<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-html40/loose.dtd"> <html> <!-- Generated from TeX source by tex2page, v 4o4, (c) Dorai Sitaram, http://www.cs.rice.edu/~dorai/tex2page --> <head> <title> Revised^5 Report on the Algorithmic Language Scheme </title> <link rel="stylesheet" type="text/css" href="r5rs-Z-C.css" title=default> <meta name=robots content="noindex,follow"> </head> <body> <p><div class=navigation>[Go to <span><a href="r5rs.html">first</a>, <a href="r5rs-Z-H-12.html">previous</a></span><span>, <a href="r5rs-Z-H-14.html">next</a></span> page<span>; </span><span><a href="r5rs-Z-H-2.html#%_toc_start">contents</a></span><span><span>; </span><a href="r5rs-Z-H-15.html#%_index_start">index</a></span>]</div><p> <a name="%_chap_Temp_9"></a> <h1 class=chapter> <div class=chapterheading> </div><p> <a href="r5rs-Z-H-2.html#%_toc_%_chap_Temp_9">Example</a></h1><p> <p><p> <tt>Integrate-system</tt> integrates the system <p><div align=left><img src="r5rs-Z-G-63.gif" border="0"></div><p> of differential equations with the method of Runge-Kutta.<p> The parameter <tt>system-derivative</tt> is a function that takes a system state (a vector of values for the state variables <em>y</em><sub>1</sub>, <tt>...</tt>, <em>y</em><sub><em>n</em></sub>) and produces a system derivative (the values <em>y</em><sub>1</sub><sup>/</sup>, <tt>...</tt>, <em>y</em><sub><em>n</em></sub><sup>/</sup>). The parameter <tt>initial-state</tt> provides an initial system state, and <tt>h</tt> is an initial guess for the length of the integration step.<p> The value returned by <tt>integrate-system</tt> is an infinite stream of system states.<p> <tt><p>(define integrate-system<br> (lambda (system-derivative initial-state h)<br> (let ((next (runge-kutta-4 system-derivative h)))<br> (letrec ((states<br> (cons initial-state<br> (delay (map-streams next<br> states)))))<br> states))))<p></tt><p> <tt>Runge-Kutta-4</tt> takes a function, <tt>f</tt>, that produces a system derivative from a system state. <tt>Runge-Kutta-4</tt> produces a function that takes a system state and produces a new system state.<p> <tt><p>(define runge-kutta-4<br> (lambda (f h)<br> (let ((*h (scale-vector h))<br> (*2 (scale-vector 2))<br> (*1/2 (scale-vector (/ 1 2)))<br> (*1/6 (scale-vector (/ 1 6))))<br> (lambda (y)<br> ;; y is a system state<br> (let* ((k0 (*h (f y)))<br> (k1 (*h (f (add-vectors y (*1/2 k0)))))<br> (k2 (*h (f (add-vectors y (*1/2 k1)))))<br> (k3 (*h (f (add-vectors y k2)))))<br> (add-vectors y<br> (*1/6 (add-vectors k0<br> (*2 k1)<br> (*2 k2)<br> k3))))))))<br> <br> (define elementwise<br> (lambda (f)<br> (lambda vectors<br> (generate-vector<br> (vector-length (car vectors))<br> (lambda (i)<br> (apply f<br> (map (lambda (v) (vector-ref v i))<br> vectors)))))))<br> <br> (define generate-vector<br> (lambda (size proc)<br> (let ((ans (make-vector size)))<br> (letrec ((loop<br> (lambda (i)<br> (cond ((= i size) ans)<br> (else<br> (vector-set! ans i (proc i))<br> (loop (+ i 1)))))))<br> (loop 0)))))<br> <br> (define add-vectors (elementwise +))<br> <br> (define scale-vector<br> (lambda (s)<br> (elementwise (lambda (x) (* x s)))))<p></tt><p> <tt>Map-streams</tt> is analogous to <tt>map</tt>: it applies its first argument (a procedure) to all the elements of its second argument (a stream).<p> <tt><p>(define map-streams<br> (lambda (f s)<br> (cons (f (head s))<br> (delay (map-streams f (tail s))))))<p></tt><p> Infinite streams are implemented as pairs whose car holds the first element of the stream and whose cdr holds a promise to deliver the rest of the stream.<p> <tt><p>(define head car)<br> (define tail<br> (lambda (stream) (force (cdr stream))))<p></tt><p> <p><br><p><br><p>The following illustrates the use of <tt>integrate-system</tt> in integrating the system <p><div align=left><img src="r5rs-Z-G-64.gif" border="0"></div><p><p><div align=left><img src="r5rs-Z-G-65.gif" border="0"></div><p> which models a damped oscillator.<p> <tt><p>(define damped-oscillator<br> (lambda (R L C)<br> (lambda (state)<br> (let ((Vc (vector-ref state 0))<br> (Il (vector-ref state 1)))<br> (vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))<br> (/ Vc L))))))<br> <br> (define the-states<br> (integrate-system<br> (damped-oscillator 10000 1000 .001)<br> '#(1 0)<br> .01))<p></tt><p> <p> <p> <p><div class=navigation>[Go to <span><a href="r5rs.html">first</a>, <a href="r5rs-Z-H-12.html">previous</a></span><span>, <a href="r5rs-Z-H-14.html">next</a></span> page<span>; </span><span><a href="r5rs-Z-H-2.html#%_toc_start">contents</a></span><span><span>; </span><a href="r5rs-Z-H-15.html#%_index_start">index</a></span>]</div><p> </body> </html>