic programming benchmark, originally written by Bob Boyer.
;;; Fairly CONS intensive.
;;; Vx-Scheme: As in SICP 2ed. p. 271, our "get" primitive returns
;;; #f for a nonexistent property. This code, on the other hand,
;;; is expecting to receive '() in that case. We've changed all
;;; the existing 'gets' to cl-get, defined below.
(if (eq? (scheme-implementation-type) 'vx-scheme)
(define (cl-get symbol prop)
(or (get symbol prop) '())))
(define unify-subst '()) ;Qobi
(define temp-temp #f) ;Qobi
(define (add-lemma term)
(cond ((and (pair? term) (eq? (car term) 'equal) (pair? (cadr term)))
(put (car (cadr term))
(cons term (cl-get (car (cadr term)) 'lemmas))))
(else (display "ADD-LEMMA did not like term: ") ;Qobi
(display term) ;Qobi
(newline)))) ;Qobi
(define (add-lemma-lst lst)
(cond ((null? lst) #t)
(else (add-lemma (car lst)) (add-lemma-lst (cdr lst)))))
(define (apply-subst alist term)
(cond ((not (pair? term))
(cond ((begin (set! temp-temp (assq term alist)) temp-temp)
(cdr temp-temp))
(else term)))
(else (cons (car term) (apply-subst-lst alist (cdr term))))))
(define (apply-subst-lst alist lst)
(cond ((null? lst) '()) ;Qobi
(else (cons (apply-subst alist (car lst))
(apply-subst-lst alist (cdr lst))))))
(define (falsep x lst) (or (equal? x '(f)) (member x lst)))
(define (one-way-unify term1 term2)
(set! unify-subst '()) ;Qobi
(one-way-unify1 term1 term2))
(define (one-way-unify1 term1 term2)
(cond ((not (pair? term2))
(cond ((begin (set! temp-temp (assq term2 unify-subst)) temp-temp)
(equal? term1 (cdr temp-temp)))
(else (set! unify-subst (cons (cons term2 term1) unify-subst))
((not (pair? term1)) #f)
((eq? (car term1) (car term2))
(one-way-unify1-lst (cdr term1) (cdr term2)))
(else #f)))
(define (one-way-unify1-lst lst1 lst2)
(cond ((null? lst1) #t)
((one-way-unify1 (car lst1) (car lst2))
(one-way-unify1-lst (cdr lst1) (cdr lst2)))
(else #f)))
(define (rewrite term)
(cond ((not (pair? term)) term)
(else (rewrite-with-lemmas (cons (car term) (rewrite-args (cdr term)))
(cl-get (car term) 'lemmas)))))
(define (rewrite-args lst)
(cond ((null? lst) '()) ;Qobi
(else (cons (rewrite (car lst)) (rewrite-args (cdr lst))))))
(define (rewrite-with-lemmas term lst)
(cond ((null? lst) term)
((one-way-unify term (cadr (car lst)))
(rewrite (apply-subst unify-subst (caddr (car lst)))))
(else (rewrite-with-lemmas term (cdr lst)))))
(define (setup)
'((equal (compile form) (reverse (codegen (optimize form) (nil))))
(equal (eqp x y) (equal (fix x) (fix y)))
(equal (greaterp x y) (lessp y x))
(equal (lesseqp x y) (not (lessp y x)))
(equal (greatereqp x y) (not (lessp x y)))
(equal (boolean x) (or (equal x (t)) (equal x (f))))
(equal (iff x y) (and (implies x y) (implies y x)))
(equal (even1 x) (if (zerop x) (t) (odd (sub1 x)))) ;Qobi
(equal (countps- l pred) (countps-loop l pred (zero)))
(equal (fact- i) (fact-loop i (one)))
(equal (reverse- x) (reverse-loop x (nil)))
(equal (divides x y) (zerop (remainder y x)))
(equal (assume-true var alist) (cons (cons var (t)) alist))
(equal (assume-false var alist) (cons (cons var (f)) alist))
(equal (tautology-checker x) (tautologyp (normalize x) (nil)))
(equal (falsify x) (falsify1 (normalize x) (nil)))
(equal (prime x)
(and (not (zerop x))
(not (equal x (add1 (zero))))
(prime1 x (sub1 x)))) ;Qobi
(equal (and p q) (if p (if q (t) (f)) (f)))
(equal (or p q) (if p (t) (if q (t) (f)) (f)))
(equal (not p) (if p (f) (t)))
(equal (implies p q) (if p (if q (t) (f)) (t)))
(equal (fix x) (if (numberp x) x (zero)))
(equal (if (if a b c) d e) (if a (if b d e) (if c d e)))
(equal (zerop x) (or (equal x (zero)) (not (numberp x))))
(equal (plus (plus x y) z) (plus x (plus y z)))
(equal (equal (plus a b) (zero)) (and (zerop a) (zerop b)))
(equal (difference x x) (zero))
(equal (equal (plus a b) (plus a c)) (equal (fix b) (fix c)))
(equal (equal (zero) (difference x y)) (not (lessp y x)))
(equal (equal x (difference x y))
(and (numberp x) (or (equal x (zero)) (zerop y))))
(equal (meaning (plus-tree (append x y)) a)
(plus (meaning (plus-tree x) a) (meaning (plus-tree y) a)))
(equal (meaning (plus-tree (plus-fringe x)) a) (fix (meaning x a)))
(equal (append (append x y) z) (append x (append y z)))
(equal (reverse (append a b)) (append (reverse b) (reverse a)))
(equal (times x (plus y z)) (plus (times x y) (times x z)))
(equal (times (times x y) z) (times x (times y z)))
(equal (equal (times x y) (zero)) (or (zerop x) (zerop y)))
(equal (exec (append x y) pds envrn) (exec y (exec x pds envrn) envrn))
(equal (mc-flatten x y) (append (flatten x) y))
(equal (member x (append a b)) (or (member x a) (member x b)))
(equal (member x (reverse y)) (member x y))
(equal (length (reverse x)) (length x))
(equal (member a (intersect b c)) (and (member a b) (member a c)))
(equal (nth (zero) i) (zero))
(equal (exp i (plus j k)) (times (exp i j) (exp i k)))
(equal (exp i (times j k)) (exp (exp i j) k))
(equal (reverse-loop x y) (append (reverse x) y))
(equal (reverse-loop x (nil)) (reverse x))
(equal (count-list z (sort-lp x y))
(plus (count-list z x) (count-list z y)))
(equal (equal (append a b) (append a c)) (equal b c))
(equal (plus (remainder x y) (times y (quotient x y))) (fix x))
(equal (power-eval (big-plus1 l i base) base)
(plus (power-eval l base) i))
(equal (power-eval (big-plus x y i base) base)
(plus i (plus (power-eval x base) (power-eval y base))))
(equal (remainder y (one)) (zero))
(equal (lessp (remainder x y) y) (not (zerop y)))
(equal (remainder x x) (zero))
(equal (lessp (quotient i j) i)
(and (not (zerop i)) (or (zerop j) (not (equal j (one))))))
(equal (lessp (remainder x y) x)
(and (not (zerop y)) (not (zerop x)) (not (lessp x y))))
(equal (power-eval (power-rep i base) base) (fix i))
(equal (power-eval (big-plus (power-rep i base)
(power-rep j base)
(plus i j))
(equal (gcd x y) (gcd y x))
(equal (nth (append a b) i)
(append (nth a i) (nth b (difference i (length a)))))
(equal (difference (plus x y) x) (fix y))
(equal (difference (plus y x) x) (fix y))
(equal (difference (plus x y) (plus x z)) (difference y z))
(equal (times x (difference c w)) (difference (times c x) (times w x)))
(equal (remainder (times x z) z) (zero))
(equal (difference (plus b (plus a c)) a) (plus b c))
(equal (difference (add1 (plus y z)) z) (add1 y))
(equal (lessp (plus x y) (plus x z)) (lessp y z))
(equal (lessp (times x z) (times y z)) (and (not (zerop z)) (lessp x y)))
(equal (lessp y (plus x y)) (not (zerop x)))
(equal (gcd (times x z) (times y z)) (times z (gcd x y)))
(equal (value (normalize x) a) (value x a))
(equal (equal (flatten x) (cons y (nil))) (and (nlistp x) (equal x y)))
(equal (listp (gopher x)) (listp x))
(equal (samefringe x y) (equal (flatten x) (flatten y)))
(equal (equal (greatest-factor x y) (zero))
(and (or (zerop y) (equal y (one))) (equal x (zero))))
(equal (equal (greatest-factor x y) (one)) (equal x (one)))
(equal (numberp (greatest-factor x y))
(not (and (or (zerop y) (equal y (one))) (not (numberp x)))))
(equal (times-list (append x y)) (times (times-list x) (times-list y)))
(equal (prime-list (append x y)) (and (prime-list x) (prime-list y)))
(equal (equal z (times w z))
(and (numberp z) (or (equal z (zero)) (equal w (one)))))
(equal (greatereqpr x y) (not (lessp x y)))
(equal (equal x (times x y))
(or (equal x (zero)) (and (numberp x) (equal y (one)))))
(equal (remainder (times y x) y) (zero))
(equal (equal (times a b) (one))
(and (not (equal a (zero)))
(not (equal b (zero)))
(numberp a)
(numberp b)
(equal (sub1 a) (zero)) ;Qobi
(equal (sub1 b) (zero)))) ;Qobi
(equal (lessp (length (delete x l)) (length l)) (member x l))
(equal (sort2 (delete x l)) (delete x (sort2 l)))
(equal (dsort x) (sort2 x))
(equal (length
(cons x1 (cons x2 (cons x3 (cons x4 (cons x5 (cons x6 x7)))))))
(plus (six) (length x7)))
(equal (difference (add1 (add1 x)) (two)) (fix x))
(equal (quotient (plus x (plus x y)) (two)) (plus x (quotient y (two))))
(equal (sigma (zero) i) (quotient (times i (add1 i)) (two)))
(equal (plus x (add1 y)) (if (numberp y) (add1 (plus x y)) (add1 x)))
(equal (equal (difference x y) (difference z y))
(if (lessp x y)
(not (lessp y z))
(if (lessp z y) (not (lessp y x)) (equal (fix x) (fix z)))))
(equal (meaning (plus-tree (delete x y)) a)
(if (member x y)
(difference (meaning (plus-tree y) a) (meaning x a))
(meaning (plus-tree y) a)))
(equal (times x (add1 y)) (if (numberp y) (plus x (times x y)) (fix x)))
(equal (nth (nil) i) (if (zerop i) (nil) (zero)))
(equal (last (append a b))
(if (listp b) (last b) (if (listp a) (cons (car (last a)) b) b)))
(equal (equal (lessp x y) z) (if (lessp x y) (equal t z) (equal f z)))
(equal (assignment x (append a b))
(if (assignedp x a) (assignment x a) (assignment x b)))
(equal (car (gopher x)) (if (listp x) (car (flatten x)) (zero)))
(equal (flatten (cdr (gopher x)))
(if (listp x) (cdr (flatten x)) (cons (zero) (nil))))
(equal (quotient (times y x) y) (if (zerop y) (zero) (fix x)))
(equal (cl-get j (set i val mem)) (if (eqp j i) val (cl-get j mem))))))
(define (tautologyp x true-lst false-lst)
(cond ((truep x true-lst) #t)
((falsep x false-lst) #f)
((not (pair? x)) #f)
((eq? (car x) 'if)
(cond ((truep (cadr x) true-lst)
(tautologyp (caddr x) true-lst false-lst))
((falsep (cadr x) false-lst)
(tautologyp (cadddr x) true-lst false-lst))
(else (and (tautologyp (caddr x)
(cons (cadr x) true-lst)
(tautologyp (cadddr x)
(cons (cadr x) false-lst))))))
(else #f)))
(define (tautp x) (tautologyp (rewrite x) '() '())) ;Qobi
(define (test)
(define ans #f)
(define term #f)
(set! term
'((x f (plus (plus a b) (plus c (zero))))
(y f (times (times a b) (plus c d)))
(z f (reverse (append (append a b) (nil))))
(u equal (plus a b) (difference x y))
(w lessp (remainder a b) (member a (length b))))
'(implies (and (implies x y)
(and (implies y z) (and (implies z u) (implies u w))))
(implies x w))))
(set! ans (tautp term))
(define (truep x lst) (or (equal? x '(t)) (member x lst)))
(display (test))