picrin/piclib/built-in.scm

642 lines
15 KiB
Scheme

;;; hygienic macros
(define (sc-macro-transformer f)
(lambda (expr use-env mac-env)
(make-syntactic-closure mac-env '() (f expr use-env))))
(define (rsc-macro-transformer f)
(lambda (expr use-env mac-env)
(make-syntactic-closure use-env '() (f expr mac-env))))
(define (er-macro-transformer f)
(lambda (expr use-env mac-env)
(define (rename identifier)
(make-syntactic-closure mac-env '() identifier))
(define (compare x y)
(identifier=? use-env x use-env y))
(make-syntactic-closure use-env '() (f expr rename compare))))
(define (walk f obj)
(if (pair? obj)
(cons (walk f (car obj))
(walk f (cdr obj)))
(f obj)))
(define (ir-macro-transformer f)
(lambda (expr use-env mac-env)
(define (inject identifier)
(make-syntactic-closure use-env '() identifier))
(define (compare x y)
(identifier=? mac-env x mac-env y))
(define renamed
(walk (lambda (x) (if (symbol? x) (inject x) x)) expr))
(make-syntactic-closure mac-env '() (f renamed inject compare))))
;;; Core syntaxes
(define (list . args)
args)
(define (caar p)
(car (car p)))
(define (cadr p)
(car (cdr p)))
(define (cdar p)
(cdr (car p)))
(define (cddr p)
(cdr (cdr p)))
(define (any pred list)
(if (null? list)
#f
((lambda (it)
(if it
it
(any pred (cdr list))))
(pred (car list)))))
(define (map f list . lists)
(define (single-map f list)
(if (null? list)
'()
(cons (f (car list))
(map f (cdr list)))))
(define (multiple-map f lists)
(if (any null? lists)
'()
(cons (apply f (single-map car lists))
(multiple-map f (single-map cdr lists)))))
(if (null? lists)
(single-map f list)
(multiple-map f (cons list lists))))
(define-macro (let bindings . body)
(if (symbol? bindings)
(begin
(define name bindings)
(set! bindings (car body))
(set! body (cdr body))
;; expanded form should be like below:
;; `(let ()
;; (define ,loop
;; (lambda (,@vars)
;; ,@body))
;; (,loop ,@vals))
(list 'let '()
(list 'define name
(cons 'lambda (cons (map car bindings) body)))
(cons name (map cadr bindings))))
(cons (cons 'lambda (cons (map car bindings) body))
(map cadr bindings))))
(define-macro (cond . clauses)
(if (null? clauses)
#f
(let ((c (car clauses)))
(let ((test (car c))
(if-true (cons 'begin (cdr c)))
(if-false (cons 'cond (cdr clauses))))
(list 'if test if-true if-false)))))
(define-macro (and . exprs)
(if (null? exprs)
#t
(let ((test (car exprs))
(if-true (cons 'and (cdr exprs))))
(list 'if test if-true #f))))
(define-macro (or . exprs)
(if (null? exprs)
#f
(let ((test (car exprs))
(if-false (cons 'or (cdr exprs))))
(list 'let (list (list 'it test))
(list 'if 'it 'it if-false)))))
(define (append xs ys)
(if (null? xs)
ys
(cons (car xs)
(append (cdr xs) ys))))
(define-macro (quasiquote x)
(cond
((symbol? x) (list 'quote x))
((pair? x)
(cond
((eq? 'unquote (car x)) (cadr x))
((and (pair? (car x))
(eq? 'unquote-splicing (caar x)))
(list 'append (cadr (car x)) (list 'quasiquote (cdr x))))
(#t (list 'cons
(list 'quasiquote (car x))
(list 'quasiquote (cdr x))))))
(#t x)))
(define-macro (let* bindings . body)
(if (null? bindings)
`(let () ,@body)
`(let ((,(caar bindings)
,@(cdar bindings)))
(let* (,@(cdr bindings))
,@body))))
(define-macro (letrec bindings . body)
(let ((vars (map (lambda (v) `(,v #f)) (map car bindings)))
(initials (map (lambda (v) `(set! ,@v)) bindings)))
`(let (,@vars)
(begin ,@initials)
,@body)))
(define-macro (letrec* . args)
`(letrec ,@args))
(define-macro (do bindings finish . body)
`(let loop ,(map (lambda (x)
(list (car x) (cadr x)))
bindings)
(if ,(car finish)
(begin ,@body
(loop ,@(map (lambda (x)
(if (null? (cddr x))
(car x)
(car (cddr x))))
bindings)))
(begin ,@(cdr finish)))))
(define-macro (when test . exprs)
(list 'if test (cons 'begin exprs) #f))
(define-macro (unless test . exprs)
(list 'if test #f (cons 'begin exprs)))
(define-syntax define-auxiliary-syntax
(ir-macro-transformer
(lambda (expr i c)
`(define-syntax ,(cadr expr)
(sc-macro-transformer
(lambda (expr env)
(error "invalid use of auxiliary syntax")))))))
(define-auxiliary-syntax else)
(define-auxiliary-syntax =>)
(define-auxiliary-syntax _)
(define-auxiliary-syntax ...)
(define-auxiliary-syntax unquote)
(define-auxiliary-syntax unquote-splicing)
(define (every pred list)
(if (null? list)
#t
(if (pred (car list))
(every pred (cdr list))
#f)))
(define (fold f s xs)
(if (null? xs)
s
(fold f (f (car xs) s) (cdr xs))))
(define (values . args)
(if (and (pair? args)
(null? (cdr args)))
(car args)
(cons '*values-tag* args)))
(define (call-with-values producer consumer)
(let ((res (producer)))
(if (and (pair? res)
(eq? '*values-tag* (car res)))
(apply consumer (cdr res))
(consumer res))))
;;; 6.2. Numbers
(define (zero? n)
(= n 0))
(define (positive? x)
(> x 0))
(define (negative? x)
(< x 0))
(define (odd? n)
(= 0 (floor-remainder n 2)))
(define (even? n)
(= 1 (floor-remainder n 2)))
(define (min x . args)
(let loop ((pivot x) (rest args))
(if (null? rest)
pivot
(loop (if (< x (car rest)) x (car rest)) (cdr rest)))))
(define (max x . args)
(let loop ((pivot x) (rest args))
(if (null? rest)
pivot
(loop (if (> x (car rest)) x (car rest)) (cdr rest)))))
(define (floor/ n m)
(values (floor-quotient n m)
(floor-remainder n m)))
(define (truncate/ n m)
(values (truncate-quotient n m)
(truncate-remainder n m)))
(define (exact-integer-sqrt k)
(let ((n (exact (sqrt k))))
(values n (- k (square n)))))
(define (gcd n m)
(if (negative? n)
(set! n (- n)))
(if (negative? m)
(set! m (- m)))
(if (> n m)
((lambda (tmp)
(set! n m)
(set! m tmp))
n))
(if (zero? n)
m
(gcd (floor-remainder m n) n)))
(define (lcm n m)
(/ (* n m) (gcd n m)))
;;; 6.3 Booleans
(define (boolean=? . objs)
(or (every (lambda (x) (eq? x #t)) objs)
(every (lambda (x) (eq? x #f)) objs)))
;;; 6.4 Pairs and lists
(define (list? obj)
(if (null? obj)
#t
(if (pair? obj)
(list? (cdr obj))
#f)))
(define (make-list k . args)
(if (null? args)
(make-list k #f)
(if (zero? k)
'()
(cons (car args)
(make-list (- k 1) (car args))))))
(define (length list)
(if (null? list)
0
(+ 1 (length (cdr list)))))
(define (reverse list . args)
(if (null? args)
(reverse list '())
(if (null? list)
(car args)
(reverse (cdr list)
(cons (car list) (car args))))))
(define (list-tail list k)
(if (zero? k)
list
(list-tail (cdr list) (- k 1))))
(define (list-ref list k)
(car (list-tail list k)))
(define (list-set! list k obj)
(set-car! (list-tail list k) obj))
(define (memq obj list)
(if (null? list)
#f
(if (eq? obj (car list))
list
(memq obj (cdr list)))))
(define (memv obj list)
(if (null? list)
#f
(if (eqv? obj (car list))
list
(memq obj (cdr list)))))
(define (assq obj list)
(if (null? list)
#f
(if (eq? obj (caar list))
(car list)
(assq obj (cdr list)))))
(define (assv obj list)
(if (null? list)
#f
(if (eqv? obj (caar list))
(car list)
(assq obj (cdr list)))))
(define (list-copy obj)
(if (null? obj)
obj
(cons (car obj)
(list-copy (cdr obj)))))
(define (member obj list . opts)
(let ((compare (if (null? opts) equal? (car opts))))
(if (null? list)
#f
(if (compare obj (car list))
list
(member obj (cdr list) compare)))))
(define (assoc obj list . opts)
(let ((compare (if (null? opts) equal? (car opts))))
(if (null? list)
#f
(if (compare obj (caar list))
(car list)
(assoc obj (cdr list) compare)))))
;;; 6.5. Symbols
(define (symbol=? . objs)
(let ((sym (car objs)))
(if (symbol? sym)
(every (lambda (x)
(and (symbol? x)
(eq? x sym)))
(cdr objs))
#f)))
;;; 6.6 Characters
(define-macro (define-char-transitive-predicate name op)
`(define (,name . cs)
(apply ,op (map char->integer cs))))
(define-char-transitive-predicate char=? =)
(define-char-transitive-predicate char<? <)
(define-char-transitive-predicate char>? >)
(define-char-transitive-predicate char<=? <=)
(define-char-transitive-predicate char>=? >=)
;;; 6.7 String
(define (string . objs)
(let ((len (length objs)))
(let ((v (make-string len)))
(do ((i 0 (+ i 1))
(l objs (cdr l)))
((< i len)
v)
(string-set! v i (car l))))))
(define (string->list string . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(string-length string))))
(do ((i start (+ i 1))
(res '()))
((< i end)
(reverse res))
(set! res (cons (string-ref string i) res)))))
(define (list->string list)
(apply string list))
(define (string-copy! to at from . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(string-length from))))
(do ((i at (+ i 1))
(j start (+ j 1)))
((< j end))
(string-set! to i (string-ref from j)))))
(define (string-copy v . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(string-length v))))
(let ((res (make-string (string-length v))))
(string-copy! res 0 v start end)
res)))
(define (string-append . vs)
(define (string-append-2-inv w v)
(let ((res (make-string (+ (string-length v) (string-length w)))))
(string-copy! res 0 v)
(string-copy! res (string-length v) w)
res))
(fold string-append-2-inv #() vs))
(define (string-fill! v fill . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(string-length v))))
(do ((i start (+ i 1)))
((< i end)
#f)
(string-set! v i fill))))
;;; 6.8. Vector
(define (vector . objs)
(let ((len (length objs)))
(let ((v (make-vector len)))
(do ((i 0 (+ i 1))
(l objs (cdr l)))
((< i len)
v)
(vector-set! v i (car l))))))
(define (vector->list vector . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(vector-length vector))))
(do ((i start (+ i 1))
(res '()))
((< i end)
(reverse res))
(set! res (cons (vector-ref vector i) res)))))
(define (list->vector list)
(apply vector list))
(define (vector-copy! to at from . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(vector-length from))))
(do ((i at (+ i 1))
(j start (+ j 1)))
((< j end))
(vector-set! to i (vector-ref from j)))))
(define (vector-copy v . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(vector-length v))))
(let ((res (make-vector (vector-length v))))
(vector-copy! res 0 v start end)
res)))
(define (vector-append . vs)
(define (vector-append-2-inv w v)
(let ((res (make-vector (+ (vector-length v) (vector-length w)))))
(vector-copy! res 0 v)
(vector-copy! res (vector-length v) w)
res))
(fold vector-append-2-inv #() vs))
(define (vector-fill! v fill . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(vector-length v))))
(do ((i start (+ i 1)))
((< i end)
#f)
(vector-set! v i fill))))
(define (vector->string . args)
(list->string (apply vector->list args)))
(define (string->vector . args)
(list->vector (apply string->list args)))
;;; 6.9 bytevector
(define (bytevector . objs)
(let ((len (length objs)))
(let ((v (make-bytevector len)))
(do ((i 0 (+ i 1))
(l objs (cdr l)))
((< i len)
v)
(bytevector-u8-set! v i (car l))))))
(define (bytevector-copy! to at from . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(bytevector-length from))))
(do ((i at (+ i 1))
(j start (+ j 1)))
((< j end))
(bytevector-u8-set! to i (bytevector-u8-ref from j)))))
(define (bytevector-copy v . opts)
(let ((start (if (pair? opts) (car opts) 0))
(end (if (>= (length opts) 2)
(cadr opts)
(bytevector-length v))))
(let ((res (make-bytevector (bytevector-length v))))
(bytevector-copy! res 0 v start end)
res)))
(define (bytevector-append . vs)
(define (bytevector-append-2-inv w v)
(let ((res (make-bytevector (+ (bytevector-length v) (bytevector-length w)))))
(bytevector-copy! res 0 v)
(bytevector-copy! res (bytevector-length v) w)
res))
(fold bytevector-append-2-inv #() vs))
;;; 6.10 control features
(define (for-each f list . lists)
(define (single-for-each f list)
(if (null? list)
#f
(begin
(f (car list))
(single-for-each f (cdr list)))))
(define (multiple-for-each f lists)
(if (any null? lists)
#f
(begin
(apply f (map car lists))
(multiple-for-each f (map cdr lists)))))
(if (null? lists)
(single-for-each f list)
(multiple-for-each f (cons list lists))))
(define (string-map f v . vs)
(let* ((len (fold min (string-length v) (map string-length vs)))
(vec (make-string len)))
(let loop ((n 0))
(if (= n len)
vec
(begin (string-set! vec n
(apply f (cons (string-ref v n)
(map (lambda (v) (string-ref v n)) vs))))
(loop (+ n 1)))))))
(define (string-for-each f v . vs)
(let* ((len (fold min (string-length v) (map string-length vs))))
(let loop ((n 0))
(unless (= n len)
(apply f (string-ref v n)
(map (lambda (v) (string-ref v n)) vs))
(loop (+ n 1))))))
(define (vector-map f v . vs)
(let* ((len (fold min (vector-length v) (map vector-length vs)))
(vec (make-vector len)))
(let loop ((n 0))
(if (= n len)
vec
(begin (vector-set! vec n
(apply f (cons (vector-ref v n)
(map (lambda (v) (vector-ref v n)) vs))))
(loop (+ n 1)))))))
(define (vector-for-each f v . vs)
(let* ((len (fold min (vector-length v) (map vector-length vs))))
(let loop ((n 0))
(unless (= n len)
(apply f (vector-ref v n)
(map (lambda (v) (vector-ref v n)) vs))
(loop (+ n 1))))))
(define-syntax or
(ir-macro-transformer
(lambda (expr inject compare)
(let ((exprs (cdr expr)))
(if (null? exprs)
#f
`(let ((it ,(car exprs)))
(if it
it
(or ,@(cdr exprs)))))))))
(define-syntax case
(ir-macro-transformer
(lambda (expr inject compare)
(let ((key (cadr expr))
(clauses (cddr expr)))
`(let ((key ,key))
,(let loop ((clauses clauses))
(if (null? clauses)
#f
`(if (or ,@(map (lambda (x) `(eqv? key ,x)) (caar clauses)))
,@(cdar clauses)
,(loop (cdr clauses))))))))))