
The Revised R6RS Status Report

Marc Feeley
Université de Montréal

feeley@iro.umontreal.ca

Editors’ note: This article is the revised version of the
progress report submitted by the Scheme Language Edi-
tors Committee to the Scheme Language Steering Com-
mittee on September 2, 2004. It takes into account the
Editors Committee meetings in Snowbird prior to the
Scheme workshop. We have included the revised ver-
sion in the workshop proceedings to represent the con-
cluding presentation of the workshop on the state of the
standardisation effort by the editors committee.

The members of the Scheme Language Editors Commit-
tee are:

Marc Feeley, editor in chief (Université de Montŕeal)
Will Clinger (Northeastern University)
Kent Dybvig (Indiana University)
Matthew Flatt (University of Utah)
Richard Kelsey (Ember Corporation)
Manuel Serrano (INRIA)
Michael Sperber (DeinProgramm)

The members of the Scheme Language Steering Com-
mittee are:

Alan Bawden (Brandeis University)
Guy L. Steele Jr. (Sun Microsystems)
Mitch Wand (Northeastern University)

–Waddell & Shivers

1 Creation of the Committees

At the 2003 Scheme workshop in November, the strategy com-
mittee (Alan Bawden, Will Clinger, Kent Dybvig, Matthew Flatt,
Richard Kelsey, Manuel Serrano, Mike Sperber) was given a man-
date to nominate a steering committee and an editors committee to
work on the R6RS standard. In January 2004, the editors commit-
tee was nominated: Feeley (editor in chief), Clinger, Dybvig, Flatt,
Kelsey, Serrano, and Sperber.

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Marc Feeley.

2 Work Prior to the Snowbird Meetings

On January 19, a private mailing list was created to keep a record
of the email exchanges between the editors. Although some editors
suggested that a more open process would be desirable, we chose to
keep this mailing list private to avoid outside interference and keep
the process disciplined and focused. Sometime in the future the
archive of the discussions will be made public so that the reasons
for the design decisions are clear.

Because of the expected difficulty in managing productive discus-
sions for a seven-member committee by email, we adopted some
ground rules for ensuring progress. If an editor does not participate
in an email discussion within a reasonable time limit (which was
set to seven days), then the other editors may assume that editor
does not have an opinion on the subject (or does not want to voice
his opinion), and can be ignored (in the discussion, in a vote,etc.).
I think this has been helpful to create a certain pressure to keep
up-to-date in the discussion.

The subject of backward compatibility was also discussed early on.
That is, will R5RS code work unchanged in an R6RS-compliant
Scheme implementation? Our position is that backward compati-
bility is desirable but that there may be some incompatibilities (for
example at the lexical syntax level) that prevent R5RS code from
working under R6RS. Our first objective is to improve the Scheme
language. Backward compatibility, while important, is a secondary
objective.

We then set off on our first technical task: come up with a list of
goals that is more precise than the one in the draft charter (which
had four items: produce a core Scheme specification, define a mod-
ule system, define a macro system, and designate library modules).
Our plan was to use this list of goals (1) to organize the design pro-
cess, and (2) to identify which changes were uncontroversial (and
thus easier to standardize) and which would require considerable ef-
fort (and where consensus might not be achievable during the R6RS
design process). The committees main goals for R6RS are to im-
prove portability and consistency between implementations, so that
a broad class of programs can be written using one implementation
of Scheme and used without modification in another implementa-
tion of Scheme.

All the editors were polled to get a list of specific issues that they
thought needed to be addressed in the R6RS design process (i.e.,
features the committee should consider adding/removing). At the
end of March, we had merged all the editors’ lists into a single
list with each editor’s position. At this point, there had been very
little technical discussion of these issues (on purpose), so that we

could order the issues and discuss them in a disciplined way. As
suggested by Will Clinger, the list was organized into the following
categories:

• Deletions of R5RS-Scheme features;

• Incompatible changes to R5RS Scheme;

• Extensions that could be entirely compatible with R5RS
Scheme

– but would break some implementation-specific exten-
sions;

– but would be controversial and aren’t worth it;

– that are controversial or difficult but necessary;

– that are probably uncontroversial.

Below is the current list of issues, without each editor’s position.
Note that this list is still open to be expanded as new issues arise in
the design process.

Deletions from R5RS

• removetranscript-on andtranscript-off

• removeforce anddelay

• remove multiple values

Incompatible changes to R5RS

• make syntax case-sensitive

Extensions that would break implementation-specific features

• specify evaluation order

• support for processes

• support for network programming

• object-oriented programming

• external representation for records

• serialization

Extensions to R5RS (controversial and probably unnecessary)

• pattern matching / destructuring

• abstract data type for continuations

• composable continuations

• box types

• uninterned symbols

• extended symbol syntax

• addletrec*, define internaldefine in terms of it

• optional and keyword arguments as in DSSSL

Extensions to R5RS (controversial or difficult but necessary)

• module system

• non-hygienic macros

• records

• mechanism for new primitive types

• Unicode support

• errors and exceptions

• require a mode where “it is an error” means “an error is sig-
naled”

Extensions to R5RS (probably not terribly controversial)

• multiline comments

• external representation for circular structures

• #!eof

• more escape characters

• require that#f, #t, and characters be followed by a delimiter

• case-lambda

• cond-expand

• allow the name of the macro being defined insyntax-rules
to be arbitrary (or_)

• allow continuations created bybegin to accept any number
of values

• tighten up specification ofeq? andeqv? (or otherwise address
their portability problems)

• tighten up specification of inexact arithmetic

• add+0., -0., +inf.0, -inf.0, +nan.0

• bitwise operations on exact integers

• SRFI 4 homogeneous numeric vectors

• specify dynamic environment

• operations on files

• binary I/O or new I/O subsystem entirely

• string code

• regular expressions

• command-line parsing

• hash tables

• library for dates

• system operations

Editorial changes

• split language into core and libraries

Additional extensions

• support for expression comments#;...

• make[] equivalent to()

• subset of Common Lispformat (in a library)

• removeset-car! andset-cdr!

• make quotation of empty list optional

• allow symbols to start with->

• addweak-cons

• add void object

Because of the central role of the module system and its probable
use in splitting the Scheme language into a core and libraries, we
decided that the most pressing issue was the design of the module

system. Our starting point was the “strawman module system” pro-
posed by Flatt, which is based on the MzScheme system. Various
aspects of the proposed system were discussed, mainly to under-
stand it better and to add constructive criticism. Because many as-
pects are interrelated, we did not achieve consensus on any specific
aspect (nor did we really try to achieve it given that this is early in
the design process).

Over May and June, the discussion on the module system was slow
and only two of the seven editors were active. At the end of June,
I suggested that the reason for this apathy might be a lack of prac-
tical experience with the proposed module system (the two editors
that were active both had experience with the MzScheme module
system). I proposed that we should work on building a portable im-
plementation of the module system so that the editors can all exper-
iment with it in our own Scheme implementations. This would get
the editors more involved in the details of the module system, allow
proposed changes to be made and evaluated on-the-fly by changing
the portable implementation, and the resulting public-domain code
would greatly increase acceptance of R6RS by other implementors.
It still remains to be seen if this portable implementation becomes
a reality, as it represents quite a bit of work.

Dybvig noted that there are few differences between the mod-
ule system proposed by Flatt and the one in Chez Scheme. This
prompted an effort by Dybvig and Flatt to design a new module
system that combines both systems. There has been a very active
discussion on this topic from that point.

3 The Snowbird Meetings

Because all the editors except for Kelsey were going to the 2004
Scheme workshop in Snowbird, we made arrangements to have a
whole-day meeting September 18, and we also met on two other
days before the Scheme workshop. These face-to-face meetings
were very useful and allowed efficient discussion on several is-
sues. Each editor present in Snowbird prepared a presentation and
notes on a major issue (portability, modules, records,syntax-case
macros, hashtables, exceptions) to allow the other editors to prepare
for the meeting.

In general, the committee’s design procedure consists in tackling
each issue separately: gathering proposal(s) for solutions (from ex-
isting implementations, SRFI’s, old RnRS proposals, new ideas,
etc), discussing and modifying the proposals, and then taking a pre-
liminary decision on the course of action which can be: dropping
the issue, adopting a specific solution, forming a subgroup of edi-
tors to work out details and come back with a revised or alternate
proposal for the whole committee, or mandating an editor or sub-
group of editors to write up a specification to be included in R6RS.
Even though the committee is always careful to think of possible in-
teractions between issues, the committee will be taking a final vote
on the various changes to ensure overall consistency of the R6RS.

An important concern we have is the tight schedule given in the
charter for writing the draft R6RS. This has forced the committee
to take the complexity of an issue into account when considering
the course of action. Time-consuming issues whose solution would
marginally contribute to our goals were quickly dropped to give
more time for other issues which are more likely to be solved within
the charter’s time frame. We believe that some of these issues are
best left to the next standardization effort (R7RS) and hope the user
community will have started proposing solutions, possibly in the
form of SRFIs, to be considered by the committee.

In Snowbird, several but not all of the topics on the committee’s list
of issues were discussed and some lead to a preliminary decision.
We give here the list of these issues with the preliminary decision
that was taken.

Editorial changes

• split language into core and libraries
The committee believes that it is important to keep the core
language small. The goal is thus to split the R6RS into a core
language that would more-or-less have the size and features
of R5RS, and a set of libraries. This need to modularize the
functionality of the R6RS is one of the motivations for a mod-
ule system. We have not worked out the details of how this
will be expressed in the R6RS.

Deletions from R5RS

• removetranscript-on andtranscript-off
These procedures will be removed.

• removeforce anddelay
These features will remain but may be moved out of the core.

• remove multiple values
Multiple values will remain in R6RS.

Incompatible changes to R5RS

• make syntax case-sensitive
Discussed but no decision taken.

Extensions that would break implementation-specific features

• support for processes
Issue left for R7RS.

• support for network programming
Issue left for R7RS.

• object-oriented programming
Issue left for R7RS.

• external representation for records
Discussed but no decision taken.

• serialization
Any Scheme datum should be serializable (in particular sym-
bols). No decision taken on other types of objects.

• specify evaluation order
Evaluation order will be unspecified for procedure calls and
let form.

Extensions to R5RS (controversial and probably unnecessary)

• addletrec*, define internaldefine in terms of it
Theletrec* form will be added and internal definitions will
be expressed in terms of it (leading to a left-to-right evaluation
order for internal definitions).

• abstract data type for continuations
Discussed but no decision taken.

• composable continuations
Discussed but no decision taken.

• box types
The box type will not be added to R6RS.

• uninterned symbols
Discussed but no decision taken.

• extended symbol syntax
Discussed but no decision taken.

• optional and keyword arguments as in DSSSL
Discussed but no decision taken.

Extensions to R5RS (controversial or difficult but necessary)

• module system
A module system will definitely be part of R6RS. We have dis-
cussed this topic extensively and are now converging on a spe-
cific proposal.

• non-hygienic macros
Discussed but no decision taken.

• records
Discussed but no decision taken.

• Unicode support
Discussed but no decision taken.

• errors and exceptions
Discussed but no decision taken.

• require a mode where “it is an error” means “an error is sig-
naled”
Discussed but no decision taken.

Extensions to R5RS (probably not terribly controversial)

• multiline comments
Multiline comments will be included in R6RS.

• external representation for circular structures
Discussed but no decision taken.

• #!eof
There will be a single end-of-file object and a constructor to
get the end-of-file object.

• more escape characters
Escape characters will be added, in particular\n.

• require that#f, #t, and characters be followed by a delimiter
Discussed but no decision taken.

• tighten up specification of inexact arithmetic
Discussed but no decision taken.

• add+0., -0., +inf.0, -inf.0, +nan.0
Discussed but no decision taken.

• hash tables
Will be added as a library.

Additional extensions

• support for expression comments#;...
Expression comments will be added to R6RS.

• make[] equivalent to()
Balanced square brackets will be equivalent to balanced
parentheses.

4 The Next 6 Months

The next 6 months will be critical to the R6RS design process. Dis-
cussion will have to continue on the remaining issues, and most
issues will have to be resolved. We will continue email discussions
and set up a “wiki” site to separate discussion on each issue and
allow collaborative development of specifications. We are planning

other face-to-face meetings to tackle some of the most difficult is-
sues. We also plan to start developing a portable implementation
of the module, macro and record system. This implementation will
help us understand these systems, and allow Scheme implementors
to more easily build R6RS conformant implementations.

