stk/Tk/generic/tkBind.c

4744 lines
134 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* tkBind.c --
*
* This file provides procedures that associate Tcl commands
* with X events or sequences of X events.
*
* Copyright (c) 1989-1994 The Regents of the University of California.
* Copyright (c) 1994-1996 Sun Microsystems, Inc.
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* SCCS: @(#) tkBind.c 1.133 97/07/01 17:59:53
*/
#include "tkPort.h"
#include "tkInt.h"
#ifdef BGLk_CODE
# define STk_add_callback SCM_add_callback
#endif
/*
* File structure:
*
* Structure definitions and static variables.
*
* Init/Free this package.
*
* Tcl "bind" command (actually located in tkCmds.c).
* "bind" command implementation.
* "bind" implementation helpers.
*
* Tcl "event" command.
* "event" command implementation.
* "event" implementation helpers.
*
* Package-specific common helpers.
*
* Non-package-specific helpers.
*/
/*
* The following union is used to hold the detail information from an
* XEvent (including Tk's XVirtualEvent extension).
*/
typedef union {
KeySym keySym; /* KeySym that corresponds to xkey.keycode. */
int button; /* Button that was pressed (xbutton.button). */
Tk_Uid name; /* Tk_Uid of virtual event. */
ClientData clientData; /* Used when type of Detail is unknown, and to
* ensure that all bytes of Detail are initialized
* when this structure is used in a hash key. */
} Detail;
/*
* The structure below represents a binding table. A binding table
* represents a domain in which event bindings may occur. It includes
* a space of objects relative to which events occur (usually windows,
* but not always), a history of recent events in the domain, and
* a set of mappings that associate particular Tcl commands with sequences
* of events in the domain. Multiple binding tables may exist at once,
* either because there are multiple applications open, or because there
* are multiple domains within an application with separate event
* bindings for each (for example, each canvas widget has a separate
* binding table for associating events with the items in the canvas).
*
* Note: it is probably a bad idea to reduce EVENT_BUFFER_SIZE much
* below 30. To see this, consider a triple mouse button click while
* the Shift key is down (and auto-repeating). There may be as many
* as 3 auto-repeat events after each mouse button press or release
* (see the first large comment block within Tk_BindEvent for more on
* this), for a total of 20 events to cover the three button presses
* and two intervening releases. If you reduce EVENT_BUFFER_SIZE too
* much, shift multi-clicks will be lost.
*
*/
#define EVENT_BUFFER_SIZE 30
typedef struct BindingTable {
XEvent eventRing[EVENT_BUFFER_SIZE];/* Circular queue of recent events
* (higher indices are for more recent
* events). */
Detail detailRing[EVENT_BUFFER_SIZE];/* "Detail" information (keySym,
* button, Tk_Uid, or 0) for each
* entry in eventRing. */
int curEvent; /* Index in eventRing of most recent
* event. Newer events have higher
* indices. */
Tcl_HashTable patternTable; /* Used to map from an event to a
* list of patterns that may match that
* event. Keys are PatternTableKey
* structs, values are (PatSeq *). */
Tcl_HashTable objectTable; /* Used to map from an object to a
* list of patterns associated with
* that object. Keys are ClientData,
* values are (PatSeq *). */
Tcl_Interp *interp; /* Interpreter in which commands are
* executed. */
} BindingTable;
/*
* The following structure represents virtual event table. A virtual event
* table provides a way to map from platform-specific physical events such
* as button clicks or key presses to virtual events such as <<Paste>>,
* <<Close>>, or <<ScrollWindow>>.
*
* A virtual event is usually never part of the event stream, but instead is
* synthesized inline by matching low-level events. However, a virtual
* event may be generated by platform-specific code or by Tcl scripts. In
* that case, no lookup of the virtual event will need to be done using
* this table, because the virtual event is actually in the event stream.
*/
typedef struct VirtualEventTable {
Tcl_HashTable patternTable; /* Used to map from a physical event to
* a list of patterns that may match that
* event. Keys are PatternTableKey
* structs, values are (PatSeq *). */
Tcl_HashTable nameTable; /* Used to map a virtual event name to
* the array of physical events that can
* trigger it. Keys are the Tk_Uid names
* of the virtual events, values are
* PhysicalsOwned structs. */
} VirtualEventTable;
/*
* The following structure is used as a key in a patternTable for both
* binding tables and a virtual event tables.
*
* In a binding table, the object field corresponds to the binding tag
* for the widget whose bindings are being accessed.
*
* In a virtual event table, the object field is always NULL. Virtual
* events are a global definiton and are not tied to a particular
* binding tag.
*
* The same key is used for both types of pattern tables so that the
* helper functions that traverse and match patterns will work for both
* binding tables and virtual event tables.
*/
typedef struct PatternTableKey {
ClientData object; /* For binding table, identifies the binding
* tag of the object (or class of objects)
* relative to which the event occurred.
* For virtual event table, always NULL. */
int type; /* Type of event (from X). */
Detail detail; /* Additional information, such as keysym,
* button, Tk_Uid, or 0 if nothing
* additional. */
} PatternTableKey;
/*
* The following structure defines a pattern, which is matched against X
* events as part of the process of converting X events into Tcl commands.
*/
typedef struct Pattern {
int eventType; /* Type of X event, e.g. ButtonPress. */
int needMods; /* Mask of modifiers that must be
* present (0 means no modifiers are
* required). */
Detail detail; /* Additional information that must
* match event. Normally this is 0,
* meaning no additional information
* must match. For KeyPress and
* KeyRelease events, a keySym may
* be specified to select a
* particular keystroke (0 means any
* keystrokes). For button events,
* specifies a particular button (0
* means any buttons are OK). For virtual
* events, specifies the Tk_Uid of the
* virtual event name (never 0). */
} Pattern;
/*
* The following structure defines a pattern sequence, which consists of one
* or more patterns. In order to trigger, a pattern sequence must match
* the most recent X events (first pattern to most recent event, next
* pattern to next event, and so on). It is used as the hash value in a
* patternTable for both binding tables and virtual event tables.
*
* In a binding table, it is the sequence of physical events that make up
* a binding for an object.
*
* In a virtual event table, it is the sequence of physical events that
* define a virtual event.
*
* The same structure is used for both types of pattern tables so that the
* helper functions that traverse and match patterns will work for both
* binding tables and virtual event tables.
*/
typedef struct PatSeq {
int numPats; /* Number of patterns in sequence (usually
* 1). */
TkBindEvalProc *eventProc; /* The procedure that will be invoked on
* the clientData when this pattern sequence
* matches. */
TkBindFreeProc *freeProc; /* The procedure that will be invoked to
* release the clientData when this pattern
* sequence is freed. */
ClientData clientData; /* Arbitray data passed to eventProc and
* freeProc when sequence matches. */
int flags; /* Miscellaneous flag values; see below for
* definitions. */
int refCount; /* Number of times that this binding is in
* the midst of executing. If greater than 1,
* then a recursive invocation is happening.
* Only when this is zero can the binding
* actually be freed. */
struct PatSeq *nextSeqPtr; /* Next in list of all pattern sequences
* that have the same initial pattern. NULL
* means end of list. */
Tcl_HashEntry *hPtr; /* Pointer to hash table entry for the
* initial pattern. This is the head of the
* list of which nextSeqPtr forms a part. */
struct VirtualOwners *voPtr;/* In a binding table, always NULL. In a
* virtual event table, identifies the array
* of virtual events that can be triggered by
* this event. */
struct PatSeq *nextObjPtr; /* In a binding table, next in list of all
* pattern sequences for the same object (NULL
* for end of list). Needed to implement
* Tk_DeleteAllBindings. In a virtual event
* table, always NULL. */
Pattern pats[1]; /* Array of "numPats" patterns. Only one
* element is declared here but in actuality
* enough space will be allocated for "numPats"
* patterns. To match, pats[0] must match
* event n, pats[1] must match event n-1, etc.
*/
} PatSeq;
/*
* Flag values for PatSeq structures:
*
* PAT_NEARBY 1 means that all of the events matching
* this sequence must occur with nearby X
* and Y mouse coordinates and close in time.
* This is typically used to restrict multiple
* button presses.
* MARKED_DELETED 1 means that this binding has been marked as deleted
* and removed from the binding table, but its memory
* could not be released because it was already queued for
* execution. When the binding is actually about to be
* executed, this flag will be checked and the binding
* skipped if set.
*/
#define PAT_NEARBY 0x1
#define MARKED_DELETED 0x2
/*
* Constants that define how close together two events must be
* in milliseconds or pixels to meet the PAT_NEARBY constraint:
*/
#define NEARBY_PIXELS 5
#define NEARBY_MS 500
/*
* The following structure keeps track of all the virtual events that are
* associated with a particular physical event. It is pointed to by the
* voPtr field in a PatSeq in the patternTable of a virtual event table.
*/
typedef struct VirtualOwners {
int numOwners; /* Number of virtual events to trigger. */
Tcl_HashEntry *owners[1]; /* Array of pointers to entries in
* nameTable. Enough space will
* actually be allocated for numOwners
* hash entries. */
} VirtualOwners;
/*
* The following structure is used in the nameTable of a virtual event
* table to associate a virtual event with all the physical events that can
* trigger it.
*/
typedef struct PhysicalsOwned {
int numOwned; /* Number of physical events owned. */
PatSeq *patSeqs[1]; /* Array of pointers to physical event
* patterns. Enough space will actually
* be allocated to hold numOwned. */
} PhysicalsOwned;
/*
* One of the following structures exists for each interpreter. This
* structure keeps track of the current display and screen in the
* interpreter, so that a script can be invoked whenever the display/screen
* changes (the script does things like point tkPriv at a display-specific
* structure).
*/
typedef struct {
TkDisplay *curDispPtr; /* Display for last binding command invoked
* in this application. */
int curScreenIndex; /* Index of screen for last binding command. */
int bindingDepth; /* Number of active instances of Tk_BindEvent
* in this application. */
} ScreenInfo;
/*
* The following structure is used to keep track of all the C bindings that
* are awaiting invocation and whether the window they refer to has been
* destroyed. If the window is destroyed, then all pending callbacks for
* that window will be cancelled. The Tcl bindings will still all be
* invoked, however.
*/
typedef struct PendingBinding {
struct PendingBinding *nextPtr;
/* Next in chain of pending bindings, in
* case a recursive binding evaluation is in
* progress. */
Tk_Window tkwin; /* The window that the following bindings
* depend upon. */
int deleted; /* Set to non-zero by window cleanup code
* if tkwin is deleted. */
PatSeq *matchArray[5]; /* Array of pending C bindings. The actual
* size of this depends on how many C bindings
* matched the event passed to Tk_BindEvent.
* THIS FIELD MUST BE THE LAST IN THE
* STRUCTURE. */
} PendingBinding;
/*
* The following structure keeps track of all the information local to
* the binding package on a per interpreter basis.
*/
typedef struct BindInfo {
VirtualEventTable virtualEventTable;
/* The virtual events that exist in this
* interpreter. */
ScreenInfo screenInfo; /* Keeps track of the current display and
* screen, so it can be restored after
* a binding has executed. */
PendingBinding *pendingList;/* The list of pending C bindings, kept in
* case a C or Tcl binding causes the target
* window to be deleted. */
} BindInfo;
/*
* In X11R4 and earlier versions, XStringToKeysym is ridiculously
* slow. The data structure and hash table below, along with the
* code that uses them, implement a fast mapping from strings to
* keysyms. In X11R5 and later releases XStringToKeysym is plenty
* fast so this stuff isn't needed. The #define REDO_KEYSYM_LOOKUP
* is normally undefined, so that XStringToKeysym gets used. It
* can be set in the Makefile to enable the use of the hash table
* below.
*/
#ifdef REDO_KEYSYM_LOOKUP
typedef struct {
char *name; /* Name of keysym. */
KeySym value; /* Numeric identifier for keysym. */
} KeySymInfo;
static KeySymInfo keyArray[] = {
#ifndef lint
#include "ks_names.h"
#endif
{(char *) NULL, 0}
};
static Tcl_HashTable keySymTable; /* keyArray hashed by keysym value. */
static Tcl_HashTable nameTable; /* keyArray hashed by keysym name. */
#endif /* REDO_KEYSYM_LOOKUP */
/*
* Set to non-zero when the package-wide static variables have been
* initialized.
*/
static int initialized = 0;
/*
* A hash table is kept to map from the string names of event
* modifiers to information about those modifiers. The structure
* for storing this information, and the hash table built at
* initialization time, are defined below.
*/
typedef struct {
char *name; /* Name of modifier. */
int mask; /* Button/modifier mask value, * such as Button1Mask. */
int flags; /* Various flags; see below for
* definitions. */
} ModInfo;
/*
* Flags for ModInfo structures:
*
* DOUBLE - Non-zero means duplicate this event,
* e.g. for double-clicks.
* TRIPLE - Non-zero means triplicate this event,
* e.g. for triple-clicks.
*/
#define DOUBLE 1
#define TRIPLE 2
/*
* The following special modifier mask bits are defined, to indicate
* logical modifiers such as Meta and Alt that may float among the
* actual modifier bits.
*/
#define META_MASK (AnyModifier<<1)
#define ALT_MASK (AnyModifier<<2)
static ModInfo modArray[] = {
{"Control", ControlMask, 0},
{"Shift", ShiftMask, 0},
{"Lock", LockMask, 0},
{"Meta", META_MASK, 0},
{"M", META_MASK, 0},
{"Alt", ALT_MASK, 0},
{"B1", Button1Mask, 0},
{"Button1", Button1Mask, 0},
{"B2", Button2Mask, 0},
{"Button2", Button2Mask, 0},
{"B3", Button3Mask, 0},
{"Button3", Button3Mask, 0},
{"B4", Button4Mask, 0},
{"Button4", Button4Mask, 0},
{"B5", Button5Mask, 0},
{"Button5", Button5Mask, 0},
{"Mod1", Mod1Mask, 0},
{"M1", Mod1Mask, 0},
{"Command", Mod1Mask, 0},
{"Mod2", Mod2Mask, 0},
{"M2", Mod2Mask, 0},
{"Option", Mod2Mask, 0},
{"Mod3", Mod3Mask, 0},
{"M3", Mod3Mask, 0},
{"Mod4", Mod4Mask, 0},
{"M4", Mod4Mask, 0},
{"Mod5", Mod5Mask, 0},
{"M5", Mod5Mask, 0},
{"Double", 0, DOUBLE},
{"Triple", 0, TRIPLE},
{"Any", 0, 0}, /* Ignored: historical relic. */
{NULL, 0, 0}
};
static Tcl_HashTable modTable;
/*
* This module also keeps a hash table mapping from event names
* to information about those events. The structure, an array
* to use to initialize the hash table, and the hash table are
* all defined below.
*/
typedef struct {
char *name; /* Name of event. */
int type; /* Event type for X, such as
* ButtonPress. */
int eventMask; /* Mask bits (for XSelectInput)
* for this event type. */
} EventInfo;
/*
* Note: some of the masks below are an OR-ed combination of
* several masks. This is necessary because X doesn't report
* up events unless you also ask for down events. Also, X
* doesn't report button state in motion events unless you've
* asked about button events.
*/
static EventInfo eventArray[] = {
{"Key", KeyPress, KeyPressMask},
{"KeyPress", KeyPress, KeyPressMask},
{"KeyRelease", KeyRelease, KeyPressMask|KeyReleaseMask},
{"Button", ButtonPress, ButtonPressMask},
{"ButtonPress", ButtonPress, ButtonPressMask},
{"ButtonRelease", ButtonRelease,
ButtonPressMask|ButtonReleaseMask},
{"Motion", MotionNotify,
ButtonPressMask|PointerMotionMask},
{"Enter", EnterNotify, EnterWindowMask},
{"Leave", LeaveNotify, LeaveWindowMask},
{"FocusIn", FocusIn, FocusChangeMask},
{"FocusOut", FocusOut, FocusChangeMask},
{"Expose", Expose, ExposureMask},
{"Visibility", VisibilityNotify, VisibilityChangeMask},
{"Destroy", DestroyNotify, StructureNotifyMask},
{"Unmap", UnmapNotify, StructureNotifyMask},
{"Map", MapNotify, StructureNotifyMask},
{"Reparent", ReparentNotify, StructureNotifyMask},
{"Configure", ConfigureNotify, StructureNotifyMask},
{"Gravity", GravityNotify, StructureNotifyMask},
{"Circulate", CirculateNotify, StructureNotifyMask},
{"Property", PropertyNotify, PropertyChangeMask},
{"Colormap", ColormapNotify, ColormapChangeMask},
{"Activate", ActivateNotify, ActivateMask},
{"Deactivate", DeactivateNotify, ActivateMask},
{(char *) NULL, 0, 0}
};
static Tcl_HashTable eventTable;
/*
* The defines and table below are used to classify events into
* various groups. The reason for this is that logically identical
* fields (e.g. "state") appear at different places in different
* types of events. The classification masks can be used to figure
* out quickly where to extract information from events.
*/
#define KEY 0x1
#define BUTTON 0x2
#define MOTION 0x4
#define CROSSING 0x8
#define FOCUS 0x10
#define EXPOSE 0x20
#define VISIBILITY 0x40
#define CREATE 0x80
#define DESTROY 0x100
#define UNMAP 0x200
#define MAP 0x400
#define REPARENT 0x800
#define CONFIG 0x1000
#define GRAVITY 0x2000
#define CIRC 0x4000
#define PROP 0x8000
#define COLORMAP 0x10000
#define VIRTUAL 0x20000
#define ACTIVATE 0x40000
#define KEY_BUTTON_MOTION_VIRTUAL (KEY|BUTTON|MOTION|VIRTUAL)
static int flagArray[TK_LASTEVENT] = {
/* Not used */ 0,
/* Not used */ 0,
/* KeyPress */ KEY,
/* KeyRelease */ KEY,
/* ButtonPress */ BUTTON,
/* ButtonRelease */ BUTTON,
/* MotionNotify */ MOTION,
/* EnterNotify */ CROSSING,
/* LeaveNotify */ CROSSING,
/* FocusIn */ FOCUS,
/* FocusOut */ FOCUS,
/* KeymapNotify */ 0,
/* Expose */ EXPOSE,
/* GraphicsExpose */ EXPOSE,
/* NoExpose */ 0,
/* VisibilityNotify */ VISIBILITY,
/* CreateNotify */ CREATE,
/* DestroyNotify */ DESTROY,
/* UnmapNotify */ UNMAP,
/* MapNotify */ MAP,
/* MapRequest */ 0,
/* ReparentNotify */ REPARENT,
/* ConfigureNotify */ CONFIG,
/* ConfigureRequest */ 0,
/* GravityNotify */ GRAVITY,
/* ResizeRequest */ 0,
/* CirculateNotify */ CIRC,
/* CirculateRequest */ 0,
/* PropertyNotify */ PROP,
/* SelectionClear */ 0,
/* SelectionRequest */ 0,
/* SelectionNotify */ 0,
/* ColormapNotify */ COLORMAP,
/* ClientMessage */ 0,
/* MappingNotify */ 0,
/* VirtualEvent */ VIRTUAL,
/* Activate */ ACTIVATE,
/* Deactivate */ ACTIVATE
};
/*
* The following tables are used as a two-way map between X's internal
* numeric values for fields in an XEvent and the strings used in Tcl. The
* tables are used both when constructing an XEvent from user input and
* when providing data from an XEvent to the user.
*/
static TkStateMap notifyMode[] = {
{NotifyNormal, "NotifyNormal"},
{NotifyGrab, "NotifyGrab"},
{NotifyUngrab, "NotifyUngrab"},
{NotifyWhileGrabbed, "NotifyWhileGrabbed"},
{-1, NULL}
};
static TkStateMap notifyDetail[] = {
{NotifyAncestor, "NotifyAncestor"},
{NotifyVirtual, "NotifyVirtual"},
{NotifyInferior, "NotifyInferior"},
{NotifyNonlinear, "NotifyNonlinear"},
{NotifyNonlinearVirtual, "NotifyNonlinearVirtual"},
{NotifyPointer, "NotifyPointer"},
{NotifyPointerRoot, "NotifyPointerRoot"},
{NotifyDetailNone, "NotifyDetailNone"},
{-1, NULL}
};
static TkStateMap circPlace[] = {
{PlaceOnTop, "PlaceOnTop"},
{PlaceOnBottom, "PlaceOnBottom"},
{-1, NULL}
};
static TkStateMap visNotify[] = {
{VisibilityUnobscured, "VisibilityUnobscured"},
{VisibilityPartiallyObscured, "VisibilityPartiallyObscured"},
{VisibilityFullyObscured, "VisibilityFullyObscured"},
{-1, NULL}
};
/*
* Prototypes for local procedures defined in this file:
*/
static void ChangeScreen _ANSI_ARGS_((Tcl_Interp *interp,
char *dispName, int screenIndex));
static int CreateVirtualEvent _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr, char *virtString,
char *eventString));
static int DeleteVirtualEvent _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr, char *virtString,
char *eventString));
static void DeleteVirtualEventTable _ANSI_ARGS_((
VirtualEventTable *vetPtr));
static void ExpandPercents _ANSI_ARGS_((TkWindow *winPtr,
char *before, XEvent *eventPtr, KeySym keySym,
Tcl_DString *dsPtr));
static void FreeTclBinding _ANSI_ARGS_((ClientData clientData));
static PatSeq * FindSequence _ANSI_ARGS_((Tcl_Interp *interp,
Tcl_HashTable *patternTablePtr, ClientData object,
char *eventString, int create, int allowVirtual,
unsigned long *maskPtr));
static void GetAllVirtualEvents _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr));
static char * GetField _ANSI_ARGS_((char *p, char *copy, int size));
static KeySym GetKeySym _ANSI_ARGS_((TkDisplay *dispPtr,
XEvent *eventPtr));
static void GetPatternString _ANSI_ARGS_((PatSeq *psPtr,
Tcl_DString *dsPtr));
static int GetVirtualEvent _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr, char *virtString));
static Tk_Uid GetVirtualEventUid _ANSI_ARGS_((Tcl_Interp *interp,
char *virtString));
static int HandleEventGenerate _ANSI_ARGS_((Tcl_Interp *interp,
Tk_Window main, int argc, char **argv));
static void InitKeymapInfo _ANSI_ARGS_((TkDisplay *dispPtr));
static void InitVirtualEventTable _ANSI_ARGS_((
VirtualEventTable *vetPtr));
static PatSeq * MatchPatterns _ANSI_ARGS_((TkDisplay *dispPtr,
BindingTable *bindPtr, PatSeq *psPtr,
PatSeq *bestPtr, ClientData *objectPtr,
PatSeq **sourcePtrPtr));
static int ParseEventDescription _ANSI_ARGS_((Tcl_Interp *interp,
char **eventStringPtr, Pattern *patPtr,
unsigned long *eventMaskPtr));
/*
* The following define is used as a short circuit for the callback
* procedure to evaluate a TclBinding. The actual evaluation of the
* binding is handled inline, because special things have to be done
* with a Tcl binding before evaluation time.
*/
#define EvalTclBinding ((TkBindEvalProc *) 1)
/*
*---------------------------------------------------------------------------
*
* TkBindInit --
*
* This procedure is called when an application is created. It
* initializes all the structures used by bindings and virtual
* events. It must be called before any other functions in this
* file are called.
*
* Results:
* None.
*
* Side effects:
* Memory allocated.
*
*---------------------------------------------------------------------------
*/
void
TkBindInit(mainPtr)
TkMainInfo *mainPtr; /* The newly created application. */
{
BindInfo *bindInfoPtr;
if (sizeof(XEvent) < sizeof(XVirtualEvent)) {
panic("TkBindInit: virtual events can't be supported");
}
/*
* Initialize the static data structures used by the binding package.
* They are only initialized once, no matter how many interps are
* created.
*/
if (!initialized) {
Tcl_HashEntry *hPtr;
ModInfo *modPtr;
EventInfo *eiPtr;
int dummy;
#ifdef REDO_KEYSYM_LOOKUP
KeySymInfo *kPtr;
Tcl_InitHashTable(&keySymTable, TCL_STRING_KEYS);
Tcl_InitHashTable(&nameTable, TCL_ONE_WORD_KEYS);
for (kPtr = keyArray; kPtr->name != NULL; kPtr++) {
hPtr = Tcl_CreateHashEntry(&keySymTable, kPtr->name, &dummy);
Tcl_SetHashValue(hPtr, kPtr->value);
hPtr = Tcl_CreateHashEntry(&nameTable, (char *) kPtr->value,
&dummy);
Tcl_SetHashValue(hPtr, kPtr->name);
}
#endif /* REDO_KEYSYM_LOOKUP */
Tcl_InitHashTable(&modTable, TCL_STRING_KEYS);
for (modPtr = modArray; modPtr->name != NULL; modPtr++) {
hPtr = Tcl_CreateHashEntry(&modTable, modPtr->name, &dummy);
Tcl_SetHashValue(hPtr, modPtr);
}
Tcl_InitHashTable(&eventTable, TCL_STRING_KEYS);
for (eiPtr = eventArray; eiPtr->name != NULL; eiPtr++) {
hPtr = Tcl_CreateHashEntry(&eventTable, eiPtr->name, &dummy);
Tcl_SetHashValue(hPtr, eiPtr);
}
initialized = 1;
}
mainPtr->bindingTable = Tk_CreateBindingTable(mainPtr->interp);
bindInfoPtr = (BindInfo *) ckalloc(sizeof(BindInfo));
InitVirtualEventTable(&bindInfoPtr->virtualEventTable);
bindInfoPtr->screenInfo.curDispPtr = NULL;
bindInfoPtr->screenInfo.curScreenIndex = -1;
bindInfoPtr->screenInfo.bindingDepth = 0;
bindInfoPtr->pendingList = NULL;
mainPtr->bindInfo = (TkBindInfo) bindInfoPtr;
TkpInitializeMenuBindings(mainPtr->interp, mainPtr->bindingTable);
}
/*
*---------------------------------------------------------------------------
*
* TkBindFree --
*
* This procedure is called when an application is deleted. It
* deletes all the structures used by bindings and virtual events.
*
* Results:
* None.
*
* Side effects:
* Memory freed.
*
*---------------------------------------------------------------------------
*/
void
TkBindFree(mainPtr)
TkMainInfo *mainPtr; /* The newly created application. */
{
BindInfo *bindInfoPtr;
Tk_DeleteBindingTable(mainPtr->bindingTable);
mainPtr->bindingTable = NULL;
bindInfoPtr = (BindInfo *) mainPtr->bindInfo;
DeleteVirtualEventTable(&bindInfoPtr->virtualEventTable);
mainPtr->bindInfo = NULL;
}
/*
*--------------------------------------------------------------
*
* Tk_CreateBindingTable --
*
* Set up a new domain in which event bindings may be created.
*
* Results:
* The return value is a token for the new table, which must
* be passed to procedures like Tk_CreatBinding.
*
* Side effects:
* Memory is allocated for the new table.
*
*--------------------------------------------------------------
*/
Tk_BindingTable
Tk_CreateBindingTable(interp)
Tcl_Interp *interp; /* Interpreter to associate with the binding
* table: commands are executed in this
* interpreter. */
{
BindingTable *bindPtr;
int i;
/*
* Create and initialize a new binding table.
*/
bindPtr = (BindingTable *) ckalloc(sizeof(BindingTable));
for (i = 0; i < EVENT_BUFFER_SIZE; i++) {
bindPtr->eventRing[i].type = -1;
}
bindPtr->curEvent = 0;
Tcl_InitHashTable(&bindPtr->patternTable,
sizeof(PatternTableKey)/sizeof(int));
Tcl_InitHashTable(&bindPtr->objectTable, TCL_ONE_WORD_KEYS);
bindPtr->interp = interp;
return (Tk_BindingTable) bindPtr;
}
/*
*--------------------------------------------------------------
*
* Tk_DeleteBindingTable --
*
* Destroy a binding table and free up all its memory.
* The caller should not use bindingTable again after
* this procedure returns.
*
* Results:
* None.
*
* Side effects:
* Memory is freed.
*
*--------------------------------------------------------------
*/
void
Tk_DeleteBindingTable(bindingTable)
Tk_BindingTable bindingTable; /* Token for the binding table to
* destroy. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr, *nextPtr;
Tcl_HashEntry *hPtr;
Tcl_HashSearch search;
/*
* Find and delete all of the patterns associated with the binding
* table.
*/
for (hPtr = Tcl_FirstHashEntry(&bindPtr->patternTable, &search);
hPtr != NULL; hPtr = Tcl_NextHashEntry(&search)) {
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
psPtr != NULL; psPtr = nextPtr) {
nextPtr = psPtr->nextSeqPtr;
psPtr->flags |= MARKED_DELETED;
if (psPtr->refCount == 0) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
}
}
/*
* Clean up the rest of the information associated with the
* binding table.
*/
Tcl_DeleteHashTable(&bindPtr->patternTable);
Tcl_DeleteHashTable(&bindPtr->objectTable);
ckfree((char *) bindPtr);
}
/*
*--------------------------------------------------------------
*
* Tk_CreateBinding --
*
* Add a binding to a binding table, so that future calls to
* Tk_BindEvent may execute the command in the binding.
*
* Results:
* The return value is 0 if an error occurred while setting
* up the binding. In this case, an error message will be
* left in interp->result. If all went well then the return
* value is a mask of the event types that must be made
* available to Tk_BindEvent in order to properly detect when
* this binding triggers. This value can be used to determine
* what events to select for in a window, for example.
*
* Side effects:
* An existing binding on the same event sequence may be
* replaced.
* The new binding may cause future calls to Tk_BindEvent to
* behave differently than they did previously.
*
*--------------------------------------------------------------
*/
#ifdef SCM_CODE
unsigned long
Tk_CreateBinding(interp, bindingTable, object, eventString, command, key1, key3)
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable;
/* Table in which to create binding. */
ClientData object; /* Token for object with which binding is
* associated. */
char *eventString; /* String describing event sequence that
* triggers binding. */
char *command; /* Contains Tcl command to execute when
* binding triggers. */
char *key1; /* Widget's name */
char *key3; /* Inset ID */
#else
unsigned long
Tk_CreateBinding(interp, bindingTable, object, eventString, command, append)
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable;
/* Table in which to create binding. */
ClientData object; /* Token for object with which binding is
* associated. */
char *eventString; /* String describing event sequence that
* triggers binding. */
char *command; /* Contains Tcl command to execute when
* binding triggers. */
int append; /* 0 means replace any existing binding for
* eventString; 1 means append to that
* binding. If the existing binding is for a
* callback function and not a Tcl command
* string, the existing binding will always be
* replaced. */
#endif
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
unsigned long eventMask;
char *new, *old;
#ifdef SCM_CODE
SCM p;
# ifdef STk_CODE
if (!STk_valid_callback(command, &p) || (p == NULL)) {
# else
if (!SCM_valid_callback(command, &p) || (p == NULL)) {
# endif
BadSpec:
Tcl_AppendResult(interp, "bad closure specification \"",
command, "\"", (char *) NULL);
return TCL_ERROR;
}
#endif
#ifdef STk_CODE
if (p != NULL) {
/*
* Modify the binding to tranform it in a call with parameters set.
* It's a hack but this avoid to do this work at each binding
* execution
*/
if ((new=STk_append_callback_parameters(p)) == NULL) goto BadSpec;
/* new will be automatically GC'ed. */
command = new;
}
#endif
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
1, 1, &eventMask);
if (psPtr == NULL) {
return 0;
}
if (psPtr->eventProc == NULL) {
int new;
Tcl_HashEntry *hPtr;
/*
* This pattern sequence was just created.
* Link the pattern into the list associated with the object, so
* that if the object goes away, these bindings will all
* automatically be deleted.
*/
hPtr = Tcl_CreateHashEntry(&bindPtr->objectTable, (char *) object,
&new);
if (new) {
psPtr->nextObjPtr = NULL;
} else {
psPtr->nextObjPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
}
Tcl_SetHashValue(hPtr, psPtr);
} else if (psPtr->eventProc != EvalTclBinding) {
/*
* Free existing procedural binding.
*/
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
psPtr->clientData = NULL;
#ifndef SCM_CODE
append = 0;
#endif
}
old = (char *) psPtr->clientData;
#ifndef SCM_CODE
if ((append != 0) && (old != NULL)) {
int length;
length = strlen(old) + strlen(command) + 2;
new = (char *) ckalloc((unsigned) length);
sprintf(new, "%s\n%s", old, command);
} else {
#endif
new = (char *) ckalloc((unsigned) strlen(command) + 1);
strcpy(new, command);
#ifndef SCM_CODE
}
#endif
if (old != NULL) {
ckfree(old);
}
psPtr->eventProc = EvalTclBinding;
psPtr->freeProc = FreeTclBinding;
psPtr->clientData = (ClientData) new;
#ifdef SCM_CODE
if( p )
if (eventMask) STk_add_callback(key1, eventString, key3, p);
#endif
return eventMask;
}
/*
*---------------------------------------------------------------------------
*
* TkCreateBindingProcedure --
*
* Add a C binding to a binding table, so that future calls to
* Tk_BindEvent may callback the procedure in the binding.
*
* Results:
* The return value is 0 if an error occurred while setting
* up the binding. In this case, an error message will be
* left in interp->result. If all went well then the return
* value is a mask of the event types that must be made
* available to Tk_BindEvent in order to properly detect when
* this binding triggers. This value can be used to determine
* what events to select for in a window, for example.
*
* Side effects:
* Any existing binding on the same event sequence will be
* replaced.
*
*---------------------------------------------------------------------------
*/
unsigned long
TkCreateBindingProcedure(interp, bindingTable, object, eventString,
eventProc, freeProc, clientData)
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable;
/* Table in which to create binding. */
ClientData object; /* Token for object with which binding is
* associated. */
char *eventString; /* String describing event sequence that
* triggers binding. */
TkBindEvalProc *eventProc; /* Procedure to invoke when binding
* triggers. Must not be NULL. */
TkBindFreeProc *freeProc; /* Procedure to invoke when binding is
* freed. May be NULL for no procedure. */
ClientData clientData; /* Arbitrary ClientData to pass to eventProc
* and freeProc. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
unsigned long eventMask;
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
1, 1, &eventMask);
if (psPtr == NULL) {
return 0;
}
if (psPtr->eventProc == NULL) {
int new;
Tcl_HashEntry *hPtr;
/*
* This pattern sequence was just created.
* Link the pattern into the list associated with the object, so
* that if the object goes away, these bindings will all
* automatically be deleted.
*/
hPtr = Tcl_CreateHashEntry(&bindPtr->objectTable, (char *) object,
&new);
if (new) {
psPtr->nextObjPtr = NULL;
} else {
psPtr->nextObjPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
}
Tcl_SetHashValue(hPtr, psPtr);
} else {
/*
* Free existing callback.
*/
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
}
psPtr->eventProc = eventProc;
psPtr->freeProc = freeProc;
psPtr->clientData = clientData;
return eventMask;
}
/*
*--------------------------------------------------------------
*
* Tk_DeleteBinding --
*
* Remove an event binding from a binding table.
*
* Results:
* The result is a standard Tcl return value. If an error
* occurs then interp->result will contain an error message.
*
* Side effects:
* The binding given by object and eventString is removed
* from bindingTable.
*
*--------------------------------------------------------------
*/
int
Tk_DeleteBinding(interp, bindingTable, object, eventString)
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable; /* Table in which to delete binding. */
ClientData object; /* Token for object with which binding
* is associated. */
char *eventString; /* String describing event sequence
* that triggers binding. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr, *prevPtr;
unsigned long eventMask;
Tcl_HashEntry *hPtr;
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
0, 1, &eventMask);
if (psPtr == NULL) {
Tcl_ResetResult(interp);
return TCL_OK;
}
/*
* Unlink the binding from the list for its object, then from the
* list for its pattern.
*/
hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object);
if (hPtr == NULL) {
panic("Tk_DeleteBinding couldn't find object table entry");
}
prevPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
if (prevPtr == psPtr) {
Tcl_SetHashValue(hPtr, psPtr->nextObjPtr);
} else {
for ( ; ; prevPtr = prevPtr->nextObjPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteBinding couldn't find on object list");
}
if (prevPtr->nextObjPtr == psPtr) {
prevPtr->nextObjPtr = psPtr->nextObjPtr;
break;
}
}
}
prevPtr = (PatSeq *) Tcl_GetHashValue(psPtr->hPtr);
if (prevPtr == psPtr) {
if (psPtr->nextSeqPtr == NULL) {
Tcl_DeleteHashEntry(psPtr->hPtr);
} else {
Tcl_SetHashValue(psPtr->hPtr, psPtr->nextSeqPtr);
}
} else {
for ( ; ; prevPtr = prevPtr->nextSeqPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteBinding couldn't find on hash chain");
}
if (prevPtr->nextSeqPtr == psPtr) {
prevPtr->nextSeqPtr = psPtr->nextSeqPtr;
break;
}
}
}
psPtr->flags |= MARKED_DELETED;
if (psPtr->refCount == 0) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
return TCL_OK;
}
/*
*--------------------------------------------------------------
*
* Tk_GetBinding --
*
* Return the command associated with a given event string.
*
* Results:
* The return value is a pointer to the command string
* associated with eventString for object in the domain
* given by bindingTable. If there is no binding for
* eventString, or if eventString is improperly formed,
* then NULL is returned and an error message is left in
* interp->result. The return value is semi-static: it
* will persist until the binding is changed or deleted.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
char *
Tk_GetBinding(interp, bindingTable, object, eventString)
Tcl_Interp *interp; /* Interpreter for error reporting. */
Tk_BindingTable bindingTable; /* Table in which to look for
* binding. */
ClientData object; /* Token for object with which binding
* is associated. */
char *eventString; /* String describing event sequence
* that triggers binding. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
unsigned long eventMask;
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
0, 1, &eventMask);
if (psPtr == NULL) {
return NULL;
}
if (psPtr->eventProc == EvalTclBinding) {
return (char *) psPtr->clientData;
}
#ifdef SCM_CODE
return "#f";
#else
return "";
#endif
}
/*
*--------------------------------------------------------------
*
* Tk_GetAllBindings --
*
* Return a list of event strings for all the bindings
* associated with a given object.
*
* Results:
* There is no return value. Interp->result is modified to
* hold a Tcl list with one entry for each binding associated
* with object in bindingTable. Each entry in the list
* contains the event string associated with one binding.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
Tk_GetAllBindings(interp, bindingTable, object)
Tcl_Interp *interp; /* Interpreter returning result or
* error. */
Tk_BindingTable bindingTable; /* Table in which to look for
* bindings. */
ClientData object; /* Token for object. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
Tcl_HashEntry *hPtr;
Tcl_DString ds;
hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object);
if (hPtr == NULL) {
return;
}
Tcl_DStringInit(&ds);
#ifdef SCM_CODE
Tcl_AppendResult(interp, "(", NULL);
#endif
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr); psPtr != NULL;
psPtr = psPtr->nextObjPtr) {
/*
* For each binding, output information about each of the
* patterns in its sequence.
*/
Tcl_DStringSetLength(&ds, 0);
GetPatternString(psPtr, &ds);
Tcl_AppendElement(interp, Tcl_DStringValue(&ds));
}
#ifdef SCM_CODE
Tcl_AppendResult(interp, ")", NULL);
#endif
Tcl_DStringFree(&ds);
}
/*
*--------------------------------------------------------------
*
* Tk_DeleteAllBindings --
*
* Remove all bindings associated with a given object in a
* given binding table.
*
* Results:
* All bindings associated with object are removed from
* bindingTable.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
Tk_DeleteAllBindings(bindingTable, object)
Tk_BindingTable bindingTable; /* Table in which to delete
* bindings. */
ClientData object; /* Token for object. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr, *prevPtr;
PatSeq *nextPtr;
Tcl_HashEntry *hPtr;
hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object);
if (hPtr == NULL) {
return;
}
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr); psPtr != NULL;
psPtr = nextPtr) {
nextPtr = psPtr->nextObjPtr;
/*
* Be sure to remove each binding from its hash chain in the
* pattern table. If this is the last pattern in the chain,
* then delete the hash entry too.
*/
prevPtr = (PatSeq *) Tcl_GetHashValue(psPtr->hPtr);
if (prevPtr == psPtr) {
if (psPtr->nextSeqPtr == NULL) {
Tcl_DeleteHashEntry(psPtr->hPtr);
} else {
Tcl_SetHashValue(psPtr->hPtr, psPtr->nextSeqPtr);
}
} else {
for ( ; ; prevPtr = prevPtr->nextSeqPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteAllBindings couldn't find on hash chain");
}
if (prevPtr->nextSeqPtr == psPtr) {
prevPtr->nextSeqPtr = psPtr->nextSeqPtr;
break;
}
}
}
psPtr->flags |= MARKED_DELETED;
if (psPtr->refCount == 0) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
}
Tcl_DeleteHashEntry(hPtr);
}
/*
*---------------------------------------------------------------------------
*
* Tk_BindEvent --
*
* This procedure is invoked to process an X event. The
* event is added to those recorded for the binding table.
* Then each of the objects at *objectPtr is checked in
* order to see if it has a binding that matches the recent
* events. If so, the most specific binding is invoked for
* each object.
*
* Results:
* None.
*
* Side effects:
* Depends on the command associated with the matching binding.
*
* All Tcl bindings scripts for each object are accumulated before
* the first binding is evaluated. If the action of a Tcl binding
* is to change or delete a binding, or delete the window associated
* with the binding, all the original Tcl binding scripts will still
* fire. Contrast this with C binding procedures. If a pending C
* binding (one that hasn't fired yet, but is queued to be fired for
* this window) is deleted, it will not be called, and if it is
* changed, then the new binding procedure will be called. If the
* window itself is deleted, no further C binding procedures will be
* called for this window. When both Tcl binding scripts and C binding
* procedures are interleaved, the above rules still apply.
*
*---------------------------------------------------------------------------
*/
void
Tk_BindEvent(bindingTable, eventPtr, tkwin, numObjects, objectPtr)
Tk_BindingTable bindingTable; /* Table in which to look for
* bindings. */
XEvent *eventPtr; /* What actually happened. */
Tk_Window tkwin; /* Window on display where event
* occurred (needed in order to
* locate display information). */
int numObjects; /* Number of objects at *objectPtr. */
ClientData *objectPtr; /* Array of one or more objects
* to check for a matching binding. */
{
BindingTable *bindPtr;
TkDisplay *dispPtr;
BindInfo *bindInfoPtr;
TkDisplay *oldDispPtr;
ScreenInfo *screenPtr;
XEvent *ringPtr;
PatSeq *vMatchDetailList, *vMatchNoDetailList;
int flags, oldScreen, i, deferModal;
unsigned int matchCount, matchSpace;
Tcl_Interp *interp;
Tcl_DString scripts, savedResult;
Detail detail;
char *p, *end;
PendingBinding *pendingPtr;
PendingBinding staticPending;
TkWindow *winPtr = (TkWindow *)tkwin;
PatternTableKey key;
/*
* Ignore events on windows that don't have names: these are windows
* like wrapper windows that shouldn't be visible to the
* application.
*/
if (winPtr->pathName == NULL) {
return;
}
/*
* Ignore the event completely if it is an Enter, Leave, FocusIn,
* or FocusOut event with detail NotifyInferior. The reason for
* ignoring these events is that we don't want transitions between
* a window and its children to visible to bindings on the parent:
* this would cause problems for mega-widgets, since the internal
* structure of a mega-widget isn't supposed to be visible to
* people watching the parent.
*/
if ((eventPtr->type == EnterNotify) || (eventPtr->type == LeaveNotify)) {
if (eventPtr->xcrossing.detail == NotifyInferior) {
return;
}
}
if ((eventPtr->type == FocusIn) || (eventPtr->type == FocusOut)) {
if (eventPtr->xfocus.detail == NotifyInferior) {
return;
}
}
bindPtr = (BindingTable *) bindingTable;
dispPtr = ((TkWindow *) tkwin)->dispPtr;
bindInfoPtr = (BindInfo *) winPtr->mainPtr->bindInfo;
/*
* Add the new event to the ring of saved events for the
* binding table. Two tricky points:
*
* 1. Combine consecutive MotionNotify events. Do this by putting
* the new event *on top* of the previous event.
* 2. If a modifier key is held down, it auto-repeats to generate
* continuous KeyPress and KeyRelease events. These can flush
* the event ring so that valuable information is lost (such
* as repeated button clicks). To handle this, check for the
* special case of a modifier KeyPress arriving when the previous
* two events are a KeyRelease and KeyPress of the same key.
* If this happens, mark the most recent event (the KeyRelease)
* invalid and put the new event on top of the event before that
* (the KeyPress).
*/
if ((eventPtr->type == MotionNotify)
&& (bindPtr->eventRing[bindPtr->curEvent].type == MotionNotify)) {
/*
* Don't advance the ring pointer.
*/
} else if (eventPtr->type == KeyPress) {
int i;
for (i = 0; ; i++) {
if (i >= dispPtr->numModKeyCodes) {
goto advanceRingPointer;
}
if (dispPtr->modKeyCodes[i] == eventPtr->xkey.keycode) {
break;
}
}
ringPtr = &bindPtr->eventRing[bindPtr->curEvent];
if ((ringPtr->type != KeyRelease)
|| (ringPtr->xkey.keycode != eventPtr->xkey.keycode)) {
goto advanceRingPointer;
}
if (bindPtr->curEvent <= 0) {
i = EVENT_BUFFER_SIZE - 1;
} else {
i = bindPtr->curEvent - 1;
}
ringPtr = &bindPtr->eventRing[i];
if ((ringPtr->type != KeyPress)
|| (ringPtr->xkey.keycode != eventPtr->xkey.keycode)) {
goto advanceRingPointer;
}
bindPtr->eventRing[bindPtr->curEvent].type = -1;
bindPtr->curEvent = i;
} else {
advanceRingPointer:
bindPtr->curEvent++;
if (bindPtr->curEvent >= EVENT_BUFFER_SIZE) {
bindPtr->curEvent = 0;
}
}
ringPtr = &bindPtr->eventRing[bindPtr->curEvent];
memcpy((VOID *) ringPtr, (VOID *) eventPtr, sizeof(XEvent));
detail.clientData = 0;
flags = flagArray[ringPtr->type];
if (flags & KEY) {
detail.keySym = GetKeySym(dispPtr, ringPtr);
if (detail.keySym == NoSymbol) {
detail.keySym = 0;
}
} else if (flags & BUTTON) {
detail.button = ringPtr->xbutton.button;
} else if (flags & VIRTUAL) {
detail.name = ((XVirtualEvent *) ringPtr)->name;
}
bindPtr->detailRing[bindPtr->curEvent] = detail;
/*
* Find out if there are any virtual events that correspond to this
* physical event (or sequence of physical events).
*/
vMatchDetailList = NULL;
vMatchNoDetailList = NULL;
memset(&key, 0, sizeof(key));
if (ringPtr->type != VirtualEvent) {
Tcl_HashTable *veptPtr;
Tcl_HashEntry *hPtr;
veptPtr = &bindInfoPtr->virtualEventTable.patternTable;
key.object = NULL;
key.type = ringPtr->type;
key.detail = detail;
hPtr = Tcl_FindHashEntry(veptPtr, (char *) &key);
if (hPtr != NULL) {
vMatchDetailList = (PatSeq *) Tcl_GetHashValue(hPtr);
}
if (key.detail.clientData != 0) {
key.detail.clientData = 0;
hPtr = Tcl_FindHashEntry(veptPtr, (char *) &key);
if (hPtr != NULL) {
vMatchNoDetailList = (PatSeq *) Tcl_GetHashValue(hPtr);
}
}
}
/*
* Loop over all the binding tags, finding the binding script or
* callback for each one. Append all of the binding scripts, with
* %-sequences expanded, to "scripts", with null characters separating
* the scripts for each object. Append all the callbacks to the array
* of pending callbacks.
*/
pendingPtr = &staticPending;
matchCount = 0;
matchSpace = sizeof(staticPending.matchArray) / sizeof(PatSeq *);
Tcl_DStringInit(&scripts);
for ( ; numObjects > 0; numObjects--, objectPtr++) {
PatSeq *matchPtr, *sourcePtr;
Tcl_HashEntry *hPtr;
matchPtr = NULL;
sourcePtr = NULL;
/*
* Match the new event against those recorded in the pattern table,
* saving the longest matching pattern. For events with details
* (button and key events), look for a binding for the specific
* key or button. First see if the event matches a physical event
* that the object is interested in, then look for a virtual event.
*/
key.object = *objectPtr;
key.type = ringPtr->type;
key.detail = detail;
hPtr = Tcl_FindHashEntry(&bindPtr->patternTable, (char *) &key);
if (hPtr != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr,
(PatSeq *) Tcl_GetHashValue(hPtr), matchPtr, NULL,
&sourcePtr);
}
if (vMatchDetailList != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr, vMatchDetailList,
matchPtr, objectPtr, &sourcePtr);
}
/*
* If no match was found, look for a binding for all keys or buttons
* (detail of 0). Again, first match on a virtual event.
*/
if ((detail.clientData != 0) && (matchPtr == NULL)) {
key.detail.clientData = 0;
hPtr = Tcl_FindHashEntry(&bindPtr->patternTable, (char *) &key);
if (hPtr != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr,
(PatSeq *) Tcl_GetHashValue(hPtr), matchPtr, NULL,
&sourcePtr);
}
if (vMatchNoDetailList != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr, vMatchNoDetailList,
matchPtr, objectPtr, &sourcePtr);
}
}
if (matchPtr != NULL) {
if (sourcePtr->eventProc == NULL) {
panic("Tk_BindEvent: missing command");
}
if (sourcePtr->eventProc == EvalTclBinding) {
ExpandPercents(winPtr, (char *) sourcePtr->clientData,
eventPtr, detail.keySym, &scripts);
} else {
if (matchCount >= matchSpace) {
PendingBinding *new;
unsigned int oldSize, newSize;
oldSize = sizeof(staticPending)
- sizeof(staticPending.matchArray)
+ matchSpace * sizeof(PatSeq*);
matchSpace *= 2;
newSize = sizeof(staticPending)
- sizeof(staticPending.matchArray)
+ matchSpace * sizeof(PatSeq*);
new = (PendingBinding *) ckalloc(newSize);
memcpy((VOID *) new, (VOID *) pendingPtr, oldSize);
if (pendingPtr != &staticPending) {
ckfree((char *) pendingPtr);
}
pendingPtr = new;
}
sourcePtr->refCount++;
pendingPtr->matchArray[matchCount] = sourcePtr;
matchCount++;
}
/*
* A "" is added to the scripts string to separate the
* various scripts that should be invoked.
*/
Tcl_DStringAppend(&scripts, "", 1);
}
}
if (Tcl_DStringLength(&scripts) == 0) {
return;
}
/*
* Now go back through and evaluate the binding for each object,
* in order, dealing with "break" and "continue" exceptions
* appropriately.
*
* There are two tricks here:
* 1. Bindings can be invoked from in the middle of Tcl commands,
* where interp->result is significant (for example, a widget
* might be deleted because of an error in creating it, so the
* result contains an error message that is eventually going to
* be returned by the creating command). To preserve the result,
* we save it in a dynamic string.
* 2. The binding's action can potentially delete the binding,
* so bindPtr may not point to anything valid once the action
* completes. Thus we have to save bindPtr->interp in a
* local variable in order to restore the result.
*/
interp = bindPtr->interp;
Tcl_DStringInit(&savedResult);
/*
* Save information about the current screen, then invoke a script
* if the screen has changed.
*/
Tcl_DStringGetResult(interp, &savedResult);
screenPtr = &bindInfoPtr->screenInfo;
oldDispPtr = screenPtr->curDispPtr;
oldScreen = screenPtr->curScreenIndex;
if ((dispPtr != screenPtr->curDispPtr)
|| (Tk_ScreenNumber(tkwin) != screenPtr->curScreenIndex)) {
screenPtr->curDispPtr = dispPtr;
screenPtr->curScreenIndex = Tk_ScreenNumber(tkwin);
ChangeScreen(interp, dispPtr->name, screenPtr->curScreenIndex);
}
if (matchCount > 0) {
pendingPtr->nextPtr = bindInfoPtr->pendingList;
pendingPtr->tkwin = tkwin;
pendingPtr->deleted = 0;
bindInfoPtr->pendingList = pendingPtr;
}
/*
* Save the current value of the TK_DEFER_MODAL flag so we can
* restore it at the end of the loop. Clear the flag so we can
* detect any recursive requests for a modal loop.
*/
flags = winPtr->flags;
winPtr->flags &= ~TK_DEFER_MODAL;
p = Tcl_DStringValue(&scripts);
end = p + Tcl_DStringLength(&scripts);
i = 0;
while (p < end) {
int code;
screenPtr->bindingDepth++;
Tcl_AllowExceptions(interp);
if (*p == '\0') {
PatSeq *psPtr;
psPtr = pendingPtr->matchArray[i];
i++;
code = TCL_OK;
if ((pendingPtr->deleted == 0)
&& ((psPtr->flags & MARKED_DELETED) == 0)) {
code = (*psPtr->eventProc)(psPtr->clientData, interp, eventPtr,
tkwin, detail.keySym);
}
psPtr->refCount--;
if ((psPtr->refCount == 0) && (psPtr->flags & MARKED_DELETED)) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
} else {
code = Tcl_GlobalEval(interp, p);
p += strlen(p);
}
p++;
screenPtr->bindingDepth--;
if (code != TCL_OK) {
if (code == TCL_CONTINUE) {
/*
* Do nothing: just go on to the next command.
*/
} else if (code == TCL_BREAK) {
break;
} else {
Tcl_AddErrorInfo(interp, "\n (command bound to event)");
Tcl_BackgroundError(interp);
break;
}
}
}
if (matchCount > 0 && !pendingPtr->deleted) {
/*
* Restore the original modal flag value and invoke the modal loop
* if needed.
*/
deferModal = winPtr->flags & TK_DEFER_MODAL;
winPtr->flags = (winPtr->flags & (unsigned int) ~TK_DEFER_MODAL)
| (flags & TK_DEFER_MODAL);
if (deferModal) {
(*winPtr->classProcsPtr->modalProc)(tkwin, eventPtr);
}
}
if ((screenPtr->bindingDepth != 0) &&
((oldDispPtr != screenPtr->curDispPtr)
|| (oldScreen != screenPtr->curScreenIndex))) {
/*
* Some other binding script is currently executing, but its
* screen is no longer current. Change the current display
* back again.
*/
screenPtr->curDispPtr = oldDispPtr;
screenPtr->curScreenIndex = oldScreen;
ChangeScreen(interp, oldDispPtr->name, oldScreen);
}
Tcl_DStringResult(interp, &savedResult);
Tcl_DStringFree(&scripts);
if (matchCount > 0) {
PendingBinding **curPtrPtr;
for (curPtrPtr = &bindInfoPtr->pendingList; ; ) {
if (*curPtrPtr == pendingPtr) {
*curPtrPtr = pendingPtr->nextPtr;
break;
}
curPtrPtr = &(*curPtrPtr)->nextPtr;
}
if (pendingPtr != &staticPending) {
ckfree((char *) pendingPtr);
}
}
}
/*
*---------------------------------------------------------------------------
*
* TkBindDeadWindow --
*
* This procedure is invoked when it is determined that a window is
* dead. It cleans up bind-related information about the window
*
* Results:
* None.
*
* Side effects:
* Any pending C bindings for this window are cancelled.
*
*---------------------------------------------------------------------------
*/
void
TkBindDeadWindow(winPtr)
TkWindow *winPtr; /* The window that is being deleted. */
{
BindInfo *bindInfoPtr;
PendingBinding *curPtr;
bindInfoPtr = (BindInfo *) winPtr->mainPtr->bindInfo;
curPtr = bindInfoPtr->pendingList;
while (curPtr != NULL) {
if (curPtr->tkwin == (Tk_Window) winPtr) {
curPtr->deleted = 1;
}
curPtr = curPtr->nextPtr;
}
}
/*
*----------------------------------------------------------------------
*
* MatchPatterns --
*
* Given a list of pattern sequences and a list of recent events,
* return the pattern sequence that best matches the event list,
* if there is one.
*
* This procedure is used in two different ways. In the simplest
* use, "object" is NULL and psPtr is a list of pattern sequences,
* each of which corresponds to a binding. In this case, the
* procedure finds the pattern sequences that match the event list
* and returns the most specific of those, if there is more than one.
*
* In the second case, psPtr is a list of pattern sequences, each
* of which corresponds to a definition for a virtual binding.
* In order for one of these sequences to "match", it must match
* the events (as above) but in addition there must be a binding
* for its associated virtual event on the current object. The
* "object" argument indicates which object the binding must be for.
*
* Results:
* The return value is NULL if bestPtr is NULL and no pattern matches
* the recent events from bindPtr. Otherwise the return value is
* the most specific pattern sequence among bestPtr and all those
* at psPtr that match the event list and object. If a pattern
* sequence other than bestPtr is returned, then *bestCommandPtr
* is filled in with a pointer to the command from the best sequence.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static PatSeq *
MatchPatterns(dispPtr, bindPtr, psPtr, bestPtr, objectPtr, sourcePtrPtr)
TkDisplay *dispPtr; /* Display from which the event came. */
BindingTable *bindPtr; /* Information about binding table, such as
* ring of recent events. */
PatSeq *psPtr; /* List of pattern sequences. */
PatSeq *bestPtr; /* The best match seen so far, from a
* previous call to this procedure. NULL
* means no prior best match. */
ClientData *objectPtr; /* If NULL, the sequences at psPtr
* correspond to "normal" bindings. If
* non-NULL, the sequences at psPtr correspond
* to virtual bindings; in order to match each
* sequence must correspond to a virtual
* binding for which a binding exists for
* object in bindPtr. */
PatSeq **sourcePtrPtr; /* Filled with the pattern sequence that
* contains the eventProc and clientData
* associated with the best match. If this
* differs from the return value, it is the
* virtual event that most closely matched the
* return value (a physical event). Not
* modified unless a result other than bestPtr
* is returned. */
{
PatSeq *matchPtr, *bestSourcePtr, *sourcePtr;
bestSourcePtr = *sourcePtrPtr;
/*
* Iterate over all the pattern sequences.
*/
for ( ; psPtr != NULL; psPtr = psPtr->nextSeqPtr) {
XEvent *eventPtr;
Pattern *patPtr;
Window window;
Detail *detailPtr;
int patCount, ringCount, flags, state;
int modMask;
/*
* Iterate over all the patterns in a sequence to be
* sure that they all match.
*/
eventPtr = &bindPtr->eventRing[bindPtr->curEvent];
detailPtr = &bindPtr->detailRing[bindPtr->curEvent];
window = eventPtr->xany.window;
patPtr = psPtr->pats;
patCount = psPtr->numPats;
ringCount = EVENT_BUFFER_SIZE;
while (patCount > 0) {
if (ringCount <= 0) {
goto nextSequence;
}
if (eventPtr->xany.type != patPtr->eventType) {
/*
* Most of the event types are considered superfluous
* in that they are ignored if they occur in the middle
* of a pattern sequence and have mismatching types. The
* only ones that cannot be ignored are ButtonPress and
* ButtonRelease events (if the next event in the pattern
* is a KeyPress or KeyRelease) and KeyPress and KeyRelease
* events (if the next pattern event is a ButtonPress or
* ButtonRelease). Here are some tricky cases to consider:
* 1. Double-Button or Double-Key events.
* 2. Double-ButtonRelease or Double-KeyRelease events.
* 3. The arrival of various events like Enter and Leave
* and FocusIn and GraphicsExpose between two button
* presses or key presses.
* 4. Modifier keys like Shift and Control shouldn't
* generate conflicts with button events.
*/
if ((patPtr->eventType == KeyPress)
|| (patPtr->eventType == KeyRelease)) {
if ((eventPtr->xany.type == ButtonPress)
|| (eventPtr->xany.type == ButtonRelease)) {
goto nextSequence;
}
} else if ((patPtr->eventType == ButtonPress)
|| (patPtr->eventType == ButtonRelease)) {
if ((eventPtr->xany.type == KeyPress)
|| (eventPtr->xany.type == KeyRelease)) {
int i;
/*
* Ignore key events if they are modifier keys.
*/
for (i = 0; i < dispPtr->numModKeyCodes; i++) {
if (dispPtr->modKeyCodes[i]
== eventPtr->xkey.keycode) {
/*
* This key is a modifier key, so ignore it.
*/
goto nextEvent;
}
}
goto nextSequence;
}
}
goto nextEvent;
}
if (eventPtr->xany.window != window) {
goto nextSequence;
}
/*
* Note: it's important for the keysym check to go before
* the modifier check, so we can ignore unwanted modifier
* keys before choking on the modifier check.
*/
if ((patPtr->detail.clientData != 0)
&& (patPtr->detail.clientData != detailPtr->clientData)) {
/*
* The detail appears not to match. However, if the event
* is a KeyPress for a modifier key then just ignore the
* event. Otherwise event sequences like "aD" never match
* because the shift key goes down between the "a" and the
* "D".
*/
if (eventPtr->xany.type == KeyPress) {
int i;
for (i = 0; i < dispPtr->numModKeyCodes; i++) {
if (dispPtr->modKeyCodes[i] == eventPtr->xkey.keycode) {
goto nextEvent;
}
}
}
goto nextSequence;
}
flags = flagArray[eventPtr->type];
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
state = eventPtr->xkey.state;
} else if (flags & CROSSING) {
state = eventPtr->xcrossing.state;
} else {
state = 0;
}
if (patPtr->needMods != 0) {
modMask = patPtr->needMods;
if ((modMask & META_MASK) && (dispPtr->metaModMask != 0)) {
modMask = (modMask & ~META_MASK) | dispPtr->metaModMask;
}
if ((modMask & ALT_MASK) && (dispPtr->altModMask != 0)) {
modMask = (modMask & ~ALT_MASK) | dispPtr->altModMask;
}
if ((state & modMask) != modMask) {
goto nextSequence;
}
}
if (psPtr->flags & PAT_NEARBY) {
XEvent *firstPtr;
int timeDiff;
firstPtr = &bindPtr->eventRing[bindPtr->curEvent];
timeDiff = (Time) firstPtr->xkey.time - eventPtr->xkey.time;
if ((firstPtr->xkey.x_root
< (eventPtr->xkey.x_root - NEARBY_PIXELS))
|| (firstPtr->xkey.x_root
> (eventPtr->xkey.x_root + NEARBY_PIXELS))
|| (firstPtr->xkey.y_root
< (eventPtr->xkey.y_root - NEARBY_PIXELS))
|| (firstPtr->xkey.y_root
> (eventPtr->xkey.y_root + NEARBY_PIXELS))
|| (timeDiff > NEARBY_MS)) {
goto nextSequence;
}
}
patPtr++;
patCount--;
nextEvent:
if (eventPtr == bindPtr->eventRing) {
eventPtr = &bindPtr->eventRing[EVENT_BUFFER_SIZE-1];
detailPtr = &bindPtr->detailRing[EVENT_BUFFER_SIZE-1];
} else {
eventPtr--;
detailPtr--;
}
ringCount--;
}
matchPtr = psPtr;
sourcePtr = psPtr;
if (objectPtr != NULL) {
int iVirt;
VirtualOwners *voPtr;
PatternTableKey key;
/*
* The sequence matches the physical constraints.
* Is this object interested in any of the virtual events
* that correspond to this sequence?
*/
voPtr = psPtr->voPtr;
memset(&key, 0, sizeof(key));
key.object = *objectPtr;
key.type = VirtualEvent;
key.detail.clientData = 0;
for (iVirt = 0; iVirt < voPtr->numOwners; iVirt++) {
Tcl_HashEntry *hPtr = voPtr->owners[iVirt];
key.detail.name = (Tk_Uid) Tcl_GetHashKey(hPtr->tablePtr,
hPtr);
hPtr = Tcl_FindHashEntry(&bindPtr->patternTable,
(char *) &key);
if (hPtr != NULL) {
/*
* This tag is interested in this virtual event and its
* corresponding physical event is a good match with the
* virtual event's definition.
*/
PatSeq *virtMatchPtr;
virtMatchPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
if ((virtMatchPtr->numPats != 1)
|| (virtMatchPtr->nextSeqPtr != NULL)) {
panic("MatchPattern: badly constructed virtual event");
}
sourcePtr = virtMatchPtr;
goto match;
}
}
/*
* The physical event matches a virtual event's definition, but
* the tag isn't interested in it.
*/
goto nextSequence;
}
match:
/*
* This sequence matches. If we've already got another match,
* pick whichever is most specific. Detail is most important,
* then needMods.
*/
if (bestPtr != NULL) {
Pattern *patPtr2;
int i;
if (matchPtr->numPats != bestPtr->numPats) {
if (bestPtr->numPats > matchPtr->numPats) {
goto nextSequence;
} else {
goto newBest;
}
}
for (i = 0, patPtr = matchPtr->pats, patPtr2 = bestPtr->pats;
i < matchPtr->numPats; i++, patPtr++, patPtr2++) {
if (patPtr->detail.clientData != patPtr2->detail.clientData) {
if (patPtr->detail.clientData == 0) {
goto nextSequence;
} else {
goto newBest;
}
}
if (patPtr->needMods != patPtr2->needMods) {
if ((patPtr->needMods & patPtr2->needMods)
== patPtr->needMods) {
goto nextSequence;
} else if ((patPtr->needMods & patPtr2->needMods)
== patPtr2->needMods) {
goto newBest;
}
}
}
/*
* Tie goes to current best pattern.
*
* (1) For virtual vs. virtual, the least recently defined
* virtual wins, because virtuals are examined in order of
* definition. This order is _not_ guaranteed in the
* documentation.
*
* (2) For virtual vs. physical, the physical wins because all
* the physicals are examined before the virtuals. This order
* is guaranteed in the documentation.
*
* (3) For physical vs. physical pattern, the most recently
* defined physical wins, because physicals are examined in
* reverse order of definition. This order is guaranteed in
* the documentation.
*/
goto nextSequence;
}
newBest:
bestPtr = matchPtr;
bestSourcePtr = sourcePtr;
nextSequence: continue;
}
*sourcePtrPtr = bestSourcePtr;
return bestPtr;
}
/*
*--------------------------------------------------------------
*
* ExpandPercents --
*
* Given a command and an event, produce a new command
* by replacing % constructs in the original command
* with information from the X event.
*
* Results:
* The new expanded command is appended to the dynamic string
* given by dsPtr.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ExpandPercents(winPtr, before, eventPtr, keySym, dsPtr)
TkWindow *winPtr; /* Window where event occurred: needed to
* get input context. */
char *before; /* Command containing percent expressions
* to be replaced. */
XEvent *eventPtr; /* X event containing information to be
* used in % replacements. */
KeySym keySym; /* KeySym: only relevant for KeyPress and
* KeyRelease events). */
Tcl_DString *dsPtr; /* Dynamic string in which to append new
* command. */
{
#ifdef SCM_CODE
int number, flags;
#else
int spaceNeeded, cvtFlags; /* Used to substitute string as proper Tcl
* list element. */
int number, flags, length;
#endif
#define NUM_SIZE 40
char *string;
char numStorage[NUM_SIZE+1];
if (eventPtr->type < TK_LASTEVENT) {
flags = flagArray[eventPtr->type];
} else {
flags = 0;
}
#ifdef SCM_CODE
/*
* Binding is something like "(#p123abc x y)" or "(#p123abc)"
* Skip the function "name"
*/
for (string=before;
(*string != 0) && (*string != ' ') && (*string != ')');
string++) {
/* Empty loop body. */
}
Tcl_DStringAppend(dsPtr, before, string-before);
before = string;
#endif
while (1) {
#ifndef SCM_CODE
/*
* Find everything up to the next % character and append it
* to the result string.
*/
for (string = before; (*string != 0) && (*string != '%'); string++) {
/* Empty loop body. */
}
if (string != before) {
Tcl_DStringAppend(dsPtr, before, string-before);
before = string;
}
#endif
if (*before == 0) {
break;
}
/*
* There's a percent sequence here. Process it.
*/
number = 0;
string = "??";
#ifdef SCM_CODE
switch (before[0]) {
#else
switch (before[1]) {
#endif
case '#':
number = eventPtr->xany.serial;
goto doNumber;
case 'a':
TkpPrintWindowId(numStorage, eventPtr->xconfigure.above);
string = numStorage;
goto doString;
case 'b':
number = eventPtr->xbutton.button;
goto doNumber;
case 'c':
if (flags & EXPOSE) {
number = eventPtr->xexpose.count;
}
goto doNumber;
case 'd':
if (flags & (CROSSING|FOCUS)) {
if (flags & FOCUS) {
number = eventPtr->xfocus.detail;
} else {
number = eventPtr->xcrossing.detail;
}
string = TkFindStateString(notifyDetail, number);
}
goto doString;
case 'f':
#ifdef SCM_CODE
string = (eventPtr->xcrossing.focus) ? "#t" : "#f";
goto doSymbol;
#else
number = eventPtr->xcrossing.focus;
goto doNumber;
#endif
case 'h':
if (flags & EXPOSE) {
number = eventPtr->xexpose.height;
} else if (flags & (CONFIG)) {
number = eventPtr->xconfigure.height;
}
goto doNumber;
case 'k':
number = eventPtr->xkey.keycode;
goto doNumber;
case 'm':
if (flags & CROSSING) {
number = eventPtr->xcrossing.mode;
} else if (flags & FOCUS) {
number = eventPtr->xfocus.mode;
}
string = TkFindStateString(notifyMode, number);
goto doString;
case 'o':
if (flags & CREATE) {
number = eventPtr->xcreatewindow.override_redirect;
} else if (flags & MAP) {
number = eventPtr->xmap.override_redirect;
} else if (flags & REPARENT) {
number = eventPtr->xreparent.override_redirect;
} else if (flags & CONFIG) {
number = eventPtr->xconfigure.override_redirect;
}
#ifdef SCM_CODE
string = number ? "#t" : "#f";
goto doSymbol;
#else
goto doNumber;
#endif
case 'p':
string = TkFindStateString(circPlace, eventPtr->xcirculate.place);
goto doString;
case 's':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = eventPtr->xkey.state;
} else if (flags & CROSSING) {
number = eventPtr->xcrossing.state;
} else if (flags & VISIBILITY) {
string = TkFindStateString(visNotify,
eventPtr->xvisibility.state);
goto doString;
}
goto doNumber;
case 't':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = (int) eventPtr->xkey.time;
} else if (flags & CROSSING) {
number = (int) eventPtr->xcrossing.time;
} else if (flags & PROP) {
number = (int) eventPtr->xproperty.time;
}
goto doNumber;
case 'v':
number = eventPtr->xconfigurerequest.value_mask;
goto doNumber;
case 'w':
if (flags & EXPOSE) {
number = eventPtr->xexpose.width;
} else if (flags & CONFIG) {
number = eventPtr->xconfigure.width;
}
goto doNumber;
case 'x':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = eventPtr->xkey.x;
} else if (flags & CROSSING) {
number = eventPtr->xcrossing.x;
} else if (flags & EXPOSE) {
number = eventPtr->xexpose.x;
} else if (flags & (CREATE|CONFIG|GRAVITY)) {
number = eventPtr->xcreatewindow.x;
} else if (flags & REPARENT) {
number = eventPtr->xreparent.x;
}
goto doNumber;
case 'y':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = eventPtr->xkey.y;
} else if (flags & EXPOSE) {
number = eventPtr->xexpose.y;
} else if (flags & (CREATE|CONFIG|GRAVITY)) {
number = eventPtr->xcreatewindow.y;
} else if (flags & REPARENT) {
number = eventPtr->xreparent.y;
} else if (flags & CROSSING) {
number = eventPtr->xcrossing.y;
}
goto doNumber;
case 'A':
if (flags & KEY) {
int numChars;
/*
* If we're using input methods and this is a keypress
* event, invoke XmbTkFindStateString. Otherwise just use
* the older XTkFindStateString.
*/
#ifdef TK_USE_INPUT_METHODS
Status status;
if ((winPtr->inputContext != NULL)
&& (eventPtr->type == KeyPress)) {
numChars = XmbLookupString(winPtr->inputContext,
&eventPtr->xkey, numStorage, NUM_SIZE,
(KeySym *) NULL, &status);
if ((status != XLookupChars)
&& (status != XLookupBoth)) {
numChars = 0;
}
} else {
numChars = XLookupString(&eventPtr->xkey, numStorage,
NUM_SIZE, (KeySym *) NULL,
(XComposeStatus *) NULL);
}
#else /* TK_USE_INPUT_METHODS */
numChars = XLookupString(&eventPtr->xkey, numStorage,
NUM_SIZE, (KeySym *) NULL,
(XComposeStatus *) NULL);
#endif /* TK_USE_INPUT_METHODS */
numStorage[numChars] = '\0';
string = numStorage;
}
goto doString;
case 'B':
number = eventPtr->xcreatewindow.border_width;
goto doNumber;
case 'E':
number = (int) eventPtr->xany.send_event;
goto doNumber;
case 'K':
if (flags & KEY) {
char *name;
name = TkKeysymToString(keySym);
if (name != NULL) {
string = name;
}
}
goto doString;
case 'N':
number = (int) keySym;
goto doNumber;
case 'R':
TkpPrintWindowId(numStorage, eventPtr->xkey.root);
string = numStorage;
goto doString;
case 'S':
TkpPrintWindowId(numStorage, eventPtr->xkey.subwindow);
string = numStorage;
goto doString;
case 'T':
number = eventPtr->type;
goto doNumber;
case 'W': {
Tk_Window tkwin;
tkwin = Tk_IdToWindow(eventPtr->xany.display,
eventPtr->xany.window);
if (tkwin != NULL) {
string = Tk_PathName(tkwin);
#ifdef BGLK_CODE
string = SCM_procedure_to_tk_string(
tcl_lookup_command( Tk_PathName(tkwin) ) );
#endif
#ifdef STk_CODE
if (string[1] == '\0') string = "*root*";
#endif
} else {
string = "??";
}
#ifdef SCM_CODE
goto doSymbol;
#else
goto doString;
#endif
}
case 'X': {
Tk_Window tkwin;
int x, y;
int width, height;
number = eventPtr->xkey.x_root;
tkwin = Tk_IdToWindow(eventPtr->xany.display,
eventPtr->xany.window);
if (tkwin != NULL) {
Tk_GetVRootGeometry(tkwin, &x, &y, &width, &height);
number -= x;
}
goto doNumber;
}
case 'Y': {
Tk_Window tkwin;
int x, y;
int width, height;
number = eventPtr->xkey.y_root;
tkwin =</