stk/Tk/generic/tkBind.c

4685 lines
133 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* tkBind.c --
*
* This file provides procedures that associate Tcl commands
* with X events or sequences of X events.
*
* Copyright (c) 1989-1994 The Regents of the University of California.
* Copyright (c) 1994-1996 Sun Microsystems, Inc.
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* SCCS: @(#) tkBind.c 1.133 97/07/01 17:59:53
*/
#include "tkPort.h"
#include "tkInt.h"
/*
* File structure:
*
* Structure definitions and static variables.
*
* Init/Free this package.
*
* Tcl "bind" command (actually located in tkCmds.c).
* "bind" command implementation.
* "bind" implementation helpers.
*
* Tcl "event" command.
* "event" command implementation.
* "event" implementation helpers.
*
* Package-specific common helpers.
*
* Non-package-specific helpers.
*/
/*
* The following union is used to hold the detail information from an
* XEvent (including Tk's XVirtualEvent extension).
*/
typedef union {
KeySym keySym; /* KeySym that corresponds to xkey.keycode. */
int button; /* Button that was pressed (xbutton.button). */
Tk_Uid name; /* Tk_Uid of virtual event. */
ClientData clientData; /* Used when type of Detail is unknown, and to
* ensure that all bytes of Detail are initialized
* when this structure is used in a hash key. */
} Detail;
/*
* The structure below represents a binding table. A binding table
* represents a domain in which event bindings may occur. It includes
* a space of objects relative to which events occur (usually windows,
* but not always), a history of recent events in the domain, and
* a set of mappings that associate particular Tcl commands with sequences
* of events in the domain. Multiple binding tables may exist at once,
* either because there are multiple applications open, or because there
* are multiple domains within an application with separate event
* bindings for each (for example, each canvas widget has a separate
* binding table for associating events with the items in the canvas).
*
* Note: it is probably a bad idea to reduce EVENT_BUFFER_SIZE much
* below 30. To see this, consider a triple mouse button click while
* the Shift key is down (and auto-repeating). There may be as many
* as 3 auto-repeat events after each mouse button press or release
* (see the first large comment block within Tk_BindEvent for more on
* this), for a total of 20 events to cover the three button presses
* and two intervening releases. If you reduce EVENT_BUFFER_SIZE too
* much, shift multi-clicks will be lost.
*
*/
#define EVENT_BUFFER_SIZE 30
typedef struct BindingTable {
XEvent eventRing[EVENT_BUFFER_SIZE];/* Circular queue of recent events
* (higher indices are for more recent
* events). */
Detail detailRing[EVENT_BUFFER_SIZE];/* "Detail" information (keySym,
* button, Tk_Uid, or 0) for each
* entry in eventRing. */
int curEvent; /* Index in eventRing of most recent
* event. Newer events have higher
* indices. */
Tcl_HashTable patternTable; /* Used to map from an event to a
* list of patterns that may match that
* event. Keys are PatternTableKey
* structs, values are (PatSeq *). */
Tcl_HashTable objectTable; /* Used to map from an object to a
* list of patterns associated with
* that object. Keys are ClientData,
* values are (PatSeq *). */
Tcl_Interp *interp; /* Interpreter in which commands are
* executed. */
} BindingTable;
/*
* The following structure represents virtual event table. A virtual event
* table provides a way to map from platform-specific physical events such
* as button clicks or key presses to virtual events such as <<Paste>>,
* <<Close>>, or <<ScrollWindow>>.
*
* A virtual event is usually never part of the event stream, but instead is
* synthesized inline by matching low-level events. However, a virtual
* event may be generated by platform-specific code or by Tcl scripts. In
* that case, no lookup of the virtual event will need to be done using
* this table, because the virtual event is actually in the event stream.
*/
typedef struct VirtualEventTable {
Tcl_HashTable patternTable; /* Used to map from a physical event to
* a list of patterns that may match that
* event. Keys are PatternTableKey
* structs, values are (PatSeq *). */
Tcl_HashTable nameTable; /* Used to map a virtual event name to
* the array of physical events that can
* trigger it. Keys are the Tk_Uid names
* of the virtual events, values are
* PhysicalsOwned structs. */
} VirtualEventTable;
/*
* The following structure is used as a key in a patternTable for both
* binding tables and a virtual event tables.
*
* In a binding table, the object field corresponds to the binding tag
* for the widget whose bindings are being accessed.
*
* In a virtual event table, the object field is always NULL. Virtual
* events are a global definiton and are not tied to a particular
* binding tag.
*
* The same key is used for both types of pattern tables so that the
* helper functions that traverse and match patterns will work for both
* binding tables and virtual event tables.
*/
typedef struct PatternTableKey {
ClientData object; /* For binding table, identifies the binding
* tag of the object (or class of objects)
* relative to which the event occurred.
* For virtual event table, always NULL. */
int type; /* Type of event (from X). */
Detail detail; /* Additional information, such as keysym,
* button, Tk_Uid, or 0 if nothing
* additional. */
} PatternTableKey;
/*
* The following structure defines a pattern, which is matched against X
* events as part of the process of converting X events into Tcl commands.
*/
typedef struct Pattern {
int eventType; /* Type of X event, e.g. ButtonPress. */
int needMods; /* Mask of modifiers that must be
* present (0 means no modifiers are
* required). */
Detail detail; /* Additional information that must
* match event. Normally this is 0,
* meaning no additional information
* must match. For KeyPress and
* KeyRelease events, a keySym may
* be specified to select a
* particular keystroke (0 means any
* keystrokes). For button events,
* specifies a particular button (0
* means any buttons are OK). For virtual
* events, specifies the Tk_Uid of the
* virtual event name (never 0). */
} Pattern;
/*
* The following structure defines a pattern sequence, which consists of one
* or more patterns. In order to trigger, a pattern sequence must match
* the most recent X events (first pattern to most recent event, next
* pattern to next event, and so on). It is used as the hash value in a
* patternTable for both binding tables and virtual event tables.
*
* In a binding table, it is the sequence of physical events that make up
* a binding for an object.
*
* In a virtual event table, it is the sequence of physical events that
* define a virtual event.
*
* The same structure is used for both types of pattern tables so that the
* helper functions that traverse and match patterns will work for both
* binding tables and virtual event tables.
*/
typedef struct PatSeq {
int numPats; /* Number of patterns in sequence (usually
* 1). */
TkBindEvalProc *eventProc; /* The procedure that will be invoked on
* the clientData when this pattern sequence
* matches. */
TkBindFreeProc *freeProc; /* The procedure that will be invoked to
* release the clientData when this pattern
* sequence is freed. */
ClientData clientData; /* Arbitray data passed to eventProc and
* freeProc when sequence matches. */
int flags; /* Miscellaneous flag values; see below for
* definitions. */
int refCount; /* Number of times that this binding is in
* the midst of executing. If greater than 1,
* then a recursive invocation is happening.
* Only when this is zero can the binding
* actually be freed. */
struct PatSeq *nextSeqPtr; /* Next in list of all pattern sequences
* that have the same initial pattern. NULL
* means end of list. */
Tcl_HashEntry *hPtr; /* Pointer to hash table entry for the
* initial pattern. This is the head of the
* list of which nextSeqPtr forms a part. */
struct VirtualOwners *voPtr;/* In a binding table, always NULL. In a
* virtual event table, identifies the array
* of virtual events that can be triggered by
* this event. */
struct PatSeq *nextObjPtr; /* In a binding table, next in list of all
* pattern sequences for the same object (NULL
* for end of list). Needed to implement
* Tk_DeleteAllBindings. In a virtual event
* table, always NULL. */
Pattern pats[1]; /* Array of "numPats" patterns. Only one
* element is declared here but in actuality
* enough space will be allocated for "numPats"
* patterns. To match, pats[0] must match
* event n, pats[1] must match event n-1, etc.
*/
} PatSeq;
/*
* Flag values for PatSeq structures:
*
* PAT_NEARBY 1 means that all of the events matching
* this sequence must occur with nearby X
* and Y mouse coordinates and close in time.
* This is typically used to restrict multiple
* button presses.
* MARKED_DELETED 1 means that this binding has been marked as deleted
* and removed from the binding table, but its memory
* could not be released because it was already queued for
* execution. When the binding is actually about to be
* executed, this flag will be checked and the binding
* skipped if set.
*/
#define PAT_NEARBY 0x1
#define MARKED_DELETED 0x2
/*
* Constants that define how close together two events must be
* in milliseconds or pixels to meet the PAT_NEARBY constraint:
*/
#define NEARBY_PIXELS 5
#define NEARBY_MS 500
/*
* The following structure keeps track of all the virtual events that are
* associated with a particular physical event. It is pointed to by the
* voPtr field in a PatSeq in the patternTable of a virtual event table.
*/
typedef struct VirtualOwners {
int numOwners; /* Number of virtual events to trigger. */
Tcl_HashEntry *owners[1]; /* Array of pointers to entries in
* nameTable. Enough space will
* actually be allocated for numOwners
* hash entries. */
} VirtualOwners;
/*
* The following structure is used in the nameTable of a virtual event
* table to associate a virtual event with all the physical events that can
* trigger it.
*/
typedef struct PhysicalsOwned {
int numOwned; /* Number of physical events owned. */
PatSeq *patSeqs[1]; /* Array of pointers to physical event
* patterns. Enough space will actually
* be allocated to hold numOwned. */
} PhysicalsOwned;
/*
* One of the following structures exists for each interpreter. This
* structure keeps track of the current display and screen in the
* interpreter, so that a script can be invoked whenever the display/screen
* changes (the script does things like point tkPriv at a display-specific
* structure).
*/
typedef struct {
TkDisplay *curDispPtr; /* Display for last binding command invoked
* in this application. */
int curScreenIndex; /* Index of screen for last binding command. */
int bindingDepth; /* Number of active instances of Tk_BindEvent
* in this application. */
} ScreenInfo;
/*
* The following structure is used to keep track of all the C bindings that
* are awaiting invocation and whether the window they refer to has been
* destroyed. If the window is destroyed, then all pending callbacks for
* that window will be cancelled. The Tcl bindings will still all be
* invoked, however.
*/
typedef struct PendingBinding {
struct PendingBinding *nextPtr;
/* Next in chain of pending bindings, in
* case a recursive binding evaluation is in
* progress. */
Tk_Window tkwin; /* The window that the following bindings
* depend upon. */
int deleted; /* Set to non-zero by window cleanup code
* if tkwin is deleted. */
PatSeq *matchArray[5]; /* Array of pending C bindings. The actual
* size of this depends on how many C bindings
* matched the event passed to Tk_BindEvent.
* THIS FIELD MUST BE THE LAST IN THE
* STRUCTURE. */
} PendingBinding;
/*
* The following structure keeps track of all the information local to
* the binding package on a per interpreter basis.
*/
typedef struct BindInfo {
VirtualEventTable virtualEventTable;
/* The virtual events that exist in this
* interpreter. */
ScreenInfo screenInfo; /* Keeps track of the current display and
* screen, so it can be restored after
* a binding has executed. */
PendingBinding *pendingList;/* The list of pending C bindings, kept in
* case a C or Tcl binding causes the target
* window to be deleted. */
} BindInfo;
/*
* In X11R4 and earlier versions, XStringToKeysym is ridiculously
* slow. The data structure and hash table below, along with the
* code that uses them, implement a fast mapping from strings to
* keysyms. In X11R5 and later releases XStringToKeysym is plenty
* fast so this stuff isn't needed. The #define REDO_KEYSYM_LOOKUP
* is normally undefined, so that XStringToKeysym gets used. It
* can be set in the Makefile to enable the use of the hash table
* below.
*/
#ifdef REDO_KEYSYM_LOOKUP
typedef struct {
char *name; /* Name of keysym. */
KeySym value; /* Numeric identifier for keysym. */
} KeySymInfo;
static KeySymInfo keyArray[] = {
#ifndef lint
#include "ks_names.h"
#endif
{(char *) NULL, 0}
};
static Tcl_HashTable keySymTable; /* keyArray hashed by keysym value. */
static Tcl_HashTable nameTable; /* keyArray hashed by keysym name. */
#endif /* REDO_KEYSYM_LOOKUP */
/*
* Set to non-zero when the package-wide static variables have been
* initialized.
*/
static int initialized = 0;
/*
* A hash table is kept to map from the string names of event
* modifiers to information about those modifiers. The structure
* for storing this information, and the hash table built at
* initialization time, are defined below.
*/
typedef struct {
char *name; /* Name of modifier. */
int mask; /* Button/modifier mask value, * such as Button1Mask. */
int flags; /* Various flags; see below for
* definitions. */
} ModInfo;
/*
* Flags for ModInfo structures:
*
* DOUBLE - Non-zero means duplicate this event,
* e.g. for double-clicks.
* TRIPLE - Non-zero means triplicate this event,
* e.g. for triple-clicks.
*/
#define DOUBLE 1
#define TRIPLE 2
/*
* The following special modifier mask bits are defined, to indicate
* logical modifiers such as Meta and Alt that may float among the
* actual modifier bits.
*/
#define META_MASK (AnyModifier<<1)
#define ALT_MASK (AnyModifier<<2)
static ModInfo modArray[] = {
{"Control", ControlMask, 0},
{"Shift", ShiftMask, 0},
{"Lock", LockMask, 0},
{"Meta", META_MASK, 0},
{"M", META_MASK, 0},
{"Alt", ALT_MASK, 0},
{"B1", Button1Mask, 0},
{"Button1", Button1Mask, 0},
{"B2", Button2Mask, 0},
{"Button2", Button2Mask, 0},
{"B3", Button3Mask, 0},
{"Button3", Button3Mask, 0},
{"B4", Button4Mask, 0},
{"Button4", Button4Mask, 0},
{"B5", Button5Mask, 0},
{"Button5", Button5Mask, 0},
{"Mod1", Mod1Mask, 0},
{"M1", Mod1Mask, 0},
{"Command", Mod1Mask, 0},
{"Mod2", Mod2Mask, 0},
{"M2", Mod2Mask, 0},
{"Option", Mod2Mask, 0},
{"Mod3", Mod3Mask, 0},
{"M3", Mod3Mask, 0},
{"Mod4", Mod4Mask, 0},
{"M4", Mod4Mask, 0},
{"Mod5", Mod5Mask, 0},
{"M5", Mod5Mask, 0},
{"Double", 0, DOUBLE},
{"Triple", 0, TRIPLE},
{"Any", 0, 0}, /* Ignored: historical relic. */
{NULL, 0, 0}
};
static Tcl_HashTable modTable;
/*
* This module also keeps a hash table mapping from event names
* to information about those events. The structure, an array
* to use to initialize the hash table, and the hash table are
* all defined below.
*/
typedef struct {
char *name; /* Name of event. */
int type; /* Event type for X, such as
* ButtonPress. */
int eventMask; /* Mask bits (for XSelectInput)
* for this event type. */
} EventInfo;
/*
* Note: some of the masks below are an OR-ed combination of
* several masks. This is necessary because X doesn't report
* up events unless you also ask for down events. Also, X
* doesn't report button state in motion events unless you've
* asked about button events.
*/
static EventInfo eventArray[] = {
{"Key", KeyPress, KeyPressMask},
{"KeyPress", KeyPress, KeyPressMask},
{"KeyRelease", KeyRelease, KeyPressMask|KeyReleaseMask},
{"Button", ButtonPress, ButtonPressMask},
{"ButtonPress", ButtonPress, ButtonPressMask},
{"ButtonRelease", ButtonRelease,
ButtonPressMask|ButtonReleaseMask},
{"Motion", MotionNotify,
ButtonPressMask|PointerMotionMask},
{"Enter", EnterNotify, EnterWindowMask},
{"Leave", LeaveNotify, LeaveWindowMask},
{"FocusIn", FocusIn, FocusChangeMask},
{"FocusOut", FocusOut, FocusChangeMask},
{"Expose", Expose, ExposureMask},
{"Visibility", VisibilityNotify, VisibilityChangeMask},
{"Destroy", DestroyNotify, StructureNotifyMask},
{"Unmap", UnmapNotify, StructureNotifyMask},
{"Map", MapNotify, StructureNotifyMask},
{"Reparent", ReparentNotify, StructureNotifyMask},
{"Configure", ConfigureNotify, StructureNotifyMask},
{"Gravity", GravityNotify, StructureNotifyMask},
{"Circulate", CirculateNotify, StructureNotifyMask},
{"Property", PropertyNotify, PropertyChangeMask},
{"Colormap", ColormapNotify, ColormapChangeMask},
{"Activate", ActivateNotify, ActivateMask},
{"Deactivate", DeactivateNotify, ActivateMask},
{(char *) NULL, 0, 0}
};
static Tcl_HashTable eventTable;
/*
* The defines and table below are used to classify events into
* various groups. The reason for this is that logically identical
* fields (e.g. "state") appear at different places in different
* types of events. The classification masks can be used to figure
* out quickly where to extract information from events.
*/
#define KEY 0x1
#define BUTTON 0x2
#define MOTION 0x4
#define CROSSING 0x8
#define FOCUS 0x10
#define EXPOSE 0x20
#define VISIBILITY 0x40
#define CREATE 0x80
#define DESTROY 0x100
#define UNMAP 0x200
#define MAP 0x400
#define REPARENT 0x800
#define CONFIG 0x1000
#define GRAVITY 0x2000
#define CIRC 0x4000
#define PROP 0x8000
#define COLORMAP 0x10000
#define VIRTUAL 0x20000
#define ACTIVATE 0x40000
#define KEY_BUTTON_MOTION_VIRTUAL (KEY|BUTTON|MOTION|VIRTUAL)
static int flagArray[TK_LASTEVENT] = {
/* Not used */ 0,
/* Not used */ 0,
/* KeyPress */ KEY,
/* KeyRelease */ KEY,
/* ButtonPress */ BUTTON,
/* ButtonRelease */ BUTTON,
/* MotionNotify */ MOTION,
/* EnterNotify */ CROSSING,
/* LeaveNotify */ CROSSING,
/* FocusIn */ FOCUS,
/* FocusOut */ FOCUS,
/* KeymapNotify */ 0,
/* Expose */ EXPOSE,
/* GraphicsExpose */ EXPOSE,
/* NoExpose */ 0,
/* VisibilityNotify */ VISIBILITY,
/* CreateNotify */ CREATE,
/* DestroyNotify */ DESTROY,
/* UnmapNotify */ UNMAP,
/* MapNotify */ MAP,
/* MapRequest */ 0,
/* ReparentNotify */ REPARENT,
/* ConfigureNotify */ CONFIG,
/* ConfigureRequest */ 0,
/* GravityNotify */ GRAVITY,
/* ResizeRequest */ 0,
/* CirculateNotify */ CIRC,
/* CirculateRequest */ 0,
/* PropertyNotify */ PROP,
/* SelectionClear */ 0,
/* SelectionRequest */ 0,
/* SelectionNotify */ 0,
/* ColormapNotify */ COLORMAP,
/* ClientMessage */ 0,
/* MappingNotify */ 0,
/* VirtualEvent */ VIRTUAL,
/* Activate */ ACTIVATE,
/* Deactivate */ ACTIVATE
};
/*
* The following tables are used as a two-way map between X's internal
* numeric values for fields in an XEvent and the strings used in Tcl. The
* tables are used both when constructing an XEvent from user input and
* when providing data from an XEvent to the user.
*/
static TkStateMap notifyMode[] = {
{NotifyNormal, "NotifyNormal"},
{NotifyGrab, "NotifyGrab"},
{NotifyUngrab, "NotifyUngrab"},
{NotifyWhileGrabbed, "NotifyWhileGrabbed"},
{-1, NULL}
};
static TkStateMap notifyDetail[] = {
{NotifyAncestor, "NotifyAncestor"},
{NotifyVirtual, "NotifyVirtual"},
{NotifyInferior, "NotifyInferior"},
{NotifyNonlinear, "NotifyNonlinear"},
{NotifyNonlinearVirtual, "NotifyNonlinearVirtual"},
{NotifyPointer, "NotifyPointer"},
{NotifyPointerRoot, "NotifyPointerRoot"},
{NotifyDetailNone, "NotifyDetailNone"},
{-1, NULL}
};
static TkStateMap circPlace[] = {
{PlaceOnTop, "PlaceOnTop"},
{PlaceOnBottom, "PlaceOnBottom"},
{-1, NULL}
};
static TkStateMap visNotify[] = {
{VisibilityUnobscured, "VisibilityUnobscured"},
{VisibilityPartiallyObscured, "VisibilityPartiallyObscured"},
{VisibilityFullyObscured, "VisibilityFullyObscured"},
{-1, NULL}
};
/*
* Prototypes for local procedures defined in this file:
*/
static void ChangeScreen _ANSI_ARGS_((Tcl_Interp *interp,
char *dispName, int screenIndex));
static int CreateVirtualEvent _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr, char *virtString,
char *eventString));
static int DeleteVirtualEvent _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr, char *virtString,
char *eventString));
static void DeleteVirtualEventTable _ANSI_ARGS_((
VirtualEventTable *vetPtr));
static void ExpandPercents _ANSI_ARGS_((TkWindow *winPtr,
char *before, XEvent *eventPtr, KeySym keySym,
Tcl_DString *dsPtr));
static void FreeTclBinding _ANSI_ARGS_((ClientData clientData));
static PatSeq * FindSequence _ANSI_ARGS_((Tcl_Interp *interp,
Tcl_HashTable *patternTablePtr, ClientData object,
char *eventString, int create, int allowVirtual,
unsigned long *maskPtr));
static void GetAllVirtualEvents _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr));
static char * GetField _ANSI_ARGS_((char *p, char *copy, int size));
static KeySym GetKeySym _ANSI_ARGS_((TkDisplay *dispPtr,
XEvent *eventPtr));
static void GetPatternString _ANSI_ARGS_((PatSeq *psPtr,
Tcl_DString *dsPtr));
static int GetVirtualEvent _ANSI_ARGS_((Tcl_Interp *interp,
VirtualEventTable *vetPtr, char *virtString));
static Tk_Uid GetVirtualEventUid _ANSI_ARGS_((Tcl_Interp *interp,
char *virtString));
static int HandleEventGenerate _ANSI_ARGS_((Tcl_Interp *interp,
Tk_Window main, int argc, char **argv));
static void InitKeymapInfo _ANSI_ARGS_((TkDisplay *dispPtr));
static void InitVirtualEventTable _ANSI_ARGS_((
VirtualEventTable *vetPtr));
static PatSeq * MatchPatterns _ANSI_ARGS_((TkDisplay *dispPtr,
BindingTable *bindPtr, PatSeq *psPtr,
PatSeq *bestPtr, ClientData *objectPtr,
PatSeq **sourcePtrPtr));
static int ParseEventDescription _ANSI_ARGS_((Tcl_Interp *interp,
char **eventStringPtr, Pattern *patPtr,
unsigned long *eventMaskPtr));
/*
* The following define is used as a short circuit for the callback
* procedure to evaluate a TclBinding. The actual evaluation of the
* binding is handled inline, because special things have to be done
* with a Tcl binding before evaluation time.
*/
#define EvalTclBinding ((TkBindEvalProc *) 1)
/*
*---------------------------------------------------------------------------
*
* TkBindInit --
*
* This procedure is called when an application is created. It
* initializes all the structures used by bindings and virtual
* events. It must be called before any other functions in this
* file are called.
*
* Results:
* None.
*
* Side effects:
* Memory allocated.
*
*---------------------------------------------------------------------------
*/
void
TkBindInit(mainPtr)
TkMainInfo *mainPtr; /* The newly created application. */
{
BindInfo *bindInfoPtr;
if (sizeof(XEvent) < sizeof(XVirtualEvent)) {
panic("TkBindInit: virtual events can't be supported");
}
/*
* Initialize the static data structures used by the binding package.
* They are only initialized once, no matter how many interps are
* created.
*/
if (!initialized) {
Tcl_HashEntry *hPtr;
ModInfo *modPtr;
EventInfo *eiPtr;
int dummy;
#ifdef REDO_KEYSYM_LOOKUP
KeySymInfo *kPtr;
Tcl_InitHashTable(&keySymTable, TCL_STRING_KEYS);
Tcl_InitHashTable(&nameTable, TCL_ONE_WORD_KEYS);
for (kPtr = keyArray; kPtr->name != NULL; kPtr++) {
hPtr = Tcl_CreateHashEntry(&keySymTable, kPtr->name, &dummy);
Tcl_SetHashValue(hPtr, kPtr->value);
hPtr = Tcl_CreateHashEntry(&nameTable, (char *) kPtr->value,
&dummy);
Tcl_SetHashValue(hPtr, kPtr->name);
}
#endif /* REDO_KEYSYM_LOOKUP */
Tcl_InitHashTable(&modTable, TCL_STRING_KEYS);
for (modPtr = modArray; modPtr->name != NULL; modPtr++) {
hPtr = Tcl_CreateHashEntry(&modTable, modPtr->name, &dummy);
Tcl_SetHashValue(hPtr, modPtr);
}
Tcl_InitHashTable(&eventTable, TCL_STRING_KEYS);
for (eiPtr = eventArray; eiPtr->name != NULL; eiPtr++) {
hPtr = Tcl_CreateHashEntry(&eventTable, eiPtr->name, &dummy);
Tcl_SetHashValue(hPtr, eiPtr);
}
initialized = 1;
}
mainPtr->bindingTable = Tk_CreateBindingTable(mainPtr->interp);
bindInfoPtr = (BindInfo *) ckalloc(sizeof(BindInfo));
InitVirtualEventTable(&bindInfoPtr->virtualEventTable);
bindInfoPtr->screenInfo.curDispPtr = NULL;
bindInfoPtr->screenInfo.curScreenIndex = -1;
bindInfoPtr->screenInfo.bindingDepth = 0;
bindInfoPtr->pendingList = NULL;
mainPtr->bindInfo = (TkBindInfo) bindInfoPtr;
TkpInitializeMenuBindings(mainPtr->interp, mainPtr->bindingTable);
}
/*
*---------------------------------------------------------------------------
*
* TkBindFree --
*
* This procedure is called when an application is deleted. It
* deletes all the structures used by bindings and virtual events.
*
* Results:
* None.
*
* Side effects:
* Memory freed.
*
*---------------------------------------------------------------------------
*/
void
TkBindFree(mainPtr)
TkMainInfo *mainPtr; /* The newly created application. */
{
BindInfo *bindInfoPtr;
Tk_DeleteBindingTable(mainPtr->bindingTable);
mainPtr->bindingTable = NULL;
bindInfoPtr = (BindInfo *) mainPtr->bindInfo;
DeleteVirtualEventTable(&bindInfoPtr->virtualEventTable);
mainPtr->bindInfo = NULL;
}
/*
*--------------------------------------------------------------
*
* Tk_CreateBindingTable --
*
* Set up a new domain in which event bindings may be created.
*
* Results:
* The return value is a token for the new table, which must
* be passed to procedures like Tk_CreatBinding.
*
* Side effects:
* Memory is allocated for the new table.
*
*--------------------------------------------------------------
*/
Tk_BindingTable
Tk_CreateBindingTable(interp)
Tcl_Interp *interp; /* Interpreter to associate with the binding
* table: commands are executed in this
* interpreter. */
{
BindingTable *bindPtr;
int i;
/*
* Create and initialize a new binding table.
*/
bindPtr = (BindingTable *) ckalloc(sizeof(BindingTable));
for (i = 0; i < EVENT_BUFFER_SIZE; i++) {
bindPtr->eventRing[i].type = -1;
}
bindPtr->curEvent = 0;
Tcl_InitHashTable(&bindPtr->patternTable,
sizeof(PatternTableKey)/sizeof(int));
Tcl_InitHashTable(&bindPtr->objectTable, TCL_ONE_WORD_KEYS);
bindPtr->interp = interp;
return (Tk_BindingTable) bindPtr;
}
/*
*--------------------------------------------------------------
*
* Tk_DeleteBindingTable --
*
* Destroy a binding table and free up all its memory.
* The caller should not use bindingTable again after
* this procedure returns.
*
* Results:
* None.
*
* Side effects:
* Memory is freed.
*
*--------------------------------------------------------------
*/
void
Tk_DeleteBindingTable(bindingTable)
Tk_BindingTable bindingTable; /* Token for the binding table to
* destroy. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr, *nextPtr;
Tcl_HashEntry *hPtr;
Tcl_HashSearch search;
/*
* Find and delete all of the patterns associated with the binding
* table.
*/
for (hPtr = Tcl_FirstHashEntry(&bindPtr->patternTable, &search);
hPtr != NULL; hPtr = Tcl_NextHashEntry(&search)) {
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
psPtr != NULL; psPtr = nextPtr) {
nextPtr = psPtr->nextSeqPtr;
psPtr->flags |= MARKED_DELETED;
if (psPtr->refCount == 0) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
}
}
/*
* Clean up the rest of the information associated with the
* binding table.
*/
Tcl_DeleteHashTable(&bindPtr->patternTable);
Tcl_DeleteHashTable(&bindPtr->objectTable);
ckfree((char *) bindPtr);
}
/*
*--------------------------------------------------------------
*
* Tk_CreateBinding --
*
* Add a binding to a binding table, so that future calls to
* Tk_BindEvent may execute the command in the binding.
*
* Results:
* The return value is 0 if an error occurred while setting
* up the binding. In this case, an error message will be
* left in interp->result. If all went well then the return
* value is a mask of the event types that must be made
* available to Tk_BindEvent in order to properly detect when
* this binding triggers. This value can be used to determine
* what events to select for in a window, for example.
*
* Side effects:
* An existing binding on the same event sequence may be
* replaced.
* The new binding may cause future calls to Tk_BindEvent to
* behave differently than they did previously.
*
*--------------------------------------------------------------
*/
unsigned long
#ifdef STk_CODE
Tk_CreateBinding(interp, bindingTable, object, eventString, command, str1, str2)
#else
Tk_CreateBinding(interp, bindingTable, object, eventString, command, append)
#endif
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable;
/* Table in which to create binding. */
ClientData object; /* Token for object with which binding is
* associated. */
char *eventString; /* String describing event sequence that
* triggers binding. */
char *command; /* Contains Tcl command to execute when
* binding triggers. */
#ifdef STk_CODE
char *str1, *str2; /* strings used as keys in the binding
* table. */
#else
int append; /* 0 means replace any existing binding for
* eventString; 1 means append to that
* binding. If the existing binding is for a
* callback function and not a Tcl command
* string, the existing binding will always be
* replaced. */
#endif
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
unsigned long eventMask;
char *new, *old;
#ifdef STk_CODE
int append = 0; /* will never change (make #ifdef simpler) */
SCM p;
if (!STk_valid_callback(command, &p) || (p == NULL)) {
BadSpec:
Tcl_AppendResult(interp, "bad closure specification \"",
command, "\"", (char *) NULL);
return TCL_ERROR;
}
if (p != NULL) {
/*
* Modify the binding to tranform it in a call with parameters set.
* It's a hack but this avoid to do this work at each binding
* execution
*/
if ((new=STk_append_callback_parameters(p)) == NULL) goto BadSpec;
/* new will be automatically GC'ed. */
command = new;
}
#endif
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
1, 1, &eventMask);
if (psPtr == NULL) {
return 0;
}
if (psPtr->eventProc == NULL) {
int new;
Tcl_HashEntry *hPtr;
/*
* This pattern sequence was just created.
* Link the pattern into the list associated with the object, so
* that if the object goes away, these bindings will all
* automatically be deleted.
*/
hPtr = Tcl_CreateHashEntry(&bindPtr->objectTable, (char *) object,
&new);
if (new) {
psPtr->nextObjPtr = NULL;
} else {
psPtr->nextObjPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
}
Tcl_SetHashValue(hPtr, psPtr);
} else if (psPtr->eventProc != EvalTclBinding) {
/*
* Free existing procedural binding.
*/
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
psPtr->clientData = NULL;
append = 0;
}
old = (char *) psPtr->clientData;
if ((append != 0) && (old != NULL)) {
int length;
length = strlen(old) + strlen(command) + 2;
new = (char *) ckalloc((unsigned) length);
sprintf(new, "%s\n%s", old, command);
} else {
new = (char *) ckalloc((unsigned) strlen(command) + 1);
strcpy(new, command);
}
if (old != NULL) {
ckfree(old);
}
psPtr->eventProc = EvalTclBinding;
psPtr->freeProc = FreeTclBinding;
psPtr->clientData = (ClientData) new;
#ifdef STk_CODE
if (eventMask) STk_add_callback(str1, eventString, str2, p);
#endif
return eventMask;
}
/*
*---------------------------------------------------------------------------
*
* TkCreateBindingProcedure --
*
* Add a C binding to a binding table, so that future calls to
* Tk_BindEvent may callback the procedure in the binding.
*
* Results:
* The return value is 0 if an error occurred while setting
* up the binding. In this case, an error message will be
* left in interp->result. If all went well then the return
* value is a mask of the event types that must be made
* available to Tk_BindEvent in order to properly detect when
* this binding triggers. This value can be used to determine
* what events to select for in a window, for example.
*
* Side effects:
* Any existing binding on the same event sequence will be
* replaced.
*
*---------------------------------------------------------------------------
*/
unsigned long
TkCreateBindingProcedure(interp, bindingTable, object, eventString,
eventProc, freeProc, clientData)
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable;
/* Table in which to create binding. */
ClientData object; /* Token for object with which binding is
* associated. */
char *eventString; /* String describing event sequence that
* triggers binding. */
TkBindEvalProc *eventProc; /* Procedure to invoke when binding
* triggers. Must not be NULL. */
TkBindFreeProc *freeProc; /* Procedure to invoke when binding is
* freed. May be NULL for no procedure. */
ClientData clientData; /* Arbitrary ClientData to pass to eventProc
* and freeProc. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
unsigned long eventMask;
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
1, 1, &eventMask);
if (psPtr == NULL) {
return 0;
}
if (psPtr->eventProc == NULL) {
int new;
Tcl_HashEntry *hPtr;
/*
* This pattern sequence was just created.
* Link the pattern into the list associated with the object, so
* that if the object goes away, these bindings will all
* automatically be deleted.
*/
hPtr = Tcl_CreateHashEntry(&bindPtr->objectTable, (char *) object,
&new);
if (new) {
psPtr->nextObjPtr = NULL;
} else {
psPtr->nextObjPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
}
Tcl_SetHashValue(hPtr, psPtr);
} else {
/*
* Free existing callback.
*/
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
}
psPtr->eventProc = eventProc;
psPtr->freeProc = freeProc;
psPtr->clientData = clientData;
return eventMask;
}
/*
*--------------------------------------------------------------
*
* Tk_DeleteBinding --
*
* Remove an event binding from a binding table.
*
* Results:
* The result is a standard Tcl return value. If an error
* occurs then interp->result will contain an error message.
*
* Side effects:
* The binding given by object and eventString is removed
* from bindingTable.
*
*--------------------------------------------------------------
*/
int
Tk_DeleteBinding(interp, bindingTable, object, eventString)
Tcl_Interp *interp; /* Used for error reporting. */
Tk_BindingTable bindingTable; /* Table in which to delete binding. */
ClientData object; /* Token for object with which binding
* is associated. */
char *eventString; /* String describing event sequence
* that triggers binding. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr, *prevPtr;
unsigned long eventMask;
Tcl_HashEntry *hPtr;
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
0, 1, &eventMask);
if (psPtr == NULL) {
Tcl_ResetResult(interp);
return TCL_OK;
}
/*
* Unlink the binding from the list for its object, then from the
* list for its pattern.
*/
hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object);
if (hPtr == NULL) {
panic("Tk_DeleteBinding couldn't find object table entry");
}
prevPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
if (prevPtr == psPtr) {
Tcl_SetHashValue(hPtr, psPtr->nextObjPtr);
} else {
for ( ; ; prevPtr = prevPtr->nextObjPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteBinding couldn't find on object list");
}
if (prevPtr->nextObjPtr == psPtr) {
prevPtr->nextObjPtr = psPtr->nextObjPtr;
break;
}
}
}
prevPtr = (PatSeq *) Tcl_GetHashValue(psPtr->hPtr);
if (prevPtr == psPtr) {
if (psPtr->nextSeqPtr == NULL) {
Tcl_DeleteHashEntry(psPtr->hPtr);
} else {
Tcl_SetHashValue(psPtr->hPtr, psPtr->nextSeqPtr);
}
} else {
for ( ; ; prevPtr = prevPtr->nextSeqPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteBinding couldn't find on hash chain");
}
if (prevPtr->nextSeqPtr == psPtr) {
prevPtr->nextSeqPtr = psPtr->nextSeqPtr;
break;
}
}
}
psPtr->flags |= MARKED_DELETED;
if (psPtr->refCount == 0) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
return TCL_OK;
}
/*
*--------------------------------------------------------------
*
* Tk_GetBinding --
*
* Return the command associated with a given event string.
*
* Results:
* The return value is a pointer to the command string
* associated with eventString for object in the domain
* given by bindingTable. If there is no binding for
* eventString, or if eventString is improperly formed,
* then NULL is returned and an error message is left in
* interp->result. The return value is semi-static: it
* will persist until the binding is changed or deleted.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
char *
Tk_GetBinding(interp, bindingTable, object, eventString)
Tcl_Interp *interp; /* Interpreter for error reporting. */
Tk_BindingTable bindingTable; /* Table in which to look for
* binding. */
ClientData object; /* Token for object with which binding
* is associated. */
char *eventString; /* String describing event sequence
* that triggers binding. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
unsigned long eventMask;
psPtr = FindSequence(interp, &bindPtr->patternTable, object, eventString,
0, 1, &eventMask);
if (psPtr == NULL) {
return NULL;
}
if (psPtr->eventProc == EvalTclBinding) {
return (char *) psPtr->clientData;
}
#ifdef STk_CODE
return "#f";
#else
return "";
#endif
}
/*
*--------------------------------------------------------------
*
* Tk_GetAllBindings --
*
* Return a list of event strings for all the bindings
* associated with a given object.
*
* Results:
* There is no return value. Interp->result is modified to
* hold a Tcl list with one entry for each binding associated
* with object in bindingTable. Each entry in the list
* contains the event string associated with one binding.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
Tk_GetAllBindings(interp, bindingTable, object)
Tcl_Interp *interp; /* Interpreter returning result or
* error. */
Tk_BindingTable bindingTable; /* Table in which to look for
* bindings. */
ClientData object; /* Token for object. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr;
Tcl_HashEntry *hPtr;
Tcl_DString ds;
hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object);
if (hPtr == NULL) {
return;
}
Tcl_DStringInit(&ds);
#ifdef STk_CODE
Tcl_AppendResult(interp, "(", NULL);
#endif
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr); psPtr != NULL;
psPtr = psPtr->nextObjPtr) {
/*
* For each binding, output information about each of the
* patterns in its sequence.
*/
Tcl_DStringSetLength(&ds, 0);
GetPatternString(psPtr, &ds);
Tcl_AppendElement(interp, Tcl_DStringValue(&ds));
}
#ifdef STk_CODE
Tcl_AppendResult(interp, ")", NULL);
#endif
Tcl_DStringFree(&ds);
}
/*
*--------------------------------------------------------------
*
* Tk_DeleteAllBindings --
*
* Remove all bindings associated with a given object in a
* given binding table.
*
* Results:
* All bindings associated with object are removed from
* bindingTable.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
void
Tk_DeleteAllBindings(bindingTable, object)
Tk_BindingTable bindingTable; /* Table in which to delete
* bindings. */
ClientData object; /* Token for object. */
{
BindingTable *bindPtr = (BindingTable *) bindingTable;
PatSeq *psPtr, *prevPtr;
PatSeq *nextPtr;
Tcl_HashEntry *hPtr;
hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object);
if (hPtr == NULL) {
return;
}
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr); psPtr != NULL;
psPtr = nextPtr) {
nextPtr = psPtr->nextObjPtr;
/*
* Be sure to remove each binding from its hash chain in the
* pattern table. If this is the last pattern in the chain,
* then delete the hash entry too.
*/
prevPtr = (PatSeq *) Tcl_GetHashValue(psPtr->hPtr);
if (prevPtr == psPtr) {
if (psPtr->nextSeqPtr == NULL) {
Tcl_DeleteHashEntry(psPtr->hPtr);
} else {
Tcl_SetHashValue(psPtr->hPtr, psPtr->nextSeqPtr);
}
} else {
for ( ; ; prevPtr = prevPtr->nextSeqPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteAllBindings couldn't find on hash chain");
}
if (prevPtr->nextSeqPtr == psPtr) {
prevPtr->nextSeqPtr = psPtr->nextSeqPtr;
break;
}
}
}
psPtr->flags |= MARKED_DELETED;
if (psPtr->refCount == 0) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
}
Tcl_DeleteHashEntry(hPtr);
}
/*
*---------------------------------------------------------------------------
*
* Tk_BindEvent --
*
* This procedure is invoked to process an X event. The
* event is added to those recorded for the binding table.
* Then each of the objects at *objectPtr is checked in
* order to see if it has a binding that matches the recent
* events. If so, the most specific binding is invoked for
* each object.
*
* Results:
* None.
*
* Side effects:
* Depends on the command associated with the matching binding.
*
* All Tcl bindings scripts for each object are accumulated before
* the first binding is evaluated. If the action of a Tcl binding
* is to change or delete a binding, or delete the window associated
* with the binding, all the original Tcl binding scripts will still
* fire. Contrast this with C binding procedures. If a pending C
* binding (one that hasn't fired yet, but is queued to be fired for
* this window) is deleted, it will not be called, and if it is
* changed, then the new binding procedure will be called. If the
* window itself is deleted, no further C binding procedures will be
* called for this window. When both Tcl binding scripts and C binding
* procedures are interleaved, the above rules still apply.
*
*---------------------------------------------------------------------------
*/
void
Tk_BindEvent(bindingTable, eventPtr, tkwin, numObjects, objectPtr)
Tk_BindingTable bindingTable; /* Table in which to look for
* bindings. */
XEvent *eventPtr; /* What actually happened. */
Tk_Window tkwin; /* Window on display where event
* occurred (needed in order to
* locate display information). */
int numObjects; /* Number of objects at *objectPtr. */
ClientData *objectPtr; /* Array of one or more objects
* to check for a matching binding. */
{
BindingTable *bindPtr;
TkDisplay *dispPtr;
BindInfo *bindInfoPtr;
TkDisplay *oldDispPtr;
ScreenInfo *screenPtr;
XEvent *ringPtr;
PatSeq *vMatchDetailList, *vMatchNoDetailList;
int flags, oldScreen, i, deferModal;
unsigned int matchCount, matchSpace;
Tcl_Interp *interp;
Tcl_DString scripts, savedResult;
Detail detail;
char *p, *end;
PendingBinding *pendingPtr;
PendingBinding staticPending;
TkWindow *winPtr = (TkWindow *)tkwin;
PatternTableKey key;
/*
* Ignore events on windows that don't have names: these are windows
* like wrapper windows that shouldn't be visible to the
* application.
*/
if (winPtr->pathName == NULL) {
return;
}
/*
* Ignore the event completely if it is an Enter, Leave, FocusIn,
* or FocusOut event with detail NotifyInferior. The reason for
* ignoring these events is that we don't want transitions between
* a window and its children to visible to bindings on the parent:
* this would cause problems for mega-widgets, since the internal
* structure of a mega-widget isn't supposed to be visible to
* people watching the parent.
*/
if ((eventPtr->type == EnterNotify) || (eventPtr->type == LeaveNotify)) {
if (eventPtr->xcrossing.detail == NotifyInferior) {
return;
}
}
if ((eventPtr->type == FocusIn) || (eventPtr->type == FocusOut)) {
if (eventPtr->xfocus.detail == NotifyInferior) {
return;
}
}
bindPtr = (BindingTable *) bindingTable;
dispPtr = ((TkWindow *) tkwin)->dispPtr;
bindInfoPtr = (BindInfo *) winPtr->mainPtr->bindInfo;
/*
* Add the new event to the ring of saved events for the
* binding table. Two tricky points:
*
* 1. Combine consecutive MotionNotify events. Do this by putting
* the new event *on top* of the previous event.
* 2. If a modifier key is held down, it auto-repeats to generate
* continuous KeyPress and KeyRelease events. These can flush
* the event ring so that valuable information is lost (such
* as repeated button clicks). To handle this, check for the
* special case of a modifier KeyPress arriving when the previous
* two events are a KeyRelease and KeyPress of the same key.
* If this happens, mark the most recent event (the KeyRelease)
* invalid and put the new event on top of the event before that
* (the KeyPress).
*/
if ((eventPtr->type == MotionNotify)
&& (bindPtr->eventRing[bindPtr->curEvent].type == MotionNotify)) {
/*
* Don't advance the ring pointer.
*/
} else if (eventPtr->type == KeyPress) {
int i;
for (i = 0; ; i++) {
if (i >= dispPtr->numModKeyCodes) {
goto advanceRingPointer;
}
if (dispPtr->modKeyCodes[i] == eventPtr->xkey.keycode) {
break;
}
}
ringPtr = &bindPtr->eventRing[bindPtr->curEvent];
if ((ringPtr->type != KeyRelease)
|| (ringPtr->xkey.keycode != eventPtr->xkey.keycode)) {
goto advanceRingPointer;
}
if (bindPtr->curEvent <= 0) {
i = EVENT_BUFFER_SIZE - 1;
} else {
i = bindPtr->curEvent - 1;
}
ringPtr = &bindPtr->eventRing[i];
if ((ringPtr->type != KeyPress)
|| (ringPtr->xkey.keycode != eventPtr->xkey.keycode)) {
goto advanceRingPointer;
}
bindPtr->eventRing[bindPtr->curEvent].type = -1;
bindPtr->curEvent = i;
} else {
advanceRingPointer:
bindPtr->curEvent++;
if (bindPtr->curEvent >= EVENT_BUFFER_SIZE) {
bindPtr->curEvent = 0;
}
}
ringPtr = &bindPtr->eventRing[bindPtr->curEvent];
memcpy((VOID *) ringPtr, (VOID *) eventPtr, sizeof(XEvent));
detail.clientData = 0;
flags = flagArray[ringPtr->type];
if (flags & KEY) {
detail.keySym = GetKeySym(dispPtr, ringPtr);
if (detail.keySym == NoSymbol) {
detail.keySym = 0;
}
} else if (flags & BUTTON) {
detail.button = ringPtr->xbutton.button;
} else if (flags & VIRTUAL) {
detail.name = ((XVirtualEvent *) ringPtr)->name;
}
bindPtr->detailRing[bindPtr->curEvent] = detail;
/*
* Find out if there are any virtual events that correspond to this
* physical event (or sequence of physical events).
*/
vMatchDetailList = NULL;
vMatchNoDetailList = NULL;
memset(&key, 0, sizeof(key));
if (ringPtr->type != VirtualEvent) {
Tcl_HashTable *veptPtr;
Tcl_HashEntry *hPtr;
veptPtr = &bindInfoPtr->virtualEventTable.patternTable;
key.object = NULL;
key.type = ringPtr->type;
key.detail = detail;
hPtr = Tcl_FindHashEntry(veptPtr, (char *) &key);
if (hPtr != NULL) {
vMatchDetailList = (PatSeq *) Tcl_GetHashValue(hPtr);
}
if (key.detail.clientData != 0) {
key.detail.clientData = 0;
hPtr = Tcl_FindHashEntry(veptPtr, (char *) &key);
if (hPtr != NULL) {
vMatchNoDetailList = (PatSeq *) Tcl_GetHashValue(hPtr);
}
}
}
/*
* Loop over all the binding tags, finding the binding script or
* callback for each one. Append all of the binding scripts, with
* %-sequences expanded, to "scripts", with null characters separating
* the scripts for each object. Append all the callbacks to the array
* of pending callbacks.
*/
pendingPtr = &staticPending;
matchCount = 0;
matchSpace = sizeof(staticPending.matchArray) / sizeof(PatSeq *);
Tcl_DStringInit(&scripts);
for ( ; numObjects > 0; numObjects--, objectPtr++) {
PatSeq *matchPtr, *sourcePtr;
Tcl_HashEntry *hPtr;
matchPtr = NULL;
sourcePtr = NULL;
/*
* Match the new event against those recorded in the pattern table,
* saving the longest matching pattern. For events with details
* (button and key events), look for a binding for the specific
* key or button. First see if the event matches a physical event
* that the object is interested in, then look for a virtual event.
*/
key.object = *objectPtr;
key.type = ringPtr->type;
key.detail = detail;
hPtr = Tcl_FindHashEntry(&bindPtr->patternTable, (char *) &key);
if (hPtr != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr,
(PatSeq *) Tcl_GetHashValue(hPtr), matchPtr, NULL,
&sourcePtr);
}
if (vMatchDetailList != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr, vMatchDetailList,
matchPtr, objectPtr, &sourcePtr);
}
/*
* If no match was found, look for a binding for all keys or buttons
* (detail of 0). Again, first match on a virtual event.
*/
if ((detail.clientData != 0) && (matchPtr == NULL)) {
key.detail.clientData = 0;
hPtr = Tcl_FindHashEntry(&bindPtr->patternTable, (char *) &key);
if (hPtr != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr,
(PatSeq *) Tcl_GetHashValue(hPtr), matchPtr, NULL,
&sourcePtr);
}
if (vMatchNoDetailList != NULL) {
matchPtr = MatchPatterns(dispPtr, bindPtr, vMatchNoDetailList,
matchPtr, objectPtr, &sourcePtr);
}
}
if (matchPtr != NULL) {
if (sourcePtr->eventProc == NULL) {
panic("Tk_BindEvent: missing command");
}
if (sourcePtr->eventProc == EvalTclBinding) {
ExpandPercents(winPtr, (char *) sourcePtr->clientData,
eventPtr, detail.keySym, &scripts);
} else {
if (matchCount >= matchSpace) {
PendingBinding *new;
unsigned int oldSize, newSize;
oldSize = sizeof(staticPending)
- sizeof(staticPending.matchArray)
+ matchSpace * sizeof(PatSeq*);
matchSpace *= 2;
newSize = sizeof(staticPending)
- sizeof(staticPending.matchArray)
+ matchSpace * sizeof(PatSeq*);
new = (PendingBinding *) ckalloc(newSize);
memcpy((VOID *) new, (VOID *) pendingPtr, oldSize);
if (pendingPtr != &staticPending) {
ckfree((char *) pendingPtr);
}
pendingPtr = new;
}
sourcePtr->refCount++;
pendingPtr->matchArray[matchCount] = sourcePtr;
matchCount++;
}
/*
* A "" is added to the scripts string to separate the
* various scripts that should be invoked.
*/
Tcl_DStringAppend(&scripts, "", 1);
}
}
if (Tcl_DStringLength(&scripts) == 0) {
return;
}
/*
* Now go back through and evaluate the binding for each object,
* in order, dealing with "break" and "continue" exceptions
* appropriately.
*
* There are two tricks here:
* 1. Bindings can be invoked from in the middle of Tcl commands,
* where interp->result is significant (for example, a widget
* might be deleted because of an error in creating it, so the
* result contains an error message that is eventually going to
* be returned by the creating command). To preserve the result,
* we save it in a dynamic string.
* 2. The binding's action can potentially delete the binding,
* so bindPtr may not point to anything valid once the action
* completes. Thus we have to save bindPtr->interp in a
* local variable in order to restore the result.
*/
interp = bindPtr->interp;
Tcl_DStringInit(&savedResult);
/*
* Save information about the current screen, then invoke a script
* if the screen has changed.
*/
Tcl_DStringGetResult(interp, &savedResult);
screenPtr = &bindInfoPtr->screenInfo;
oldDispPtr = screenPtr->curDispPtr;
oldScreen = screenPtr->curScreenIndex;
if ((dispPtr != screenPtr->curDispPtr)
|| (Tk_ScreenNumber(tkwin) != screenPtr->curScreenIndex)) {
screenPtr->curDispPtr = dispPtr;
screenPtr->curScreenIndex = Tk_ScreenNumber(tkwin);
ChangeScreen(interp, dispPtr->name, screenPtr->curScreenIndex);
}
if (matchCount > 0) {
pendingPtr->nextPtr = bindInfoPtr->pendingList;
pendingPtr->tkwin = tkwin;
pendingPtr->deleted = 0;
bindInfoPtr->pendingList = pendingPtr;
}
/*
* Save the current value of the TK_DEFER_MODAL flag so we can
* restore it at the end of the loop. Clear the flag so we can
* detect any recursive requests for a modal loop.
*/
flags = winPtr->flags;
winPtr->flags &= ~TK_DEFER_MODAL;
p = Tcl_DStringValue(&scripts);
end = p + Tcl_DStringLength(&scripts);
i = 0;
while (p < end) {
int code;
screenPtr->bindingDepth++;
Tcl_AllowExceptions(interp);
if (*p == '\0') {
PatSeq *psPtr;
psPtr = pendingPtr->matchArray[i];
i++;
code = TCL_OK;
if ((pendingPtr->deleted == 0)
&& ((psPtr->flags & MARKED_DELETED) == 0)) {
code = (*psPtr->eventProc)(psPtr->clientData, interp, eventPtr,
tkwin, detail.keySym);
}
psPtr->refCount--;
if ((psPtr->refCount == 0) && (psPtr->flags & MARKED_DELETED)) {
if (psPtr->freeProc != NULL) {
(*psPtr->freeProc)(psPtr->clientData);
}
ckfree((char *) psPtr);
}
} else {
code = Tcl_GlobalEval(interp, p);
p += strlen(p);
}
p++;
screenPtr->bindingDepth--;
if (code != TCL_OK) {
if (code == TCL_CONTINUE) {
/*
* Do nothing: just go on to the next command.
*/
} else if (code == TCL_BREAK) {
break;
} else {
Tcl_AddErrorInfo(interp, "\n (command bound to event)");
Tcl_BackgroundError(interp);
break;
}
}
}
if (matchCount > 0 && !pendingPtr->deleted) {
/*
* Restore the original modal flag value and invoke the modal loop
* if needed.
*/
deferModal = winPtr->flags & TK_DEFER_MODAL;
winPtr->flags = (winPtr->flags & (unsigned int) ~TK_DEFER_MODAL)
| (flags & TK_DEFER_MODAL);
if (deferModal) {
(*winPtr->classProcsPtr->modalProc)(tkwin, eventPtr);
}
}
if ((screenPtr->bindingDepth != 0) &&
((oldDispPtr != screenPtr->curDispPtr)
|| (oldScreen != screenPtr->curScreenIndex))) {
/*
* Some other binding script is currently executing, but its
* screen is no longer current. Change the current display
* back again.
*/
screenPtr->curDispPtr = oldDispPtr;
screenPtr->curScreenIndex = oldScreen;
ChangeScreen(interp, oldDispPtr->name, oldScreen);
}
Tcl_DStringResult(interp, &savedResult);
Tcl_DStringFree(&scripts);
if (matchCount > 0) {
PendingBinding **curPtrPtr;
for (curPtrPtr = &bindInfoPtr->pendingList; ; ) {
if (*curPtrPtr == pendingPtr) {
*curPtrPtr = pendingPtr->nextPtr;
break;
}
curPtrPtr = &(*curPtrPtr)->nextPtr;
}
if (pendingPtr != &staticPending) {
ckfree((char *) pendingPtr);
}
}
}
/*
*---------------------------------------------------------------------------
*
* TkBindDeadWindow --
*
* This procedure is invoked when it is determined that a window is
* dead. It cleans up bind-related information about the window
*
* Results:
* None.
*
* Side effects:
* Any pending C bindings for this window are cancelled.
*
*---------------------------------------------------------------------------
*/
void
TkBindDeadWindow(winPtr)
TkWindow *winPtr; /* The window that is being deleted. */
{
BindInfo *bindInfoPtr;
PendingBinding *curPtr;
bindInfoPtr = (BindInfo *) winPtr->mainPtr->bindInfo;
curPtr = bindInfoPtr->pendingList;
while (curPtr != NULL) {
if (curPtr->tkwin == (Tk_Window) winPtr) {
curPtr->deleted = 1;
}
curPtr = curPtr->nextPtr;
}
}
/*
*----------------------------------------------------------------------
*
* MatchPatterns --
*
* Given a list of pattern sequences and a list of recent events,
* return the pattern sequence that best matches the event list,
* if there is one.
*
* This procedure is used in two different ways. In the simplest
* use, "object" is NULL and psPtr is a list of pattern sequences,
* each of which corresponds to a binding. In this case, the
* procedure finds the pattern sequences that match the event list
* and returns the most specific of those, if there is more than one.
*
* In the second case, psPtr is a list of pattern sequences, each
* of which corresponds to a definition for a virtual binding.
* In order for one of these sequences to "match", it must match
* the events (as above) but in addition there must be a binding
* for its associated virtual event on the current object. The
* "object" argument indicates which object the binding must be for.
*
* Results:
* The return value is NULL if bestPtr is NULL and no pattern matches
* the recent events from bindPtr. Otherwise the return value is
* the most specific pattern sequence among bestPtr and all those
* at psPtr that match the event list and object. If a pattern
* sequence other than bestPtr is returned, then *bestCommandPtr
* is filled in with a pointer to the command from the best sequence.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static PatSeq *
MatchPatterns(dispPtr, bindPtr, psPtr, bestPtr, objectPtr, sourcePtrPtr)
TkDisplay *dispPtr; /* Display from which the event came. */
BindingTable *bindPtr; /* Information about binding table, such as
* ring of recent events. */
PatSeq *psPtr; /* List of pattern sequences. */
PatSeq *bestPtr; /* The best match seen so far, from a
* previous call to this procedure. NULL
* means no prior best match. */
ClientData *objectPtr; /* If NULL, the sequences at psPtr
* correspond to "normal" bindings. If
* non-NULL, the sequences at psPtr correspond
* to virtual bindings; in order to match each
* sequence must correspond to a virtual
* binding for which a binding exists for
* object in bindPtr. */
PatSeq **sourcePtrPtr; /* Filled with the pattern sequence that
* contains the eventProc and clientData
* associated with the best match. If this
* differs from the return value, it is the
* virtual event that most closely matched the
* return value (a physical event). Not
* modified unless a result other than bestPtr
* is returned. */
{
PatSeq *matchPtr, *bestSourcePtr, *sourcePtr;
bestSourcePtr = *sourcePtrPtr;
/*
* Iterate over all the pattern sequences.
*/
for ( ; psPtr != NULL; psPtr = psPtr->nextSeqPtr) {
XEvent *eventPtr;
Pattern *patPtr;
Window window;
Detail *detailPtr;
int patCount, ringCount, flags, state;
int modMask;
/*
* Iterate over all the patterns in a sequence to be
* sure that they all match.
*/
eventPtr = &bindPtr->eventRing[bindPtr->curEvent];
detailPtr = &bindPtr->detailRing[bindPtr->curEvent];
window = eventPtr->xany.window;
patPtr = psPtr->pats;
patCount = psPtr->numPats;
ringCount = EVENT_BUFFER_SIZE;
while (patCount > 0) {
if (ringCount <= 0) {
goto nextSequence;
}
if (eventPtr->xany.type != patPtr->eventType) {
/*
* Most of the event types are considered superfluous
* in that they are ignored if they occur in the middle
* of a pattern sequence and have mismatching types. The
* only ones that cannot be ignored are ButtonPress and
* ButtonRelease events (if the next event in the pattern
* is a KeyPress or KeyRelease) and KeyPress and KeyRelease
* events (if the next pattern event is a ButtonPress or
* ButtonRelease). Here are some tricky cases to consider:
* 1. Double-Button or Double-Key events.
* 2. Double-ButtonRelease or Double-KeyRelease events.
* 3. The arrival of various events like Enter and Leave
* and FocusIn and GraphicsExpose between two button
* presses or key presses.
* 4. Modifier keys like Shift and Control shouldn't
* generate conflicts with button events.
*/
if ((patPtr->eventType == KeyPress)
|| (patPtr->eventType == KeyRelease)) {
if ((eventPtr->xany.type == ButtonPress)
|| (eventPtr->xany.type == ButtonRelease)) {
goto nextSequence;
}
} else if ((patPtr->eventType == ButtonPress)
|| (patPtr->eventType == ButtonRelease)) {
if ((eventPtr->xany.type == KeyPress)
|| (eventPtr->xany.type == KeyRelease)) {
int i;
/*
* Ignore key events if they are modifier keys.
*/
for (i = 0; i < dispPtr->numModKeyCodes; i++) {
if (dispPtr->modKeyCodes[i]
== eventPtr->xkey.keycode) {
/*
* This key is a modifier key, so ignore it.
*/
goto nextEvent;
}
}
goto nextSequence;
}
}
goto nextEvent;
}
if (eventPtr->xany.window != window) {
goto nextSequence;
}
/*
* Note: it's important for the keysym check to go before
* the modifier check, so we can ignore unwanted modifier
* keys before choking on the modifier check.
*/
if ((patPtr->detail.clientData != 0)
&& (patPtr->detail.clientData != detailPtr->clientData)) {
/*
* The detail appears not to match. However, if the event
* is a KeyPress for a modifier key then just ignore the
* event. Otherwise event sequences like "aD" never match
* because the shift key goes down between the "a" and the
* "D".
*/
if (eventPtr->xany.type == KeyPress) {
int i;
for (i = 0; i < dispPtr->numModKeyCodes; i++) {
if (dispPtr->modKeyCodes[i] == eventPtr->xkey.keycode) {
goto nextEvent;
}
}
}
goto nextSequence;
}
flags = flagArray[eventPtr->type];
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
state = eventPtr->xkey.state;
} else if (flags & CROSSING) {
state = eventPtr->xcrossing.state;
} else {
state = 0;
}
if (patPtr->needMods != 0) {
modMask = patPtr->needMods;
if ((modMask & META_MASK) && (dispPtr->metaModMask != 0)) {
modMask = (modMask & ~META_MASK) | dispPtr->metaModMask;
}
if ((modMask & ALT_MASK) && (dispPtr->altModMask != 0)) {
modMask = (modMask & ~ALT_MASK) | dispPtr->altModMask;
}
if ((state & modMask) != modMask) {
goto nextSequence;
}
}
if (psPtr->flags & PAT_NEARBY) {
XEvent *firstPtr;
int timeDiff;
firstPtr = &bindPtr->eventRing[bindPtr->curEvent];
timeDiff = (Time) firstPtr->xkey.time - eventPtr->xkey.time;
if ((firstPtr->xkey.x_root
< (eventPtr->xkey.x_root - NEARBY_PIXELS))
|| (firstPtr->xkey.x_root
> (eventPtr->xkey.x_root + NEARBY_PIXELS))
|| (firstPtr->xkey.y_root
< (eventPtr->xkey.y_root - NEARBY_PIXELS))
|| (firstPtr->xkey.y_root
> (eventPtr->xkey.y_root + NEARBY_PIXELS))
|| (timeDiff > NEARBY_MS)) {
goto nextSequence;
}
}
patPtr++;
patCount--;
nextEvent:
if (eventPtr == bindPtr->eventRing) {
eventPtr = &bindPtr->eventRing[EVENT_BUFFER_SIZE-1];
detailPtr = &bindPtr->detailRing[EVENT_BUFFER_SIZE-1];
} else {
eventPtr--;
detailPtr--;
}
ringCount--;
}
matchPtr = psPtr;
sourcePtr = psPtr;
if (objectPtr != NULL) {
int iVirt;
VirtualOwners *voPtr;
PatternTableKey key;
/*
* The sequence matches the physical constraints.
* Is this object interested in any of the virtual events
* that correspond to this sequence?
*/
voPtr = psPtr->voPtr;
memset(&key, 0, sizeof(key));
key.object = *objectPtr;
key.type = VirtualEvent;
key.detail.clientData = 0;
for (iVirt = 0; iVirt < voPtr->numOwners; iVirt++) {
Tcl_HashEntry *hPtr = voPtr->owners[iVirt];
key.detail.name = (Tk_Uid) Tcl_GetHashKey(hPtr->tablePtr,
hPtr);
hPtr = Tcl_FindHashEntry(&bindPtr->patternTable,
(char *) &key);
if (hPtr != NULL) {
/*
* This tag is interested in this virtual event and its
* corresponding physical event is a good match with the
* virtual event's definition.
*/
PatSeq *virtMatchPtr;
virtMatchPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
if ((virtMatchPtr->numPats != 1)
|| (virtMatchPtr->nextSeqPtr != NULL)) {
panic("MatchPattern: badly constructed virtual event");
}
sourcePtr = virtMatchPtr;
goto match;
}
}
/*
* The physical event matches a virtual event's definition, but
* the tag isn't interested in it.
*/
goto nextSequence;
}
match:
/*
* This sequence matches. If we've already got another match,
* pick whichever is most specific. Detail is most important,
* then needMods.
*/
if (bestPtr != NULL) {
Pattern *patPtr2;
int i;
if (matchPtr->numPats != bestPtr->numPats) {
if (bestPtr->numPats > matchPtr->numPats) {
goto nextSequence;
} else {
goto newBest;
}
}
for (i = 0, patPtr = matchPtr->pats, patPtr2 = bestPtr->pats;
i < matchPtr->numPats; i++, patPtr++, patPtr2++) {
if (patPtr->detail.clientData != patPtr2->detail.clientData) {
if (patPtr->detail.clientData == 0) {
goto nextSequence;
} else {
goto newBest;
}
}
if (patPtr->needMods != patPtr2->needMods) {
if ((patPtr->needMods & patPtr2->needMods)
== patPtr->needMods) {
goto nextSequence;
} else if ((patPtr->needMods & patPtr2->needMods)
== patPtr2->needMods) {
goto newBest;
}
}
}
/*
* Tie goes to current best pattern.
*
* (1) For virtual vs. virtual, the least recently defined
* virtual wins, because virtuals are examined in order of
* definition. This order is _not_ guaranteed in the
* documentation.
*
* (2) For virtual vs. physical, the physical wins because all
* the physicals are examined before the virtuals. This order
* is guaranteed in the documentation.
*
* (3) For physical vs. physical pattern, the most recently
* defined physical wins, because physicals are examined in
* reverse order of definition. This order is guaranteed in
* the documentation.
*/
goto nextSequence;
}
newBest:
bestPtr = matchPtr;
bestSourcePtr = sourcePtr;
nextSequence: continue;
}
*sourcePtrPtr = bestSourcePtr;
return bestPtr;
}
/*
*--------------------------------------------------------------
*
* ExpandPercents --
*
* Given a command and an event, produce a new command
* by replacing % constructs in the original command
* with information from the X event.
*
* Results:
* The new expanded command is appended to the dynamic string
* given by dsPtr.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
static void
ExpandPercents(winPtr, before, eventPtr, keySym, dsPtr)
TkWindow *winPtr; /* Window where event occurred: needed to
* get input context. */
char *before; /* Command containing percent expressions
* to be replaced. */
XEvent *eventPtr; /* X event containing information to be
* used in % replacements. */
KeySym keySym; /* KeySym: only relevant for KeyPress and
* KeyRelease events). */
Tcl_DString *dsPtr; /* Dynamic string in which to append new
* command. */
{
int spaceNeeded, cvtFlags; /* Used to substitute string as proper Tcl
* list element. */
int number, flags, length;
#define NUM_SIZE 40
char *string;
char numStorage[NUM_SIZE+1];
if (eventPtr->type < TK_LASTEVENT) {
flags = flagArray[eventPtr->type];
} else {
flags = 0;
}
#ifdef STk_CODE
/*
* Binding is something like "(#p123abc x y)" or "(#p123abc)"
* Skip the function "name"
*/
for (string=before;
(*string != 0) && (*string != ' ') && (*string != ')');
string++) {
/* Empty loop body. */
}
Tcl_DStringAppend(dsPtr, before, string-before);
before = string;
#endif
while (1) {
#ifndef STk_CODE
/*
* Find everything up to the next % character and append it
* to the result string.
*/
for (string = before; (*string != 0) && (*string != '%'); string++) {
/* Empty loop body. */
}
if (string != before) {
Tcl_DStringAppend(dsPtr, before, string-before);
before = string;
}
#endif
if (*before == 0) {
break;
}
/*
* There's a percent sequence here. Process it.
*/
number = 0;
string = "??";
#ifdef STk_CODE
switch (before[0]) {
#else
switch (before[1]) {
#endif
case '#':
number = eventPtr->xany.serial;
goto doNumber;
case 'a':
TkpPrintWindowId(numStorage, eventPtr->xconfigure.above);
string = numStorage;
goto doString;
case 'b':
number = eventPtr->xbutton.button;
goto doNumber;
case 'c':
if (flags & EXPOSE) {
number = eventPtr->xexpose.count;
}
goto doNumber;
case 'd':
if (flags & (CROSSING|FOCUS)) {
if (flags & FOCUS) {
number = eventPtr->xfocus.detail;
} else {
number = eventPtr->xcrossing.detail;
}
string = TkFindStateString(notifyDetail, number);
}
goto doString;
case 'f':
#ifdef STk_CODE
string = (eventPtr->xcrossing.focus) ? "#t" : "#f";
goto doSymbol;
#else
number = eventPtr->xcrossing.focus;
goto doNumber;
#endif
case 'h':
if (flags & EXPOSE) {
number = eventPtr->xexpose.height;
} else if (flags & (CONFIG)) {
number = eventPtr->xconfigure.height;
}
goto doNumber;
case 'k':
number = eventPtr->xkey.keycode;
goto doNumber;
case 'm':
if (flags & CROSSING) {
number = eventPtr->xcrossing.mode;
} else if (flags & FOCUS) {
number = eventPtr->xfocus.mode;
}
string = TkFindStateString(notifyMode, number);
goto doString;
case 'o':
if (flags & CREATE) {
number = eventPtr->xcreatewindow.override_redirect;
} else if (flags & MAP) {
number = eventPtr->xmap.override_redirect;
} else if (flags & REPARENT) {
number = eventPtr->xreparent.override_redirect;
} else if (flags & CONFIG) {
number = eventPtr->xconfigure.override_redirect;
}
#ifdef STk_CODE
string = number ? "#t" : "#f";
goto doSymbol;
#else
goto doNumber;
#endif
case 'p':
string = TkFindStateString(circPlace, eventPtr->xcirculate.place);
goto doString;
case 's':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = eventPtr->xkey.state;
} else if (flags & CROSSING) {
number = eventPtr->xcrossing.state;
} else if (flags & VISIBILITY) {
string = TkFindStateString(visNotify,
eventPtr->xvisibility.state);
goto doString;
}
goto doNumber;
case 't':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = (int) eventPtr->xkey.time;
} else if (flags & CROSSING) {
number = (int) eventPtr->xcrossing.time;
} else if (flags & PROP) {
number = (int) eventPtr->xproperty.time;
}
goto doNumber;
case 'v':
number = eventPtr->xconfigurerequest.value_mask;
goto doNumber;
case 'w':
if (flags & EXPOSE) {
number = eventPtr->xexpose.width;
} else if (flags & CONFIG) {
number = eventPtr->xconfigure.width;
}
goto doNumber;
case 'x':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = eventPtr->xkey.x;
} else if (flags & CROSSING) {
number = eventPtr->xcrossing.x;
} else if (flags & EXPOSE) {
number = eventPtr->xexpose.x;
} else if (flags & (CREATE|CONFIG|GRAVITY)) {
number = eventPtr->xcreatewindow.x;
} else if (flags & REPARENT) {
number = eventPtr->xreparent.x;
}
goto doNumber;
case 'y':
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
number = eventPtr->xkey.y;
} else if (flags & EXPOSE) {
number = eventPtr->xexpose.y;
} else if (flags & (CREATE|CONFIG|GRAVITY)) {
number = eventPtr->xcreatewindow.y;
} else if (flags & REPARENT) {
number = eventPtr->xreparent.y;
} else if (flags & CROSSING) {
number = eventPtr->xcrossing.y;
}
goto doNumber;
case 'A':
if (flags & KEY) {
int numChars;
/*
* If we're using input methods and this is a keypress
* event, invoke XmbTkFindStateString. Otherwise just use
* the older XTkFindStateString.
*/
#ifdef TK_USE_INPUT_METHODS
Status status;
if ((winPtr->inputContext != NULL)
&& (eventPtr->type == KeyPress)) {
numChars = XmbLookupString(winPtr->inputContext,
&eventPtr->xkey, numStorage, NUM_SIZE,
(KeySym *) NULL, &status);
if ((status != XLookupChars)
&& (status != XLookupBoth)) {
numChars = 0;
}
} else {
numChars = XLookupString(&eventPtr->xkey, numStorage,
NUM_SIZE, (KeySym *) NULL,
(XComposeStatus *) NULL);
}
#else /* TK_USE_INPUT_METHODS */
numChars = XLookupString(&eventPtr->xkey, numStorage,
NUM_SIZE, (KeySym *) NULL,
(XComposeStatus *) NULL);
#endif /* TK_USE_INPUT_METHODS */
numStorage[numChars] = '\0';
string = numStorage;
}
goto doString;
case 'B':
number = eventPtr->xcreatewindow.border_width;
goto doNumber;
case 'E':
number = (int) eventPtr->xany.send_event;
goto doNumber;
case 'K':
if (flags & KEY) {
char *name;
name = TkKeysymToString(keySym);
if (name != NULL) {
string = name;
}
}
goto doString;
case 'N':
number = (int) keySym;
goto doNumber;
case 'R':
TkpPrintWindowId(numStorage, eventPtr->xkey.root);
string = numStorage;
goto doString;
case 'S':
TkpPrintWindowId(numStorage, eventPtr->xkey.subwindow);
string = numStorage;
goto doString;
case 'T':
number = eventPtr->type;
goto doNumber;
case 'W': {
Tk_Window tkwin;
tkwin = Tk_IdToWindow(eventPtr->xany.display,
eventPtr->xany.window);
if (tkwin != NULL) {
string = Tk_PathName(tkwin);
#ifdef STk_CODE
if (string[1] == '\0') string = "*root*";
#endif
} else {
string = "??";
}
#ifdef STk_CODE
goto doSymbol;
#else
goto doString;
#endif
}
case 'X': {
Tk_Window tkwin;
int x, y;
int width, height;
number = eventPtr->xkey.x_root;
tkwin = Tk_IdToWindow(eventPtr->xany.display,
eventPtr->xany.window);
if (tkwin != NULL) {
Tk_GetVRootGeometry(tkwin, &x, &y, &width, &height);
number -= x;
}
goto doNumber;
}
case 'Y': {
Tk_Window tkwin;
int x, y;
int width, height;
number = eventPtr->xkey.y_root;
tkwin = Tk_IdToWindow(eventPtr->xany.display,
eventPtr->xany.window);
if (tkwin != NULL) {
Tk_GetVRootGeometry(tkwin, &x, &y, &width, &height);
number -= y;
}
goto doNumber;
}
default:
#ifdef STk_CODE
/* Just append the current character in the result string */
Tcl_DStringAppend(dsPtr, before, 1);
before += 1;
continue;
#else
numStorage[0] = before[1];
numStorage[1] = '\0';
string = numStorage;
goto doString;
#endif
}
#ifdef STk_CODE
doSymbol:
{
Tcl_DStringAppend(dsPtr, string, -1);
before += 1;
continue;
}
doString:
{
char *s;
s = STk_stringify(string, 0);
Tcl_DStringAppend(dsPtr, s, -1);
free(s);
before += 1;
continue;
}
doNumber:
{
sprintf(numStorage, "%d", number);
Tcl_DStringAppend(dsPtr, numStorage, -1);
before += 1;
}
#else
doNumber:
sprintf(numStorage, "%d", number);
string = numStorage;
doString:
spaceNeeded = Tcl_ScanElement(string, &cvtFlags);
length = Tcl_DStringLength(dsPtr);
Tcl_DStringSetLength(dsPtr, length + spaceNeeded);
spaceNeeded = Tcl_ConvertElement(string,
Tcl_DStringValue(dsPtr) + length,
cvtFlags | TCL_DONT_USE_BRACES);
Tcl_DStringSetLength(dsPtr, length + spaceNeeded);
before += 2;
#endif
}
}
/*
*----------------------------------------------------------------------
*
* ChangeScreen --
*
* This procedure is invoked whenever the current screen changes
* in an application. It invokes a Tcl procedure named
* "tkScreenChanged", passing it the screen name as argument.
* tkScreenChanged does things like making the tkPriv variable
* point to an array for the current display.
*
* Results:
* None.
*
* Side effects:
* Depends on what tkScreenChanged does. If an error occurs
* them tkError will be invoked.
*
*----------------------------------------------------------------------
*/
static void
ChangeScreen(interp, dispName, screenIndex)
Tcl_Interp *interp; /* Interpreter in which to invoke
* command. */
char *dispName; /* Name of new display. */
int screenIndex; /* Index of new screen. */
{
#ifdef STk_CODE
char command[200];
int code;
sprintf(command, "(Tk-screen-changed \"%s.%d\")", dispName, screenIndex);
code = Tcl_GlobalEval(interp, command);
#else
Tcl_DString cmd;
int code;
char screen[30];
Tcl_DStringInit(&cmd);
Tcl_DStringAppend(&cmd, "tkScreenChanged ", 16);
Tcl_DStringAppend(&cmd, dispName, -1);
sprintf(screen, ".%d", screenIndex);
Tcl_DStringAppend(&cmd, screen, -1);
code = Tcl_GlobalEval(interp, Tcl_DStringValue(&cmd));
#endif
if (code != TCL_OK) {
Tcl_AddErrorInfo(interp,
"\n (changing screen in event binding)");
Tcl_BackgroundError(interp);
}
}
/*
*----------------------------------------------------------------------
*
* Tk_EventCmd --
*
* This procedure is invoked to process the "event" Tcl command.
* It is used to define and generate events.
*
* Results:
* A standard Tcl result.
*
* Side effects:
* See the user documentation.
*
*----------------------------------------------------------------------
*/
int
Tk_EventCmd(clientData, interp, argc, argv)
ClientData clientData; /* Main window associated with
* interpreter. */
Tcl_Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */
char **argv; /* Argument strings. */
{
int i;
size_t length;
char *option;
Tk_Window tkwin;
VirtualEventTable *vetPtr;
TkBindInfo bindInfo;
if (argc < 2) {
Tcl_AppendResult(interp, "wrong # args: should be \"",
argv[0], " option ?arg1?\"", (char *) NULL);
return TCL_ERROR;
}
option = argv[1];
length = strlen(option);
if (length == 0) {
goto badopt;
}
tkwin = (Tk_Window) clientData;
bindInfo = ((TkWindow *) tkwin)->mainPtr->bindInfo;
vetPtr = &((BindInfo *) bindInfo)->virtualEventTable;
if (strncmp(option, "add", length) == 0) {
if (argc < 4) {
Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
" add virtual sequence ?sequence ...?\"", (char *) NULL);
return TCL_ERROR;
}
for (i = 3; i < argc; i++) {
if (CreateVirtualEvent(interp, vetPtr, argv[2], argv[i])
!= TCL_OK) {
return TCL_ERROR;
}
}
} else if (strncmp(option, "delete", length) == 0) {
if (argc < 3) {
Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
" delete virtual ?sequence sequence ...?\"",
(char *) NULL);
return TCL_ERROR;
}
if (argc == 3) {
return DeleteVirtualEvent(interp, vetPtr, argv[2], NULL);
}
for (i = 3; i < argc; i++) {
if (DeleteVirtualEvent(interp, vetPtr, argv[2], argv[i])
!= TCL_OK) {
return TCL_ERROR;
}
}
} else if (strncmp(option, "generate", length) == 0) {
if (argc < 4) {
Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
" generate window event ?options?\"", (char *) NULL);
return TCL_ERROR;
}
return HandleEventGenerate(interp, tkwin, argc - 2, argv + 2);
} else if (strncmp(option, "info", length) == 0) {
if (argc == 2) {
GetAllVirtualEvents(interp, vetPtr);
return TCL_OK;
} else if (argc == 3) {
return GetVirtualEvent(interp, vetPtr, argv[2]);
} else {
Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
" info ?virtual?\"", (char *) NULL);
return TCL_ERROR;
}
} else {
badopt:
Tcl_AppendResult(interp, "bad option \"", argv[1],
"\": should be add, delete, generate, info", (char *) NULL);
return TCL_ERROR;
}
return TCL_OK;
}
/*
*---------------------------------------------------------------------------
*
* InitVirtualEventTable --
*
* Given storage for a virtual event table, set up the fields to
* prepare a new domain in which virtual events may be defined.
*
* Results:
* None.
*
* Side effects:
* *vetPtr is now initialized.
*
*---------------------------------------------------------------------------
*/
static void
InitVirtualEventTable(vetPtr)
VirtualEventTable *vetPtr; /* Pointer to virtual event table. Memory
* is supplied by the caller. */
{
Tcl_InitHashTable(&vetPtr->patternTable,
sizeof(PatternTableKey) / sizeof(int));
Tcl_InitHashTable(&vetPtr->nameTable, TCL_ONE_WORD_KEYS);
}
/*
*---------------------------------------------------------------------------
*
* DeleteVirtualEventTable --
*
* Delete the contents of a virtual event table. The caller is
* responsible for freeing any memory used by the table itself.
*
* Results:
* None.
*
* Side effects:
* Memory is freed.
*
*---------------------------------------------------------------------------
*/
static void
DeleteVirtualEventTable(vetPtr)
VirtualEventTable *vetPtr; /* The virtual event table to delete. */
{
Tcl_HashEntry *hPtr;
Tcl_HashSearch search;
PatSeq *psPtr, *nextPtr;
hPtr = Tcl_FirstHashEntry(&vetPtr->patternTable, &search);
for ( ; hPtr != NULL; hPtr = Tcl_NextHashEntry(&search)) {
psPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
for ( ; psPtr != NULL; psPtr = nextPtr) {
nextPtr = psPtr->nextSeqPtr;
ckfree((char *) psPtr->voPtr);
ckfree((char *) psPtr);
}
}
Tcl_DeleteHashTable(&vetPtr->patternTable);
hPtr = Tcl_FirstHashEntry(&vetPtr->nameTable, &search);
for ( ; hPtr != NULL; hPtr = Tcl_NextHashEntry(&search)) {
ckfree((char *) Tcl_GetHashValue(hPtr));
}
Tcl_DeleteHashTable(&vetPtr->nameTable);
}
/*
*----------------------------------------------------------------------
*
* CreateVirtualEvent --
*
* Add a new definition for a virtual event. If the virtual event
* is already defined, the new definition augments those that
* already exist.
*
* Results:
* The return value is TCL_ERROR if an error occured while
* creating the virtual binding. In this case, an error message
* will be left in interp->result. If all went well then the return
* value is TCL_OK.
*
* Side effects:
* The virtual event may cause future calls to Tk_BindEvent to
* behave differently than they did previously.
*
*----------------------------------------------------------------------
*/
static int
CreateVirtualEvent(interp, vetPtr, virtString, eventString)
Tcl_Interp *interp; /* Used for error reporting. */
VirtualEventTable *vetPtr;/* Table in which to augment virtual event. */
char *virtString; /* Name of new virtual event. */
char *eventString; /* String describing physical event that
* triggers virtual event. */
{
PatSeq *psPtr;
int dummy;
Tcl_HashEntry *vhPtr;
unsigned long eventMask;
PhysicalsOwned *poPtr;
VirtualOwners *voPtr;
Tk_Uid virtUid;
virtUid = GetVirtualEventUid(interp, virtString);
if (virtUid == NULL) {
return TCL_ERROR;
}
/*
* Find/create physical event
*/
psPtr = FindSequence(interp, &vetPtr->patternTable, NULL, eventString,
1, 0, &eventMask);
if (psPtr == NULL) {
return TCL_ERROR;
}
/*
* Find/create virtual event.
*/
vhPtr = Tcl_CreateHashEntry(&vetPtr->nameTable, virtUid, &dummy);
/*
* Make virtual event own the physical event.
*/
poPtr = (PhysicalsOwned *) Tcl_GetHashValue(vhPtr);
if (poPtr == NULL) {
poPtr = (PhysicalsOwned *) ckalloc(sizeof(PhysicalsOwned));
poPtr->numOwned = 0;
} else {
/*
* See if this virtual event is already defined for this physical
* event and just return if it is.
*/
int i;
for (i = 0; i < poPtr->numOwned; i++) {
if (poPtr->patSeqs[i] == psPtr) {
return TCL_OK;
}
}
poPtr = (PhysicalsOwned *) ckrealloc((char *) poPtr,
sizeof(PhysicalsOwned) + poPtr->numOwned * sizeof(PatSeq *));
}
Tcl_SetHashValue(vhPtr, (ClientData) poPtr);
poPtr->patSeqs[poPtr->numOwned] = psPtr;
poPtr->numOwned++;
/*
* Make physical event so it can trigger the virtual event.
*/
voPtr = psPtr->voPtr;
if (voPtr == NULL) {
voPtr = (VirtualOwners *) ckalloc(sizeof(VirtualOwners));
voPtr->numOwners = 0;
} else {
voPtr = (VirtualOwners *) ckrealloc((char *) voPtr,
sizeof(VirtualOwners)
+ voPtr->numOwners * sizeof(Tcl_HashEntry *));
}
psPtr->voPtr = voPtr;
voPtr->owners[voPtr->numOwners] = vhPtr;
voPtr->numOwners++;
return TCL_OK;
}
/*
*--------------------------------------------------------------
*
* DeleteVirtualEvent --
*
* Remove the definition of a given virtual event. If the
* event string is NULL, all definitions of the virtual event
* will be removed. Otherwise, just the specified definition
* of the virtual event will be removed.
*
* Results:
* The result is a standard Tcl return value. If an error
* occurs then interp->result will contain an error message.
* It is not an error to attempt to delete a virtual event that
* does not exist or a definition that does not exist.
*
* Side effects:
* The virtual event given by virtString may be removed from the
* virtual event table.
*
*--------------------------------------------------------------
*/
static int
DeleteVirtualEvent(interp, vetPtr, virtString, eventString)
Tcl_Interp *interp; /* Used for error reporting. */
VirtualEventTable *vetPtr;/* Table in which to delete event. */
char *virtString; /* String describing event sequence that
* triggers binding. */
char *eventString; /* The event sequence that should be deleted,
* or NULL to delete all event sequences for
* the entire virtual event. */
{
int iPhys;
Tk_Uid virtUid;
Tcl_HashEntry *vhPtr;
PhysicalsOwned *poPtr;
PatSeq *eventPSPtr;
virtUid = GetVirtualEventUid(interp, virtString);
if (virtUid == NULL) {
return TCL_ERROR;
}
vhPtr = Tcl_FindHashEntry(&vetPtr->nameTable, virtUid);
if (vhPtr == NULL) {
return TCL_OK;
}
poPtr = (PhysicalsOwned *) Tcl_GetHashValue(vhPtr);
eventPSPtr = NULL;
if (eventString != NULL) {
unsigned long eventMask;
/*
* Delete only the specific physical event associated with the
* virtual event. If the physical event doesn't already exist, or
* the virtual event doesn't own that physical event, return w/o
* doing anything.
*/
eventPSPtr = FindSequence(interp, &vetPtr->patternTable, NULL,
eventString, 0, 0, &eventMask);
if (eventPSPtr == NULL) {
return (interp->result[0] != '\0') ? TCL_ERROR : TCL_OK;
}
}
for (iPhys = poPtr->numOwned; --iPhys >= 0; ) {
PatSeq *psPtr = poPtr->patSeqs[iPhys];
if ((eventPSPtr == NULL) || (psPtr == eventPSPtr)) {
int iVirt;
VirtualOwners *voPtr;
/*
* Remove association between this physical event and the given
* virtual event that it triggers.
*/
voPtr = psPtr->voPtr;
for (iVirt = 0; iVirt < voPtr->numOwners; iVirt++) {
if (voPtr->owners[iVirt] == vhPtr) {
break;
}
}
if (iVirt == voPtr->numOwners) {
panic("DeleteVirtualEvent: couldn't find owner");
}
voPtr->numOwners--;
if (voPtr->numOwners == 0) {
/*
* Removed last reference to this physical event, so
* remove it from physical->virtual map.
*/
PatSeq *prevPtr = (PatSeq *) Tcl_GetHashValue(psPtr->hPtr);
if (prevPtr == psPtr) {
if (psPtr->nextSeqPtr == NULL) {
Tcl_DeleteHashEntry(psPtr->hPtr);
} else {
Tcl_SetHashValue(psPtr->hPtr,
psPtr->nextSeqPtr);
}
} else {
for ( ; ; prevPtr = prevPtr->nextSeqPtr) {
if (prevPtr == NULL) {
panic("Tk_DeleteVirtualEvent couldn't find on hash chain");
}
if (prevPtr->nextSeqPtr == psPtr) {
prevPtr->nextSeqPtr = psPtr->nextSeqPtr;
break;
}
}
}
ckfree((char *) psPtr->voPtr);
ckfree((char *) psPtr);
} else {
/*
* This physical event still triggers some other virtual
* event(s). Consolidate the list of virtual owners for
* this physical event so it no longer triggers the
* given virtual event.
*/
voPtr->owners[iVirt] = voPtr->owners[voPtr->numOwners];
}
/*
* Now delete the virtual event's reference to the physical
* event.
*/
poPtr->numOwned--;
if (eventPSPtr != NULL && poPtr->numOwned != 0) {
/*
* Just deleting this one physical event. Consolidate list
* of owned physical events and return.
*/
poPtr->patSeqs[iPhys] = poPtr->patSeqs[poPtr->numOwned];
return TCL_OK;
}
}
}
if (poPtr->numOwned == 0) {
/*
* All the physical events for this virtual event were deleted,
* either because there was only one associated physical event or
* because the caller was deleting the entire virtual event. Now
* the virtual event itself should be deleted.
*/
ckfree((char *) poPtr);
Tcl_DeleteHashEntry(vhPtr);
}
return TCL_OK;
}
/*
*---------------------------------------------------------------------------
*
* GetVirtualEvent --
*
* Return the list of physical events that can invoke the
* given virtual event.
*
* Results:
* The return value is TCL_OK and interp->result is filled with the
* string representation of the physical events associated with the
* virtual event; if there are no physical events for the given virtual
* event, interp->result is filled with and empty string. If the
* virtual event string is improperly formed, then TCL_ERROR is
* returned and an error message is left in interp->result.
*
* Side effects:
* None.
*
*---------------------------------------------------------------------------
*/
static int
GetVirtualEvent(interp, vetPtr, virtString)
Tcl_Interp *interp; /* Interpreter for reporting. */
VirtualEventTable *vetPtr;/* Table in which to look for event. */
char *virtString; /* String describing virtual event. */
{
Tcl_HashEntry *vhPtr;
Tcl_DString ds;
int iPhys;
PhysicalsOwned *poPtr;
Tk_Uid virtUid;
virtUid = GetVirtualEventUid(interp, virtString);
if (virtUid == NULL) {
return TCL_ERROR;
}
vhPtr = Tcl_FindHashEntry(&vetPtr->nameTable, virtUid);
if (vhPtr == NULL) {
return TCL_OK;
}
Tcl_DStringInit(&ds);
poPtr = (PhysicalsOwned *) Tcl_GetHashValue(vhPtr);
for (iPhys = 0; iPhys < poPtr->numOwned; iPhys++) {
Tcl_DStringSetLength(&ds, 0);
GetPatternString(poPtr->patSeqs[iPhys], &ds);
Tcl_AppendElement(interp, Tcl_DStringValue(&ds));
}
Tcl_DStringFree(&ds);
return TCL_OK;
}
/*
*--------------------------------------------------------------
*
* GetAllVirtualEvents --
*
* Return a list that contains the names of all the virtual
* event defined.
*
* Results:
* There is no return value. Interp->result is modified to
* hold a Tcl list with one entry for each virtual event in
* nameTable.
*
* Side effects:
* None.
*
*--------------------------------------------------------------
*/
#ifdef STk_CODE
/*
* There are no more '%' in STk, but since this function is not too much modified,
* I prefer do the modification in place, rather than rewrite it in an #ifdef.
* Furthermore, patch command can be run easily on it
*/
#endif
static void
GetAllVirtualEvents(interp, vetPtr)
Tcl_Interp *interp; /* Interpreter returning result. */
VirtualEventTable *vetPtr;/* Table containing events. */
{
Tcl_HashEntry *hPtr;
Tcl_HashSearch search;
Tcl_DString ds;
Tcl_DStringInit(&ds);
hPtr = Tcl_FirstHashEntry(&vetPtr->nameTable, &search);
for ( ; hPtr != NULL; hPtr = Tcl_NextHashEntry(&search)) {
Tcl_DStringSetLength(&ds, 0);
#ifdef STk_CODE
Tcl_DStringAppend(&ds, "\"<<", 3);
#else
Tcl_DStringAppend(&ds, "<<", 2);
#endif
Tcl_DStringAppend(&ds, Tcl_GetHashKey(hPtr->tablePtr, hPtr), -1);
#ifdef STk_CODE
Tcl_DStringAppend(&ds, ">>\"", 3);
#else
Tcl_DStringAppend(&ds, ">>", 2);
#endif
Tcl_AppendElement(interp, Tcl_DStringValue(&ds));
}
Tcl_DStringFree(&ds);
}
/*
*---------------------------------------------------------------------------
*
* HandleEventGenerate --
*
* Helper function for the "event generate" command. Generate and
* process an XEvent, constructed from information parsed from the
* event description string and its optional arguments.
*
* argv[0] contains name of the target window.
* argv[1] contains pattern string for one event (e.g, <Control-v>).
* argv[2..argc-1] contains -field/option pairs for specifying
* additional detail in the generated event.
*
* Either virtual or physical events can be generated this way.
* The event description string must contain the specification
* for only one event.
*
* Results:
* None.
*
* Side effects:
* When constructing the event,
* event.xany.serial is filled with the current X serial number.
* event.xany.window is filled with the target window.
* event.xany.display is filled with the target window's display.
* Any other fields in eventPtr which are not specified by the pattern
* string or the optional arguments, are set to 0.
*
* The event may be handled sychronously or asynchronously, depending
* on the value specified by the optional "-when" option. The
* default setting is synchronous.
*
*---------------------------------------------------------------------------
*/
static int
HandleEventGenerate(interp, main, argc, argv)
Tcl_Interp *interp; /* Interp for error messages and name lookup. */
Tk_Window main; /* Main window associated with interp. */
int argc; /* Number of arguments. */
char **argv; /* Argument strings. */
{
Pattern pat;
Tk_Window tkwin;
char *p;
unsigned long eventMask;
int count, i, state, flags, synch;
Tcl_QueuePosition pos;
XEvent event;
if (argv[0][0] == '.') {
tkwin = Tk_NameToWindow(interp, argv[0], main);
if (tkwin == NULL) {
return TCL_ERROR;
}
} else {
if (TkpScanWindowId(NULL, argv[0], &i) != TCL_OK) {
Tcl_AppendResult(interp, "bad window name/identifier \"",
argv[0], "\"", (char *) NULL);
return TCL_ERROR;
}
tkwin = Tk_IdToWindow(Tk_Display(main), (Window) i);
if ((tkwin == NULL) || (((TkWindow *) main)->mainPtr
!= ((TkWindow *) tkwin)->mainPtr)) {
Tcl_AppendResult(interp, "window id \"", argv[0],
"\" doesn't exist in this application", (char *) NULL);
return TCL_ERROR;
}
}
p = argv[1];
count = ParseEventDescription(interp, &p, &pat, &eventMask);
if (count == 0) {
return TCL_ERROR;
}
if (count != 1) {
interp->result = "Double or Triple modifier not allowed";
return TCL_ERROR;
}
if (*p != '\0') {
interp->result = "only one event specification allowed";
return TCL_ERROR;
}
if (argc & 1) {
Tcl_AppendResult(interp, "value for \"", argv[argc - 1],
"\" missing", (char *) NULL);
return TCL_ERROR;
}
memset((VOID *) &event, 0, sizeof(event));
event.xany.type = pat.eventType;
event.xany.serial = NextRequest(Tk_Display(tkwin));
event.xany.send_event = False;
event.xany.window = Tk_WindowId(tkwin);
event.xany.display = Tk_Display(tkwin);
flags = flagArray[event.xany.type];
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
event.xkey.state = pat.needMods;
if (flags & KEY) {
/*
* When mapping from a keysym to a keycode, need information about
* the modifier state that should be used so that when they call
* XKeycodeToKeysym taking into account the xkey.state, they will
* get back the original keysym.
*/
if (pat.detail.keySym == NoSymbol) {
event.xkey.keycode = 0;
} else {
event.xkey.keycode = XKeysymToKeycode(event.xany.display,
pat.detail.keySym);
}
if (event.xkey.keycode != 0) {
for (state = 0; state < 4; state++) {
if (XKeycodeToKeysym(event.xany.display,
event.xkey.keycode, state) == pat.detail.keySym) {
if (state & 1) {
event.xkey.state |= ShiftMask;
}
if (state & 2) {
TkDisplay *dispPtr = ((TkWindow *) tkwin)->dispPtr;
event.xkey.state |= dispPtr->modeModMask;
}
break;
}
}
}
} else if (flags & BUTTON) {
event.xbutton.button = pat.detail.button;
} else if (flags & VIRTUAL) {
((XVirtualEvent *) &event)->name = pat.detail.name;
}
}
if (flags & (CREATE|DESTROY|UNMAP|MAP|REPARENT|CONFIG|GRAVITY|CIRC)) {
event.xcreatewindow.window = event.xany.window;
}
/*
* Process the remaining arguments to fill in additional fields
* of the event.
*/
synch = 1;
pos = TCL_QUEUE_TAIL;
for (i = 2; i < argc; i += 2) {
char *field, *value;
Tk_Window tkwin2;
int number;
KeySym keysym;
field = argv[i];
value = argv[i+1];
if (strcmp(field, "-when") == 0) {
if (strcmp(value, "now") == 0) {
synch = 1;
} else if (strcmp(value, "head") == 0) {
pos = TCL_QUEUE_HEAD;
synch = 0;
} else if (strcmp(value, "mark") == 0) {
pos = TCL_QUEUE_MARK;
synch = 0;
} else if (strcmp(value, "tail") == 0) {
pos = TCL_QUEUE_TAIL;
synch = 0;
} else {
Tcl_AppendResult(interp, "bad position \"", value,
"\": should be now, head, mark, tail", (char *) NULL);
return TCL_ERROR;
}
} else if (strcmp(field, "-above") == 0) {
if (value[0] == '.') {
tkwin2 = Tk_NameToWindow(interp, value, main);
if (tkwin2 == NULL) {
return TCL_ERROR;
}
number = Tk_WindowId(tkwin2);
} else if (TkpScanWindowId(interp, value, &number)
!= TCL_OK) {
return TCL_ERROR;
}
if (flags & CONFIG) {
event.xconfigure.above = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-borderwidth") == 0) {
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & (CREATE|CONFIG)) {
event.xcreatewindow.border_width = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-button") == 0) {
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & BUTTON) {
event.xbutton.button = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-count") == 0) {
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & EXPOSE) {
event.xexpose.count = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-detail") == 0) {
number = TkFindStateNum(interp, field, notifyDetail, value);
if (number < 0) {
return TCL_ERROR;
}
if (flags & FOCUS) {
event.xfocus.detail = number;
} else if (flags & CROSSING) {
event.xcrossing.detail = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-focus") == 0) {
if (Tcl_GetBoolean(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & CROSSING) {
event.xcrossing.focus = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-height") == 0) {
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & EXPOSE) {
event.xexpose.height = number;
} else if (flags & CONFIG) {
event.xconfigure.height = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-keycode") == 0) {
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & KEY) {
event.xkey.keycode = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-keysym") == 0) {
keysym = TkStringToKeysym(value);
if (keysym == NoSymbol) {
Tcl_AppendResult(interp, "unknown keysym \"", value,
"\"", (char *) NULL);
return TCL_ERROR;
}
/*
* When mapping from a keysym to a keycode, need information about
* the modifier state that should be used so that when they call
* XKeycodeToKeysym taking into account the xkey.state, they will
* get back the original keysym.
*/
number = XKeysymToKeycode(event.xany.display, keysym);
if (number == 0) {
Tcl_AppendResult(interp, "no keycode for keysym \"", value,
"\"", (char *) NULL);
return TCL_ERROR;
}
for (state = 0; state < 4; state++) {
if (XKeycodeToKeysym(event.xany.display, (unsigned) number,
state) == keysym) {
if (state & 1) {
event.xkey.state |= ShiftMask;
}
if (state & 2) {
TkDisplay *dispPtr = ((TkWindow *) tkwin)->dispPtr;
event.xkey.state |= dispPtr->modeModMask;
}
break;
}
}
if (flags & KEY) {
event.xkey.keycode = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-mode") == 0) {
number = TkFindStateNum(interp, field, notifyMode, value);
if (number < 0) {
return TCL_ERROR;
}
if (flags & CROSSING) {
event.xcrossing.mode = number;
} else if (flags & FOCUS) {
event.xfocus.mode = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-override") == 0) {
if (Tcl_GetBoolean(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & CREATE) {
event.xcreatewindow.override_redirect = number;
} else if (flags & MAP) {
event.xmap.override_redirect = number;
} else if (flags & REPARENT) {
event.xreparent.override_redirect = number;
} else if (flags & CONFIG) {
event.xconfigure.override_redirect = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-place") == 0) {
number = TkFindStateNum(interp, field, circPlace, value);
if (number < 0) {
return TCL_ERROR;
}
if (flags & CIRC) {
event.xcirculate.place = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-root") == 0) {
if (value[0] == '.') {
tkwin2 = Tk_NameToWindow(interp, value, main);
if (tkwin2 == NULL) {
return TCL_ERROR;
}
number = Tk_WindowId(tkwin2);
} else if (TkpScanWindowId(interp, value, &number)
!= TCL_OK) {
return TCL_ERROR;
}
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.root = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-rootx") == 0) {
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.x_root = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-rooty") == 0) {
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.y_root = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-sendevent") == 0) {
if (isdigit(UCHAR(value[0]))) {
/*
* Allow arbitrary integer values for the field; they
* are needed by a few of the tests in the Tk test suite.
*/
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
} else {
if (Tcl_GetBoolean(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
}
event.xany.send_event = number;
} else if (strcmp(field, "-serial") == 0) {
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
event.xany.serial = number;
} else if (strcmp(field, "-state") == 0) {
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & (KEY_BUTTON_MOTION_VIRTUAL)) {
event.xkey.state = number;
} else {
event.xcrossing.state = number;
}
} else if (flags & VISIBILITY) {
number = TkFindStateNum(interp, field, visNotify, value);
if (number < 0) {
return TCL_ERROR;
}
event.xvisibility.state = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-subwindow") == 0) {
if (value[0] == '.') {
tkwin2 = Tk_NameToWindow(interp, value, main);
if (tkwin2 == NULL) {
return TCL_ERROR;
}
number = Tk_WindowId(tkwin2);
} else if (TkpScanWindowId(interp, value, &number)
!= TCL_OK) {
return TCL_ERROR;
}
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.subwindow = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-time") == 0) {
if (Tcl_GetInt(interp, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.time = (Time) number;
} else if (flags & PROP) {
event.xproperty.time = (Time) number;
} else {
goto badopt;
}
} else if (strcmp(field, "-width") == 0) {
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
if (flags & EXPOSE) {
event.xexpose.width = number;
} else if (flags & (CREATE|CONFIG)) {
event.xcreatewindow.width = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-window") == 0) {
if (value[0] == '.') {
tkwin2 = Tk_NameToWindow(interp, value, main);
if (tkwin2 == NULL) {
return TCL_ERROR;
}
number = Tk_WindowId(tkwin2);
} else if (TkpScanWindowId(interp, value, &number)
!= TCL_OK) {
return TCL_ERROR;
}
if (flags & (CREATE|DESTROY|UNMAP|MAP|REPARENT|CONFIG
|GRAVITY|CIRC)) {
event.xcreatewindow.window = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-x") == 0) {
int rootX, rootY;
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
Tk_GetRootCoords(tkwin, &rootX, &rootY);
rootX += number;
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.x = number;
event.xkey.x_root = rootX;
} else if (flags & EXPOSE) {
event.xexpose.x = number;
} else if (flags & (CREATE|CONFIG|GRAVITY)) {
event.xcreatewindow.x = number;
} else if (flags & REPARENT) {
event.xreparent.x = number;
} else {
goto badopt;
}
} else if (strcmp(field, "-y") == 0) {
int rootX, rootY;
if (Tk_GetPixels(interp, tkwin, value, &number) != TCL_OK) {
return TCL_ERROR;
}
Tk_GetRootCoords(tkwin, &rootX, &rootY);
rootY += number;
if (flags & (KEY_BUTTON_MOTION_VIRTUAL|CROSSING)) {
event.xkey.y = number;
event.xkey.y_root = rootY;
} else if (flags & EXPOSE) {
event.xexpose.y = number;
} else if (flags & (CREATE|CONFIG|GRAVITY)) {
event.xcreatewindow.y = number;
} else if (flags & REPARENT) {
event.xreparent.y = number;
} else {
goto badopt;
}
} else {
badopt:
Tcl_AppendResult(interp, "bad option to ", argv[1],
" event: \"", field, "\"", (char *) NULL);
return TCL_ERROR;
}
}
if (synch != 0) {
Tk_HandleEvent(&event);
} else {
Tk_QueueWindowEvent(&event, pos);
}
Tcl_ResetResult(interp);
return TCL_OK;
}
/*
*-------------------------------------------------------------------------
*
* GetVirtualEventUid --
*
* Determine if the given string is in the proper format for a
* virtual event.
*
* Results:
* The return value is NULL if the virtual event string was
* not in the proper format. In this case, an error message
* will be left in interp->result. Otherwise the return
* value is a Tk_Uid that represents the virtual event.
*
* Side effects:
* None.
*
*-------------------------------------------------------------------------
*/
static Tk_Uid
GetVirtualEventUid(interp, virtString)
Tcl_Interp *interp;
char *virtString;
{
Tk_Uid uid;
int length;
length = strlen(virtString);
if (length < 5 || virtString[0] != '<' || virtString[1] != '<' ||
virtString[length - 2] != '>' || virtString[length - 1] != '>') {
Tcl_AppendResult(interp, "virtual event \"", virtString,
"\" is badly formed", (char *) NULL);
return NULL;
}
virtString[length - 2] = '\0';
uid = Tk_GetUid(virtString + 2);
virtString[length - 2] = '>';
return uid;
}
/*
*----------------------------------------------------------------------
*
* FindSequence --
*
* Find the entry in the pattern table that corresponds to a
* particular pattern string, and return a pointer to that
* entry.
*
* Results:
* The return value is normally a pointer to the PatSeq
* in patternTable that corresponds to eventString. If an error
* was found while parsing eventString, or if "create" is 0 and
* no pattern sequence previously existed, then NULL is returned
* and interp->result contains a message describing the problem.
* If no pattern sequence previously existed for eventString, then
* a new one is created with a NULL command field. In a successful
* return, *maskPtr is filled in with a mask of the event types
* on which the pattern sequence depends.
*
* Side effects:
* A new pattern sequence may be allocated.
*
*----------------------------------------------------------------------
*/
static PatSeq *
FindSequence(interp, patternTablePtr, object, eventString, create,
allowVirtual, maskPtr)
Tcl_Interp *interp; /* Interpreter to use for error
* reporting. */
Tcl_HashTable *patternTablePtr; /* Table to use for lookup. */
ClientData object; /* For binding table, token for object with
* which binding is associated.
* For virtual event table, NULL. */
char *eventString; /* String description of pattern to
* match on. See user documentation
* for details. */
int create; /* 0 means don't create the entry if
* it doesn't already exist. Non-zero
* means create. */
int allowVirtual; /* 0 means that virtual events are not
* allowed in the sequence. Non-zero
* otherwise. */
unsigned long *maskPtr; /* *maskPtr is filled in with the event
* types on which this pattern sequence
* depends. */
{
Pattern pats[EVENT_BUFFER_SIZE];
int numPats, virtualFound;
char *p;
Pattern *patPtr;
PatSeq *psPtr;
Tcl_HashEntry *hPtr;
int flags, count, new;
size_t sequenceSize;
unsigned long eventMask;
PatternTableKey key;
/*
*-------------------------------------------------------------
* Step 1: parse the pattern string to produce an array
* of Patterns. The array is generated backwards, so
* that the lowest-indexed pattern corresponds to the last
* event that must occur.
*-------------------------------------------------------------
*/
p = eventString;
flags = 0;
eventMask = 0;
virtualFound = 0;
patPtr = &pats[EVENT_BUFFER_SIZE-1];
for (numPats = 0; numPats < EVENT_BUFFER_SIZE; numPats++, patPtr--) {
while (isspace(UCHAR(*p))) {
p++;
}
if (*p == '\0') {
break;
}
count = ParseEventDescription(interp, &p, patPtr, &eventMask);
if (count == 0) {
return NULL;
}
if (eventMask & VirtualEventMask) {
if (allowVirtual == 0) {
interp->result =
"virtual event not allowed in definition of another virtual event";
return NULL;
}
virtualFound = 1;
}
/*
* Replicate events for DOUBLE and TRIPLE.
*/
if ((count > 1) && (numPats < EVENT_BUFFER_SIZE-1)) {
flags |= PAT_NEARBY;
patPtr[-1] = patPtr[0];
patPtr--;
numPats++;
if ((count == 3) && (numPats < EVENT_BUFFER_SIZE-1)) {
patPtr[-1] = patPtr[0];
patPtr--;
numPats++;
}
}
}
/*
*-------------------------------------------------------------
* Step 2: find the sequence in the binding table if it exists,
* and add a new sequence to the table if it doesn't.
*-------------------------------------------------------------
*/
if (numPats == 0) {
interp->result = "no events specified in binding";
return NULL;
}
if ((numPats > 1) && (virtualFound != 0)) {
interp->result = "virtual events may not be composed";
return NULL;
}
patPtr = &pats[EVENT_BUFFER_SIZE-numPats];
memset(&key, 0, sizeof(key));
key.object = object;
key.type = patPtr->eventType;
key.detail = patPtr->detail;
hPtr = Tcl_CreateHashEntry(patternTablePtr, (char *) &key, &new);
sequenceSize = numPats*sizeof(Pattern);
if (!new) {
for (psPtr = (PatSeq *) Tcl_GetHashValue(hPtr); psPtr != NULL;
psPtr = psPtr->nextSeqPtr) {
if ((numPats == psPtr->numPats)
&& ((flags & PAT_NEARBY) == (psPtr->flags & PAT_NEARBY))
&& (memcmp((char *) patPtr, (char *) psPtr->pats,
sequenceSize) == 0)) {
goto done;
}
}
}
if (!create) {
if (new) {
Tcl_DeleteHashEntry(hPtr);
}
return NULL;
}
psPtr = (PatSeq *) ckalloc((unsigned) (sizeof(PatSeq)
+ (numPats-1)*sizeof(Pattern)));
psPtr->numPats = numPats;
psPtr->eventProc = NULL;
psPtr->freeProc = NULL;
psPtr->clientData = NULL;
psPtr->flags = flags;
psPtr->refCount = 0;
psPtr->nextSeqPtr = (PatSeq *) Tcl_GetHashValue(hPtr);
psPtr->hPtr = hPtr;
psPtr->voPtr = NULL;
psPtr->nextObjPtr = NULL;
Tcl_SetHashValue(hPtr, psPtr);
memcpy((VOID *) psPtr->pats, (VOID *) patPtr, sequenceSize);
done:
*maskPtr = eventMask;
return psPtr;
}
/*
*---------------------------------------------------------------------------
*
* ParseEventDescription --
*
* Fill Pattern buffer with information about event from
* event string.
*
* Results:
* Leaves error message in interp and returns 0 if there was an
* error due to a badly formed event string. Returns 1 if proper
* event was specified, 2 if Double modifier was used in event
* string, or 3 if Triple was used.
*
* Side effects:
* On exit, eventStringPtr points to rest of event string (after the
* closing '>', so that this procedure can be called repeatedly to
* parse all the events in the entire sequence.
*
*---------------------------------------------------------------------------
*/
static int
ParseEventDescription(interp, eventStringPtr, patPtr,
eventMaskPtr)
Tcl_Interp *interp; /* For error messages. */
char **eventStringPtr; /* On input, holds a pointer to start of
* event string. On exit, gets pointer to
* rest of string after parsed event. */
Pattern *patPtr; /* Filled with the pattern parsed from the
* event string. */
unsigned long *eventMaskPtr;/* Filled with event mask of matched event. */
{
char *p;
unsigned long eventMask;
int count, eventFlags;
#define FIELD_SIZE 48
char field[FIELD_SIZE];
Tcl_HashEntry *hPtr;
p = *eventStringPtr;
patPtr->eventType = -1;
patPtr->needMods = 0;
patPtr->detail.clientData = 0;
eventMask = 0;
count = 1;
/*
* Handle simple ASCII characters.
*/
if (*p != '<') {
char string[2];
patPtr->eventType = KeyPress;
eventMask = KeyPressMask;
string[0] = *p;
string[1] = 0;
patPtr->detail.keySym = TkStringToKeysym(string);
if (patPtr->detail.keySym == NoSymbol) {
if (isprint(UCHAR(*p))) {
patPtr->detail.keySym = *p;
} else {
sprintf(interp->result,
"bad ASCII character 0x%x", (unsigned char) *p);
return 0;
}
}
p++;
goto end;
}
/*
* A fancier event description. This can be either a virtual event
* or a physical event.
*
* A virtual event description consists of:
*
* 1. double open angle brackets.
* 2. virtual event name.
* 3. double close angle brackets.
*
* A physical event description consists of:
*
* 1. open angle bracket.
* 2. any number of modifiers, each followed by spaces
* or dashes.
* 3. an optional event name.
* 4. an option button or keysym name. Either this or
* item 3 *must* be present; if both are present
* then they are separated by spaces or dashes.
* 5. a close angle bracket.
*/
p++;
if (*p == '<') {
/*
* This is a virtual event: soak up all the characters up to
* the next '>'.
*/
char *field = p + 1;
p = strchr(field, '>');
if (p == field) {
interp->result = "virtual event \"<<>>\" is badly formed";
return 0;
}
if ((p == NULL) || (p[1] != '>')) {
interp->result = "missing \">\" in virtual binding";
return 0;
}
*p = '\0';
patPtr->eventType = VirtualEvent;
eventMask = VirtualEventMask;
patPtr->detail.name = Tk_GetUid(field);
*p = '>';
p += 2;
goto end;
}
while (1) {
ModInfo *modPtr;
p = GetField(p, field, FIELD_SIZE);
if (*p == '>') {
/*
* This solves the problem of, e.g., <Control-M> being
* misinterpreted as Control + Meta + missing keysym
* instead of Control + KeyPress + M.
*/
break;
}
hPtr = Tcl_FindHashEntry(&modTable, field);
if (hPtr == NULL) {
break;
}
modPtr = (ModInfo *) Tcl_GetHashValue(hPtr);
patPtr->needMods |= modPtr->mask;
if (modPtr->flags & (DOUBLE|TRIPLE)) {
if (modPtr->flags & DOUBLE) {
count = 2;
} else {
count = 3;
}
}
while ((*p == '-') || isspace(UCHAR(*p))) {
p++;
}
}
eventFlags = 0;
hPtr = Tcl_FindHashEntry(&eventTable, field);
if (hPtr != NULL) {
EventInfo *eiPtr;
eiPtr = (EventInfo *) Tcl_GetHashValue(hPtr);
patPtr->eventType = eiPtr->type;
eventFlags = flagArray[eiPtr->type];
eventMask = eiPtr->eventMask;
while ((*p == '-') || isspace(UCHAR(*p))) {
p++;
}
p = GetField(p, field, FIELD_SIZE);
}
if (*field != '\0') {
if ((*field >= '1') && (*field <= '5') && (field[1] == '\0')) {
if (eventFlags == 0) {
patPtr->eventType = ButtonPress;
eventMask = ButtonPressMask;
} else if (eventFlags & KEY) {
goto getKeysym;
} else if ((eventFlags & BUTTON) == 0) {
Tcl_AppendResult(interp, "specified button \"", field,
"\" for non-button event", (char *) NULL);
return 0;
}
patPtr->detail.button = (*field - '0');
} else {
getKeysym:
patPtr->detail.keySym = TkStringToKeysym(field);
if (patPtr->detail.keySym == NoSymbol) {
Tcl_AppendResult(interp, "bad event type or keysym \"",
field, "\"", (char *) NULL);
return 0;
}
if (eventFlags == 0) {
patPtr->eventType = KeyPress;
eventMask = KeyPressMask;
} else if ((eventFlags & KEY) == 0) {
Tcl_AppendResult(interp, "specified keysym \"", field,
"\" for non-key event", (char *) NULL);
return 0;
}
}
} else if (eventFlags == 0) {
interp->result = "no event type or button # or keysym";
return 0;
}
while ((*p == '-') || isspace(UCHAR(*p))) {
p++;
}
if (*p != '>') {
while (*p != '\0') {
p++;
if (*p == '>') {
interp->result = "extra characters after detail in binding";
return 0;
}
}
interp->result = "missing \">\" in binding";
return 0;
}
p++;
end:
*eventStringPtr = p;
*eventMaskPtr |= eventMask;
return count;
}
/*
*----------------------------------------------------------------------
*
* GetField --
*
* Used to parse pattern descriptions. Copies up to
* size characters from p to copy, stopping at end of
* string, space, "-", ">", or whenever size is
* exceeded.
*
* Results:
* The return value is a pointer to the character just
* after the last one copied (usually "-" or space or
* ">", but could be anything if size was exceeded).
* Also places NULL-terminated string (up to size
* character, including NULL), at copy.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
static char *
GetField(p, copy, size)
char *p; /* Pointer to part of pattern. */
char *copy; /* Place to copy field. */
int size; /* Maximum number of characters to
* copy. */
{
while ((*p != '\0') && !isspace(UCHAR(*p)) && (*p != '>')
&& (*p != '-') && (size > 1)) {
*copy = *p;
p++;
copy++;
size--;
}
*copy = '\0';
return p;
}
/*
*---------------------------------------------------------------------------
*
* GetPatternString --
*
* Produce a string version of the given event, for displaying to
* the user.
*
* Results:
* The string is left in dsPtr.
*
* Side effects:
* It is the caller's responsibility to initialize the DString before
* and to free it after calling this procedure.
*
*---------------------------------------------------------------------------
*/
static void
GetPatternString(psPtr, dsPtr)
PatSeq *psPtr;
Tcl_DString *dsPtr;
{
Pattern *patPtr;
char c, buffer[10];
int patsLeft, needMods;
ModInfo *modPtr;
EventInfo *eiPtr;
/*
* The order of the patterns in the sequence is backwards from the order
* in which they must be output.
*/
for (patsLeft = psPtr->numPats, patPtr = &psPtr->pats[psPtr->numPats - 1];
patsLeft > 0; patsLeft--, patPtr--) {
/*
* Check for simple case of an ASCII character.
*/
if ((patPtr->eventType == KeyPress)
&& ((psPtr->flags & PAT_NEARBY) == 0)
&& (patPtr->needMods == 0)
&& (patPtr->detail.keySym < 128)
&& isprint(UCHAR(patPtr->detail.keySym))
&& (patPtr->detail.keySym != '<')
&& (patPtr->detail.keySym != ' ')) {
c = (char) patPtr->detail.keySym;
Tcl_DStringAppend(dsPtr, &c, 1);
continue;
}
/*
* Check for virtual event.
*/
if (patPtr->eventType == VirtualEvent) {
#ifdef STk_CODE
Tcl_DStringAppend(dsPtr, "\"<<", 3);
#else
Tcl_DStringAppend(dsPtr, "<<", 2);
#endif
Tcl_DStringAppend(dsPtr, patPtr->detail.name, -1);
#ifdef STk_CODE
Tcl_DStringAppend(dsPtr, ">>\"", 3);
#else
Tcl_DStringAppend(dsPtr, ">>", 2);
#endif
continue;
}
/*
* It's a more general event specification. First check
* for "Double" or "Triple", then modifiers, then event type,
* then keysym or button detail.
*/
#ifdef STk_CODE
Tcl_DStringAppend(dsPtr, "\"<", 2);
#else
Tcl_DStringAppend(dsPtr, "<", 1);
#endif
if ((psPtr->flags & PAT_NEARBY) && (patsLeft > 1)
&& (memcmp((char *) patPtr, (char *) (patPtr-1),
sizeof(Pattern)) == 0)) {
patsLeft--;
patPtr--;
if ((patsLeft > 1) && (memcmp((char *) patPtr,
(char *) (patPtr-1), sizeof(Pattern)) == 0)) {
patsLeft--;
patPtr--;
Tcl_DStringAppend(dsPtr, "Triple-", 7);
} else {
Tcl_DStringAppend(dsPtr, "Double-", 7);
}
}
for (needMods = patPtr->needMods, modPtr = modArray;
needMods != 0; modPtr++) {
if (modPtr->mask & needMods) {
needMods &= ~modPtr->mask;
Tcl_DStringAppend(dsPtr, modPtr->name, -1);
Tcl_DStringAppend(dsPtr, "-", 1);
}
}
for (eiPtr = eventArray; eiPtr->name != NULL; eiPtr++) {
if (eiPtr->type == patPtr->eventType) {
Tcl_DStringAppend(dsPtr, eiPtr->name, -1);
if (patPtr->detail.clientData != 0) {
Tcl_DStringAppend(dsPtr, "-", 1);
}
break;
}
}
if (patPtr->detail.clientData != 0) {
if ((patPtr->eventType == KeyPress)
|| (patPtr->eventType == KeyRelease)) {
char *string;
string = TkKeysymToString(patPtr->detail.keySym);
if (string != NULL) {
Tcl_DStringAppend(dsPtr, string, -1);
}
} else {
sprintf(buffer, "%d", patPtr->detail.button);
Tcl_DStringAppend(dsPtr, buffer, -1);
}
}
#ifdef STk_CODE
Tcl_DStringAppend(dsPtr, ">\"", 2);
#else
Tcl_DStringAppend(dsPtr, ">", 1);
#endif
}
}
/*
*----------------------------------------------------------------------
*
* GetKeySym --
*
* Given an X KeyPress or KeyRelease event, map the
* keycode in the event into a KeySym.
*
* Results:
* The return value is the KeySym corresponding to
* eventPtr, or NoSymbol if no matching Keysym could be
* found.
*
* Side effects:
* In the first call for a given display, keycode-to-
* KeySym maps get loaded.
*
*----------------------------------------------------------------------
*/
static KeySym
GetKeySym(dispPtr, eventPtr)
TkDisplay *dispPtr; /* Display in which to
* map keycode. */
XEvent *eventPtr; /* Description of X event. */
{
KeySym sym;
int index;
/*
* Refresh the mapping information if it's stale
*/
if (dispPtr->bindInfoStale) {
InitKeymapInfo(dispPtr);
}
/*
* Figure out which of the four slots in the keymap vector to
* use for this key. Refer to Xlib documentation for more info
* on how this computation works.
*/
index = 0;
if (eventPtr->xkey.state & dispPtr->modeModMask) {
index = 2;
}
if ((eventPtr->xkey.state & ShiftMask)
|| ((dispPtr->lockUsage != LU_IGNORE)
&& (eventPtr->xkey.state & LockMask))) {
index += 1;
}
sym = XKeycodeToKeysym(dispPtr->display, eventPtr->xkey.keycode, index);
/*
* Special handling: if the key was shifted because of Lock, but
* lock is only caps lock, not shift lock, and the shifted keysym
* isn't upper-case alphabetic, then switch back to the unshifted
* keysym.
*/
if ((index & 1) && !(eventPtr->xkey.state & ShiftMask)
&& (dispPtr->lockUsage == LU_CAPS)) {
if (!(((sym >= XK_A) && (sym <= XK_Z))
|| ((sym >= XK_Agrave) && (sym <= XK_Odiaeresis))
|| ((sym >= XK_Ooblique) && (sym <= XK_Thorn)))) {
index &= ~1;
sym = XKeycodeToKeysym(dispPtr->display, eventPtr->xkey.keycode,
index);
}
}
/*
* Another bit of special handling: if this is a shifted key and there
* is no keysym defined, then use the keysym for the unshifted key.
*/
if ((index & 1) && (sym == NoSymbol)) {
sym = XKeycodeToKeysym(dispPtr->display, eventPtr->xkey.keycode,
index & ~1);
}
return sym;
}
/*
*--------------------------------------------------------------
*
* InitKeymapInfo --
*
* This procedure is invoked to scan keymap information
* to recompute stuff that's important for binding, such
* as the modifier key (if any) that corresponds to "mode
* switch".
*
* Results:
* None.
*
* Side effects:
* Keymap-related information in dispPtr is updated.
*
*--------------------------------------------------------------
*/
static void
InitKeymapInfo(dispPtr)
TkDisplay *dispPtr; /* Display for which to recompute keymap
* information. */
{
XModifierKeymap *modMapPtr;
KeyCode *codePtr;
KeySym keysym;
int count, i, j, max, arraySize;
#define KEYCODE_ARRAY_SIZE 20
dispPtr->bindInfoStale = 0;
modMapPtr = XGetModifierMapping(dispPtr->display);
/*
* Check the keycodes associated with the Lock modifier. If
* any of them is associated with the XK_Shift_Lock modifier,
* then Lock has to be interpreted as Shift Lock, not Caps Lock.
*/
dispPtr->lockUsage = LU_IGNORE;
codePtr = modMapPtr->modifiermap + modMapPtr->max_keypermod*LockMapIndex;
for (count = modMapPtr->max_keypermod; count > 0; count--, codePtr++) {
if (*codePtr == 0) {
continue;
}
keysym = XKeycodeToKeysym(dispPtr->display, *codePtr, 0);
if (keysym == XK_Shift_Lock) {
dispPtr->lockUsage = LU_SHIFT;
break;
}
if (keysym == XK_Caps_Lock) {
dispPtr->lockUsage = LU_CAPS;
break;
}
}
/*
* Look through the keycodes associated with modifiers to see if
* the the "mode switch", "meta", or "alt" keysyms are associated
* with any modifiers. If so, remember their modifier mask bits.
*/
dispPtr->modeModMask = 0;
dispPtr->metaModMask = 0;
dispPtr->altModMask = 0;
codePtr = modMapPtr->modifiermap;
max = 8*modMapPtr->max_keypermod;
for (i = 0; i < max; i++, codePtr++) {
if (*codePtr == 0) {
continue;
}
keysym = XKeycodeToKeysym(dispPtr->display, *codePtr, 0);
if (keysym == XK_Mode_switch) {
dispPtr->modeModMask |= ShiftMask << (i/modMapPtr->max_keypermod);
}
if ((keysym == XK_Meta_L) || (keysym == XK_Meta_R)) {
dispPtr->metaModMask |= ShiftMask << (i/modMapPtr->max_keypermod);
}
if ((keysym == XK_Alt_L) || (keysym == XK_Alt_R)) {
dispPtr->altModMask |= ShiftMask << (i/modMapPtr->max_keypermod);
}
}
/*
* Create an array of the keycodes for all modifier keys.
*/
if (dispPtr->modKeyCodes != NULL) {
ckfree((char *) dispPtr->modKeyCodes);
}
dispPtr->numModKeyCodes = 0;
arraySize = KEYCODE_ARRAY_SIZE;
dispPtr->modKeyCodes = (KeyCode *) ckalloc((unsigned)
(KEYCODE_ARRAY_SIZE * sizeof(KeyCode)));
for (i = 0, codePtr = modMapPtr->modifiermap; i < max; i++, codePtr++) {
if (*codePtr == 0) {
continue;
}
/*
* Make sure that the keycode isn't already in the array.
*/
for (j = 0; j < dispPtr->numModKeyCodes; j++) {
if (dispPtr->modKeyCodes[j] == *codePtr) {
goto nextModCode;
}
}
if (dispPtr->numModKeyCodes >= arraySize) {
KeyCode *new;
/*
* Ran out of space in the array; grow it.
*/
arraySize *= 2;
new = (KeyCode *) ckalloc((unsigned)
(arraySize * sizeof(KeyCode)));
memcpy((VOID *) new, (VOID *) dispPtr->modKeyCodes,
(dispPtr->numModKeyCodes * sizeof(KeyCode)));
ckfree((char *) dispPtr->modKeyCodes);
dispPtr->modKeyCodes = new;
}
dispPtr->modKeyCodes[dispPtr->numModKeyCodes] = *codePtr;
dispPtr->numModKeyCodes++;
nextModCode: continue;
}
XFreeModifiermap(modMapPtr);
}
/*
*---------------------------------------------------------------------------
*
* EvalTclBinding --
*
* The procedure that is invoked by Tk_BindEvent when a Tcl binding
* is fired.
*
* Results:
* A standard Tcl result code, the result of globally evaluating the
* percent-substitued binding string.
*
* Side effects:
* Normal side effects due to eval.
*
*---------------------------------------------------------------------------
*/
static void
FreeTclBinding(clientData)
ClientData clientData;
{
ckfree((char *) clientData);
}
/*
*----------------------------------------------------------------------
*
* TkStringToKeysym --
*
* This procedure finds the keysym associated with a given keysym
* name.
*
* Results:
* The return value is the keysym that corresponds to name, or
* NoSymbol if there is no such keysym.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
KeySym
TkStringToKeysym(name)
char *name; /* Name of a keysym. */
{
#ifdef REDO_KEYSYM_LOOKUP
Tcl_HashEntry *hPtr;
KeySym keysym;
hPtr = Tcl_FindHashEntry(&keySymTable, name);
if (hPtr != NULL) {
return (KeySym) Tcl_GetHashValue(hPtr);
}
if (strlen(name) == 1) {
keysym = (KeySym) (unsigned char) name[0];
if (TkKeysymToString(keysym) != NULL) {
return keysym;
}
}
#endif /* REDO_KEYSYM_LOOKUP */
return XStringToKeysym(name);
}
/*
*----------------------------------------------------------------------
*
* TkKeysymToString --
*
* This procedure finds the keysym name associated with a given
* keysym.
*
* Results:
* The return value is a pointer to a static string containing
* the name of the given keysym, or NULL if there is no known name.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
char *
TkKeysymToString(keysym)
KeySym keysym;
{
#ifdef REDO_KEYSYM_LOOKUP
Tcl_HashEntry *hPtr;
hPtr = Tcl_FindHashEntry(&nameTable, (char *)keysym);
if (hPtr != NULL) {
return (char *) Tcl_GetHashValue(hPtr);
}
#endif /* REDO_KEYSYM_LOOKUP */
return XKeysymToString(keysym);
}
/*
*----------------------------------------------------------------------
*
* TkCopyAndGlobalEval --
*
* This procedure makes a copy of a script then calls Tcl_GlobalEval
* to evaluate it. It's used in situations where the execution of
* a command may cause the original command string to be reallocated.
*
* Results:
* Returns the result of evaluating script, including both a standard
* Tcl completion code and a string in interp->result.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TkCopyAndGlobalEval(interp, script)
Tcl_Interp *interp; /* Interpreter in which to evaluate
* script. */
char *script; /* Script to evaluate. */
{
Tcl_DString buffer;
int code;
Tcl_DStringInit(&buffer);
Tcl_DStringAppend(&buffer, script, -1);
code = Tcl_GlobalEval(interp, Tcl_DStringValue(&buffer));
Tcl_DStringFree(&buffer);
return code;
}