picrin/piclib/srfi/1.scm

779 lines
20 KiB
Scheme

(define-library (srfi 1)
(import (scheme base)
(scheme cxr))
;; # Constructors
;; cons list
;; xcons cons* make-list list-tabulate
;; list-copy circular-list iota
(define (xcons a b)
(cons b a))
;; means for inter-referential definition
(define append-reverse #f)
(define (cons* x . args)
(let rec ((acc '()) (x x) (lst args))
(if (null? lst)
(append-reverse acc x)
(rec (cons x acc) (car lst) (cdr lst)))))
(define (list-tabulate n init-proc)
(let rec ((acc '()) (n (- n 1)))
(if (zero? n)
(cons n acc)
(rec (cons n acc) (- n 1)))))
(define (circular-list elt . args)
(let ((lst (cons elt args)))
(let rec ((l lst))
(if (null? (cdr l))
(set-cdr! l lst)
(rec (cdr l))))
lst))
(define (iota count . lst)
(let ((start (if (pair? lst) (car lst) 0))
(step (if (and (pair? lst) (pair? (cdr lst)))
(cadr lst) 1)))
(let rec ((count (- count 1)) (acc '()))
(if (zero? count)
(cons start acc)
(rec (- count 1)
(cons (+ start (* count step)) acc))))))
(export cons list xcons make-list list-tabulate list-copy circular-list iota)
;; # Predicates
;; pair? null?
;; proper-list? circular-list? dotted-list?
;; not-pair? null-list?
;; list=
(define (not-pair? x)
(not (pair? x)))
(define (circular-list? x)
(and (pair? x)
(let rec ((lst (cdr x)))
(cond ((not-pair?) #f)
((null? lst) #f)
((eq? x lst) #t)
(else (rec (cdr lst)))))))
;; if list? is support circular list, (define proper-list? list?)
(define (proper-list? x)
(if (not (circular-list? x))
(list? x)))
(define (dotted-list? x)
(and (pair? x)
(not (proper-list? x))
(not (circular-list? x))))
(define (null-list? x)
(cond ((pair? x) #f)
((null? x) #t)
(else (error "null-list?: argument out of domain" x))))
(define (list= elt= . lists)
(or (null? lists)
(let rec1 ((list1 (car lists)) (others (cdr lists)))
(or (null? others)
(let ((list2 (car others))
(others (cdr others)))
(if (eq? list1 list2)
(rec1 list2 others)
(let rec2 ((l1 list1) (l2 list2))
(if (null-list? l1)
(and (null-list? l2)
(rec1 list2 others))
(and (not (null-list? l2))
(elt= (car l1) (car l2))
(rec2 (cdr l1) (cdr l2)))))))))))
(export pair? null? not-pair? proper-list? circular-list? null-list? list=)
;; # Selectors
;; car cdr ... cddadr cddddr list-ref
;; first second third fourth fifth sixth seventh eighth ninth tenth
;; car+cdr
;; take drop
;; take-right drop-right
;; take! drop-right!
;; split-at split-at!
;; last last-pair
(define (car+cdr pair)
(values (car pair) (cdr pair)))
(define (take x i)
(if (zero? i)
'()
(cons (car x)
(take (cdr x) (- i 1)))))
(define (drop x i)
(if (zero? i)
x
(drop (cdr x) (- i 1))))
(define (take-right flist i)
(let ((len (length flist)))
(drop flist (- len i))))
(define (drop-right flist i)
(let ((len (length flist)))
(take flist (- len i))))
(define (take! x i)
(let rec ((lis x) (n (- i 1)))
(if (zero? n)
(begin (set-cdr! lis '()) x)
(rec (cdr lis) (- n 1)))))
(define (drop-right! flist i)
(let ((lead (drop flist i)))
(if (not-pair? lead)
'()
(let rec ((lis1 flist) (lis2 (cdr lead)))
(if (pair? lis2)
(rec (cdr lis1) (cdr lis2))
(begin (set-cdr! lis1 '()) flist))))))
(define (split-at x i)
(values (take x i) (drop x i)))
(define (split-at! x i)
(values (take! x i) (drop x i)))
(define (last pair)
(car (take-right pair 1)))
(define (last-pair pair)
(take-right pair 1))
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth pair)
(list-ref pair 4))
(define (sixth pair)
(list-ref pair 5))
(define (seventh pair)
(list-ref pair 6))
(define (eighth pair)
(list-ref pair 7))
(define (ninth pair)
(list-ref pair 8))
(define (tenth pair)
(list-ref pair 9))
(export car cdr car+cdr list-ref
caar cadr cdar cddr caaar caadr cadar caddr cdaar cdadr cddar cdddr
caaaar caaadr caadar caaddr cadaar cadadr caddar cadddr cdaaar cdaadr
cdadar cdaddr cddaar cddadr cdddar cddddr
first second third fourth fifth sixth seventh eighth ninth tenth
take drop take-right drop-right take! drop-right!
split-at split-at! last last-pair)
;; # Miscellaneous
;; length length+
;; append concatenate reverse
;; append! concatenate! reverse!
;; append-reverse append-reverse!
;; zip unzip1 unzip2 unzip3 unzip4 unzip5
;; count
(define (length+ lst)
(if (not (circular-list? lst))
(length lst)))
(define (concatenate lists)
(apply append lists))
(define (append! . lists)
(if (null? lists)
'()
(let rec ((lst lists))
(if (not-pair? (cdr lst))
(car lst)
(begin (set-cdr! (last-pair (car lst)) (cdr lst))
(rec (cdr lst)))))))
(define (concatenate! lists)
(apply append! lists))
(define (reverse! list)
(let rec ((lst list) (acc '()))
(if (null? lst)
acc
(let ((rst (cdr lst)))
(set-cdr! lst acc)
(rec rst lst)))))
(define (append-reverse rev-head tail)
(if (null? rev-head)
tail
(append-reverse (cdr rev-head) (cons (car rev-head) tail))))
(define (append-reverse! rev-head tail)
(let ((rst (cdr rev-head)))
(if (null? rev-head)
tail
(begin (set-cdr! rev-head tail)
(append-reverse! rst rev-head)))))
(define (zip . lists)
(apply map list lists))
(define (unzip1 list)
(map first list))
(define (unzip2 list)
(values (map first list)
(map second list)))
(define (unzip3 list)
(values (map first list)
(map second list)
(map third list)))
(define (unzip4 list)
(values (map first list)
(map second list)
(map third list)
(map fourth list)))
(define (unzip3 list)
(values (map first list)
(map second list)
(map third list)
(map fourth list)
(map fifth list)))
(define (count pred . clists)
(let rec ((tflst (apply map pred clists)) (n 0))
(if (null? tflst)
n
(rec (cdr tflst) (if (car tflst) (+ n 1) n)))))
(export length length+
append append! concatenate concatenate!
reverse reverse! append-reverse append-reverse!
zip unzip1 unzip2 unzip3 unzip4 unzip5)
;; # Fold, unfold & map
;; map for-each
;; fold unfold pair-fold reduce
;; fold-right unfold-right pair-fold right reduce-right
;; append-map append-map!
;; map! pair-for-each filter-map map-in-order
;; means for inter-referential definition
(define every #f)
(define (fold kons knil clist . clists)
(if (null? clists)
(let rec ((acc knil) (clist clist))
(if (null? clist)
acc
(rec (kons (car clist) acc) (cdr clist))))
(let rec ((acc knil) (clists (cons clist clists)))
(if (every pair? clists)
(rec (apply kons (append (map car clists) (list acc)))
(map cdr clists))
acc))))
(define (fold-right kons knil clist . clists)
(if (null? clists)
(let rec ((clist clist) (cont values))
(if (null? clist)
(cont knil)
(rec (cdr clist) (lambda (x) (cont (kons (car clist) x))))))
(let rec ((clists (cons clist clists)) (cont values))
(if (every pair? clists)
(rec (map cdr clists)
(lambda (x)
(cont (apply kons (append (map car clists) (list x))))))
(cont knil)))))
(define (pair-fold kons knil clist . clists)
(if (null? clists)
(let rec ((acc knil) (clist clist))
(if (null? clist)
acc
(let ((tail (cdr clist)))
(rec (kons clist acc) tail))))
(let rec ((acc knil) (clists (cons clist clists)))
(if (every pair? clists)
(let ((tail (map cdr clists)))
(rec (apply kons (append clists (list acc)))
tail))
acc))))
(define (pair-fold-right kons knil clist . clists)
(if (null? clists)
(let rec ((clist clist) (cont values))
(if (null? clist)
(cont knil)
(let ((tail (map cdr clists)))
(rec tail (lambda (x) (cont (kons clist x)))))))
(let rec ((clists (cons clist clists)) (cont values))
(if (every pair? clists)
(let ((tail (map cdr clists)))
(rec tail
(lambda (x)
(cont (apply kons (append clists (list x)))))))
(cont knil)))))
(define (reduce f ridentity list)
(if (null? list)
ridentity
(fold f (car list) (cdr list))))
(define (reduce-right f ridentity list)
(fold-right f ridentity list))
(define (unfold p f g seed . tail-gen)
(let ((tail-gen (if (null? tail-gen)
(lambda (x) '())
(car tail-gen))))
(let rec ((seed seed) (cont values))
(if (p seed)
(cont (tail-gen seed))
(rec (g seed) (lambda (x) (cont (cons (f seed) x))))))))
(define (unfold-right p f g seed . tail)
(let rec ((seed seed) (lst tail))
(if (p seed)
lst
(rec (g seed) (cons (f seed) lst)))))
(define (append-map f . clists)
(apply append (apply map f clists)))
(define (append-map! f . clists)
(apply append! (apply map f clists)))
(define pair-for-each #f)
(define (map! f list . lists)
(if (null? lists)
(pair-for-each (lambda (x) (set-car! x (f (car x)))) list)
(let rec ((list list) (lists lists))
(if (pair? list)
(let ((head (map car lists))
(rest (map cdr lists)))
(set-car! list (apply f (car list) head))
(rec (cdr list) tail)))))
list1)
(define (map-in-order f clist . clists)
(if (null? clists)
(let rec ((clist clist) (acc '()))
(if (null? clist)
(reverse! acc)
(rec (cdr clist) (cons (f (car clist)) acc))))
(let rec ((clists (cons clist clists)) (acc '()))
(if (every pair? clists)
(rec (map cdr clists)
(cons* (apply f (map car clists)) acc))
(reverse! acc)))))
(define (pair-for-each f clist . clists)
(if (null? clist)
(let rec ((clist clist))
(if (pair? clist)
(begin (f (car clist)) (rec (cdr clist)))))
(let rec ((clists (cons clist clists)))
(if (every pair? clists)
(begin (apply f (map car clists)) (rec (map cdr clists)))))))
(define (filter-map f clist . clists)
(if (null? clists)
(let rec ((clist clist) (cont values))
(if (null? clist)
(cont '())
(rec (cdr clist)
(let ((it (f (car clist))))
(if it
(lambda (x) (cont (cons it x)))
(lambda (x) (cont x)))))))))
(export map for-each
fold unfold pair-fold reduce
fold-right unfold-right pair-fold-right reduce-right
append-map append-map!
map! pair-for-each filter-map map-in-order)
;; # Filtering & partitioning
;; filter partition remove
;; filter! partition! remove!
(define (filter pred list)
(if (null? list)
'()
(if (pred (car list))
(cons (car list)
(filter pred (cdr list)))
(filter pred (cdr list)))))
;; means for inter-referential definition
(define remove #f)
(define (partition pred list)
(values (filter pred list)
(remove pred list)))
(define (remove pred list)
(filter (lambda (x) (not (pred x))) list))
(define (filter! pred list)
(let rec ((lst list))
(if (null? lst)
lst
(if (pred (car lst))
(begin (set-cdr! lst (rec (cdr lst)))
lst)
(rec (cdr lst))))))
;; means for inter-referential definition
(define remove! #f)
(define (partition! pred list)
(values (filter! pred list)
(remove! pred list)))
(define (remove! pred list)
(filter! (lambda (x) (net (pred x))) list))
(export filter partition remove
filter! partition! remove!)
;; # Searching
;; member memq memv
;; find find-tail
;; any every
;; list-index
;; take-while drop-while take-while!
;; span break span! break!
;; means for inter-referential definition
(define find-tail #f)
(define (find pred list)
(let ((tail (find-tail pred list)))
(if tail
(car tail)
#f)))
(define (find-tail pred list)
(if (null? list)
#f
(if (pred (car list))
list
(find-tail pred (cdr list)))))
(define (take-while pred clist)
(let rec ((clist clist) (cont values))
(if (null? clist)
(cont '())
(if (pred (car clist))
(rec (cdr clist)
(lambda (x) (cont (cons (car clist) x))))
(cont '())))))
(define (take-while! pred clist)
(let rec ((clist clist))
(if (null? clist)
'()
(if (pred (car clist))
(begin (set-cdr! clist (rec (cdr clist)))
clist)
'()))))
(define (drop-while pred clist)
(let rec ((clist clist))
(if (null? clist)
'()
(if (pred (car clist))
(rec (cdr clist))
clist))))
(define (span pred clist)
(values (take-while pred clist)
(drop-while pred clist)))
(define (span! pred clist)
(values (take-while! pred clist)
(drop-while! pred clist)))
(define (break pred clist)
(values (take-while (lambda (x) (not (pred x))) clist)
(drop-while (lambda (x) (not (pred x))) clist)))
(define (break! pred clist)
(values (take-while! (lambda (x) (not (pred x))) clist)
(drop-while! (lambda (x) (not (pred x))) clist)))
(define (any pred clist . clists)
(if (null? clists)
(let rec ((clist clist))
(if (pair? clist)
(or (pred (car clist))
(rec (cdr clist)))))
(let rec ((clists (cons clist clists)))
(if (every pair? clists)
(or (apply pred (map car clists))
(rec (map cdr clists)))))))
(define (every pred clist . clists)
(if (null? clists)
(let rec ((clist clist))
(or (null? clist)
(if (pred (car clist))
(rec (cdr clist)))))
(let rec ((clists (cons clist clists)))
(or (any null? clists)
(if (apply pred (map car clists))
(rec (map cdr clists)))))))
(define (list-index pred clist . clists)
(if (null? clists)
(let rec ((clist clist) (n 0))
(if (pair? clist)
(if (pred (car clist))
n
(rec (cdr clist) (+ n 1)))))
(let rec ((clists (cons clist clists)) (n 0))
(if (every pair? clists)
(if (apply pred (map car clists))
n
(rec (map cdr clists) (+ n 1)))))))
(export member memq memv
find find-tail
any every
list-index
take-while drop-while take-while!
span break span! break!)
;; # Deleting
;; delete delete-duplicates
;; delete! delete-duplicates!
(define (delete x list . =)
(let ((= (if (null? =) equal? (car =))))
(remove (lambda (a) (= x a)) list)))
(define (delete! x list . =)
(let ((= (if (null? =) equal? (car =))))
(remove! (lambda (a) (= x a)) list)))
(define (delete-duplicates list . =)
(let ((= (if (null? =) equal? (car =))))
(let rec ((list list))
(if (null? list)
list
(let* ((x (car list))
(rest (cdr list))
(deleted (rec (delete x list =))))
(if (eq? rest deleted) list (cons x deleted)))))))
(define (delete-duplicates! list . =)
(let ((= (if (null? =) equal? (car =))))
(let rec ((list list))
(if (null? list)
list
(let* ((x (car list))
(rest (cdr list))
(deleted (rec (delete! x list =))))
(if (eq? rest deleted) list (cons x deleted)))))))
(export delete delete-duplicates
delete! delete-duplicates!)
;; # Association lists
;; assoc assq assv
;; alist-cons alist-copy
;; alist-delete alist-delete!
(define (alist-cons key datum alist)
(cons (cons key datum) alist))
(define (alist-copy alist)
(map (lambda (elt) (cons (car elt) (cdr elt))) alist))
(define (alist-delete key alist . =)
(let ((= (if (null? =) equal? (car =))))
(remove (lambda (x) (= key (car x))) alist)))
(define (alist-delete! key alist . =)
(let ((= (if (null? =) equal? (car =))))
(remove! (lambda (x) (= key (car x))) alist)))
(export assoc assq assv
alist-cons alist-copy
alist-delete alist-delete!)
;; # Set operations on lists
;; lset<= lset= lset-adjoin
;; lset-union lset-union!
;; lset-intersection lset-intersection!
;; lset-difference lset-difference!
;; lset-xor lset-xor!
;; lset-diff+intersenction lset-diff+intersection!
(define (lset<= = . lists)
(or (null? lists)
(let rec ((head (car lists)) (rest (cdr lists)))
(or (null? rest)
(let ((next (car rest)) (rest (cdr rest)))
(and (or (eq? head next)
(every (lambda (x) (member x next =)) head))
(rec next rest)))))))
(define (lset= = . lists)
(or (null? lists)
(let rec ((head (car lists)) (rest (cdr lists)))
(or (null? rest)
(let ((next (car rest)) (rest (cdr rest)))
(and (or (eq? head next)
(and (every (lambda (x) (member x next =)) head)
(every (lambda (x) (member x head =)) next))
(rec next rest))))))))
(define (lset-adjoin = list . elts)
(let rec ((list list) (elts elts))
(if (null? elts)
list
(if (member (car elts) list)
(rec list (cdr elts))
(rec (cons (car elts) list) (cdr elts))))))
(define (lset-union = . lists)
(if (null? lists)
lists
(let rec ((head (car lists)) (rest (cdr lists)))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
(rec head rest)
(rec (apply lset-adjoin = head next) rest)))))))
(define (lset-intersection = . lists)
(if (null? lists)
lists
(let rec ((head (car lists)) (rest (cdr lists)))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
(rec head rest)
(rec (filter (lambda (x) (member x next =)) head)
rest)))))))
(define (lset-difference = list . lists)
(let rec ((head list) (rest lists))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
'()
(rec (remove (lambda (x) (member x next =)) head)
rest))))))
(define (lset-xor = . lists)
(if (null? lists)
lists
(let rec ((head (car lists)) (rest (cdr lists)))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
'()
(rec (append (remove (lambda (x) (member x next =)) head)
(remove (lambda (x) (member x head =)) next))
rest)))))))
(define (lset-diff+intersection = list . lists)
(values (apply lset-difference = list lists)
(lset-intersection = list (apply lset-union lists))))
(define (lset-adjoin! = list . elts)
(let rec ((list list) (elts elts))
(if (null? elts)
list
(if (member (car elts) list)
(rec list (cdr elts))
(let ((tail (cdr elts)))
(set-cdr! elts list)
(rec elts tail))))))
(define (lset-union! = . lists)
(letrec ((adjoin
(lambda (lst1 lst2)
(if (null? lst2)
lst1
(if (member (car lst2) lst1 =)
(adjoin lst1 (cdr lst2))
(let ((tail (cdr lst2)))
(set-cdr! lst2 lst1)
(adjoin lst2 tail)))))))
(if (null? lists)
lists
(let rec ((head (car lists)) (rest (cdr lists)))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
(rec head rest)
(rec (adjoin head next) rest))))))))
(define (lset-intersection! = . lists)
(if (null? lists)
lists
(let rec ((head (car lists)) (rest (cdr lists)))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
(rec head rest)
(rec (filter! (lambda (x) (member x next =)) head)
rest)))))))
(define (lset-difference! = list . lists)
(let rec ((head list) (rest lists))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
'()
(rec (remove! (lambda (x) (member x next =)) head)
rest))))))
(define (lset-xor! = . lists)
(if (null? lists)
lists
(let rec ((head (car lists)) (rest (cdr lists)))
(if (null? rest)
head
(let ((next (car rest)) (rest (cdr rest)))
(if (eq? head next)
'()
(rec (append! (remove! (lambda (x) (member x next =)) head)
(remove! (lambda (x) (member x head =)) next))
rest)))))))
(define (lset-diff+intersection! = list . lists)
(values (apply lset-difference! = list lists)
(lset-intersection! = list (apply lset-union! lists))))
(export lset<= lset= lset-adjoin
lset-union lset-union!
lset-intersection lset-intersection!
lset-difference lset-difference!
lset-xor lset-xor!
lset-diff+intersection lset-diff+intersection!)
;; # Primitive side-effects
;; set-car! set-cdr!
(export set-car! set-cdr!))