;;; hygienic macros (define-library (picrin macro) (import (scheme base)) (define (sc-macro-transformer f) (lambda (expr use-env mac-env) (make-syntactic-closure mac-env '() (f expr use-env)))) (define (rsc-macro-transformer f) (lambda (expr use-env mac-env) (make-syntactic-closure use-env '() (f expr mac-env)))) (define (er-macro-transformer f) (lambda (expr use-env mac-env) (define (rename identifier) (make-syntactic-closure mac-env '() identifier)) (define (compare x y) (identifier=? use-env x use-env y)) (make-syntactic-closure use-env '() (f expr rename compare)))) (define (walk f obj) (if (pair? obj) (cons (walk f (car obj)) (walk f (cdr obj))) (f obj))) (define (ir-macro-transformer f) (lambda (expr use-env mac-env) (define (inject identifier) (make-syntactic-closure use-env '() identifier)) (define (compare x y) (identifier=? mac-env x mac-env y)) (define renamed (walk (lambda (x) (if (symbol? x) (inject x) x)) expr)) (make-syntactic-closure mac-env '() (f renamed inject compare)))) (export sc-macro-transformer rsc-macro-transformer er-macro-transformer ir-macro-transformer)) ;;; core syntaces (define-library (picrin core-syntax) (import (scheme base) (picrin macro)) (define (list . args) args) (define (caar p) (car (car p))) (define (cadr p) (car (cdr p))) (define (cdar p) (cdr (car p))) (define (cddr p) (cdr (cdr p))) (define (cadar p) (car (cdar p))) (define (caddr p) (car (cddr p))) (define (cdddr p) (cdr (cddr p))) (define (map f list) (if (null? list) list (cons (f (car list)) (map f (cdr list))))) (define-syntax let (er-macro-transformer (lambda (expr r compare) (if (symbol? (cadr expr)) (begin (define name (cadr expr)) (define bindings (caddr expr)) (define body (cdddr expr)) (list (r 'let) '() (list (r 'define) name (cons (r 'lambda) (cons (map car bindings) body))) (cons name (map cadr bindings)))) (begin (define bindings (cadr expr)) (define body (cddr expr)) (cons (cons (r 'lambda) (cons (map car bindings) body)) (map cadr bindings))))))) (define-syntax cond (er-macro-transformer (lambda (expr r compare) (let ((clauses (cdr expr))) (if (null? clauses) #f (list (r 'if) (caar clauses) (cons (r 'begin) (cdar clauses)) (cons (r 'cond) (cdr clauses)))))))) (define-syntax and (er-macro-transformer (lambda (expr r compare) (let ((exprs (cdr expr))) (if (null? exprs) #t (list (r 'if) (car exprs) (cons (r 'and) (cdr exprs)) #f)))))) (define-syntax or (er-macro-transformer (lambda (expr r compare) (let ((exprs (cdr expr))) (if (null? exprs) #f (list (r 'let) (list (list (r 'it) (car exprs))) (list (r 'if) (r 'it) (r 'it) (cons (r 'or) (cdr exprs))))))))) (define (append xs ys) (if (null? xs) ys (cons (car xs) (append (cdr xs) ys)))) (define-syntax quasiquote (er-macro-transformer (lambda (expr r compare?) (let ((x (cadr expr))) (cond ((symbol? x) (list (r 'quote) x)) ; should test with identifier? ((pair? x) (cond ((compare? (r 'unquote) (car x)) (cadr x)) ((and (pair? (car x)) (compare? (r 'unquote-splicing) (caar x))) (list (r 'append) (cadar x) (list (r 'quasiquote) (cdr x)))) (#t (list (r 'cons) (list (r 'quasiquote) (car x)) (list (r 'quasiquote) (cdr x)))))) (#t x)))))) #; (define-syntax let* (ir-macro-transformer (lambda (form inject compare) (let ((bindings (cadr form)) (body (cddr form))) (if (null? bindings) `(let () ,@body) `(let ((,(caar bindings) ,@(cdar bindings))) (let* (,@(cdr bindings)) ,@body))))))) (define-syntax let* (er-macro-transformer (lambda (form r compare) (let ((bindings (cadr form)) (body (cddr form))) (if (null? bindings) `(,(r 'let) () ,@body) `(,(r 'let) ((,(caar bindings) ,@(cdar bindings))) (,(r 'let*) (,@(cdr bindings)) ,@body))))))) (define-syntax letrec (er-macro-transformer (lambda (form r compare) (let ((bindings (cadr form)) (body (cddr form))) (let ((vars (map (lambda (v) `(,v #f)) (map car bindings))) (initials (map (lambda (v) `(,(r 'set!) ,@v)) bindings))) `(,(r 'let) (,@vars) ,@initials ,@body)))))) (define-syntax letrec* (er-macro-transformer (lambda (form rename compare) `(,(rename 'letrec) ,@(cdr form))))) (define-syntax do (er-macro-transformer (lambda (form r compare) (let ((bindings (cadr form)) (finish (caddr form)) (body (cdddr form))) `(,(r 'let) ,(r 'loop) ,(map (lambda (x) (list (car x) (cadr x))) bindings) (,(r 'if) ,(car finish) (,(r 'begin) ,@body (,(r 'loop) ,@(map (lambda (x) (if (null? (cddr x)) (car x) (car (cddr x)))) bindings))) (,(r 'begin) ,@(cdr finish)))))))) (define-syntax when (er-macro-transformer (lambda (expr rename compare) (let ((test (cadr expr)) (body (cddr expr))) `(,(rename 'if) ,test (,(rename 'begin) ,@body) #f))))) (define-syntax unless (er-macro-transformer (lambda (expr rename compare) (let ((test (cadr expr)) (body (cddr expr))) `(,(rename 'if) ,test #f (,(rename 'begin) ,@body)))))) (define-syntax case (er-macro-transformer (lambda (expr r compare) (let ((key (cadr expr)) (clauses (cddr expr))) `(,(r 'let) ((,(r 'key) ,key)) ,(let loop ((clauses clauses)) (if (null? clauses) #f `(,(r 'if) (,(r 'or) ,@(map (lambda (x) `(,(r 'eqv?) ,(r 'key) (,(r 'quote) ,x))) (caar clauses))) (begin ,@(cdar clauses)) ,(loop (cdr clauses)))))))))) (define-syntax define-auxiliary-syntax (er-macro-transformer (lambda (expr r c) `(,(r 'define-syntax) ,(cadr expr) ,(r '(sc-macro-transformer (lambda (expr env) (error "invalid use of auxiliary syntax")))))))) (define-auxiliary-syntax else) (define-auxiliary-syntax =>) (define-auxiliary-syntax _) (define-auxiliary-syntax ...) (define-auxiliary-syntax unquote) (define-auxiliary-syntax unquote-splicing) (export let let* letrec letrec* quasiquote unquote unquote-splicing and or cond case else => do when unless _ ...)) (import (picrin macro) (picrin core-syntax)) (export let let* letrec letrec* quasiquote unquote unquote-splicing and or cond case else => do when unless _ ...) (define (any pred list) (if (null? list) #f ((lambda (it) (if it it (any pred (cdr list)))) (pred (car list))))) (define (every pred list) (if (null? list) #t (if (pred (car list)) (every pred (cdr list)) #f))) (define (fold f s xs) (if (null? xs) s (fold f (f (car xs) s) (cdr xs)))) (define (values . args) (if (and (pair? args) (null? (cdr args))) (car args) (cons '*values-tag* args))) (define (call-with-values producer consumer) (let ((res (producer))) (if (and (pair? res) (eq? '*values-tag* (car res))) (apply consumer (cdr res)) (consumer res)))) ;;; 6.2. Numbers (define (zero? n) (= n 0)) (define (positive? x) (> x 0)) (define (negative? x) (< x 0)) (define (odd? n) (= 0 (floor-remainder n 2))) (define (even? n) (= 1 (floor-remainder n 2))) (define (min x . args) (let loop ((pivot x) (rest args)) (if (null? rest) pivot (loop (if (< x (car rest)) x (car rest)) (cdr rest))))) (define (max x . args) (let loop ((pivot x) (rest args)) (if (null? rest) pivot (loop (if (> x (car rest)) x (car rest)) (cdr rest))))) (define (floor/ n m) (values (floor-quotient n m) (floor-remainder n m))) (define (truncate/ n m) (values (truncate-quotient n m) (truncate-remainder n m))) (define (exact-integer-sqrt k) (let ((n (exact (sqrt k)))) (values n (- k (square n))))) (define (gcd n m) (if (negative? n) (set! n (- n))) (if (negative? m) (set! m (- m))) (if (> n m) ((lambda (tmp) (set! n m) (set! m tmp)) n)) (if (zero? n) m (gcd (floor-remainder m n) n))) (define (lcm n m) (/ (* n m) (gcd n m))) ;;; 6.3 Booleans (define (boolean=? . objs) (or (every (lambda (x) (eq? x #t)) objs) (every (lambda (x) (eq? x #f)) objs))) ;;; 6.4 Pairs and lists (define (list? obj) (if (null? obj) #t (if (pair? obj) (list? (cdr obj)) #f))) (define (list . args) args) (define (caar p) (car (car p))) (define (cadr p) (car (cdr p))) (define (cdar p) (cdr (car p))) (define (cddr p) (cdr (cdr p))) (define (make-list k . args) (if (null? args) (make-list k #f) (if (zero? k) '() (cons (car args) (make-list (- k 1) (car args)))))) (define (length list) (if (null? list) 0 (+ 1 (length (cdr list))))) (define (append xs ys) (if (null? xs) ys (cons (car xs) (append (cdr xs) ys)))) (define (reverse list . args) (if (null? args) (reverse list '()) (if (null? list) (car args) (reverse (cdr list) (cons (car list) (car args)))))) (define (list-tail list k) (if (zero? k) list (list-tail (cdr list) (- k 1)))) (define (list-ref list k) (car (list-tail list k))) (define (list-set! list k obj) (set-car! (list-tail list k) obj)) (define (memq obj list) (if (null? list) #f (if (eq? obj (car list)) list (memq obj (cdr list))))) (define (memv obj list) (if (null? list) #f (if (eqv? obj (car list)) list (memq obj (cdr list))))) (define (assq obj list) (if (null? list) #f (if (eq? obj (caar list)) (car list) (assq obj (cdr list))))) (define (assv obj list) (if (null? list) #f (if (eqv? obj (caar list)) (car list) (assq obj (cdr list))))) (define (list-copy obj) (if (null? obj) obj (cons (car obj) (list-copy (cdr obj))))) (define (member obj list . opts) (let ((compare (if (null? opts) equal? (car opts)))) (if (null? list) #f (if (compare obj (car list)) list (member obj (cdr list) compare))))) (define (assoc obj list . opts) (let ((compare (if (null? opts) equal? (car opts)))) (if (null? list) #f (if (compare obj (caar list)) (car list) (assoc obj (cdr list) compare))))) ;;; 6.5. Symbols (define (symbol=? . objs) (let ((sym (car objs))) (if (symbol? sym) (every (lambda (x) (and (symbol? x) (eq? x sym))) (cdr objs)) #f))) ;;; 6.6 Characters (define-macro (define-char-transitive-predicate name op) `(define (,name . cs) (letrec ((map (lambda (f list) (if (null? list) list (cons (f (car list)) (map f (cdr list))))))) (apply ,op (map char->integer cs))))) (define-char-transitive-predicate char=? =) (define-char-transitive-predicate char? >) (define-char-transitive-predicate char<=? <=) (define-char-transitive-predicate char>=? >=) ;;; 6.7 String (define (string . objs) (let ((len (length objs))) (let ((v (make-string len))) (do ((i 0 (+ i 1)) (l objs (cdr l))) ((< i len) v) (string-set! v i (car l)))))) (define (string->list string . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (string-length string)))) (do ((i start (+ i 1)) (res '())) ((< i end) (reverse res)) (set! res (cons (string-ref string i) res))))) (define (list->string list) (apply string list)) (define (string-copy! to at from . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (string-length from)))) (do ((i at (+ i 1)) (j start (+ j 1))) ((< j end)) (string-set! to i (string-ref from j))))) (define (string-copy v . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (string-length v)))) (let ((res (make-string (string-length v)))) (string-copy! res 0 v start end) res))) (define (string-append . vs) (define (string-append-2-inv w v) (let ((res (make-string (+ (string-length v) (string-length w))))) (string-copy! res 0 v) (string-copy! res (string-length v) w) res)) (fold string-append-2-inv #() vs)) (define (string-fill! v fill . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (string-length v)))) (do ((i start (+ i 1))) ((< i end) #f) (string-set! v i fill)))) ;;; 6.8. Vector (define (vector . objs) (let ((len (length objs))) (let ((v (make-vector len))) (do ((i 0 (+ i 1)) (l objs (cdr l))) ((< i len) v) (vector-set! v i (car l)))))) (define (vector->list vector . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (vector-length vector)))) (do ((i start (+ i 1)) (res '())) ((< i end) (reverse res)) (set! res (cons (vector-ref vector i) res))))) (define (list->vector list) (apply vector list)) (define (vector-copy! to at from . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (vector-length from)))) (do ((i at (+ i 1)) (j start (+ j 1))) ((< j end)) (vector-set! to i (vector-ref from j))))) (define (vector-copy v . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (vector-length v)))) (let ((res (make-vector (vector-length v)))) (vector-copy! res 0 v start end) res))) (define (vector-append . vs) (define (vector-append-2-inv w v) (let ((res (make-vector (+ (vector-length v) (vector-length w))))) (vector-copy! res 0 v) (vector-copy! res (vector-length v) w) res)) (fold vector-append-2-inv #() vs)) (define (vector-fill! v fill . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (vector-length v)))) (do ((i start (+ i 1))) ((< i end) #f) (vector-set! v i fill)))) (define (vector->string . args) (list->string (apply vector->list args))) (define (string->vector . args) (list->vector (apply string->list args))) ;;; 6.9 bytevector (define (bytevector . objs) (let ((len (length objs))) (let ((v (make-bytevector len))) (do ((i 0 (+ i 1)) (l objs (cdr l))) ((< i len) v) (bytevector-u8-set! v i (car l)))))) (define (bytevector-copy! to at from . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (bytevector-length from)))) (do ((i at (+ i 1)) (j start (+ j 1))) ((< j end)) (bytevector-u8-set! to i (bytevector-u8-ref from j))))) (define (bytevector-copy v . opts) (let ((start (if (pair? opts) (car opts) 0)) (end (if (>= (length opts) 2) (cadr opts) (bytevector-length v)))) (let ((res (make-bytevector (bytevector-length v)))) (bytevector-copy! res 0 v start end) res))) (define (bytevector-append . vs) (define (bytevector-append-2-inv w v) (let ((res (make-bytevector (+ (bytevector-length v) (bytevector-length w))))) (bytevector-copy! res 0 v) (bytevector-copy! res (bytevector-length v) w) res)) (fold bytevector-append-2-inv #() vs)) ;;; 6.10 control features (define (map f list . lists) (define (single-map f list) (if (null? list) '() (cons (f (car list)) (map f (cdr list))))) (define (multiple-map f lists) (if (any null? lists) '() (cons (apply f (single-map car lists)) (multiple-map f (single-map cdr lists))))) (if (null? lists) (single-map f list) (multiple-map f (cons list lists)))) (define (for-each f list . lists) (define (single-for-each f list) (if (null? list) #f (begin (f (car list)) (single-for-each f (cdr list))))) (define (multiple-for-each f lists) (if (any null? lists) #f (begin (apply f (map car lists)) (multiple-for-each f (map cdr lists))))) (if (null? lists) (single-for-each f list) (multiple-for-each f (cons list lists)))) (define (string-map f v . vs) (let* ((len (fold min (string-length v) (map string-length vs))) (vec (make-string len))) (let loop ((n 0)) (if (= n len) vec (begin (string-set! vec n (apply f (cons (string-ref v n) (map (lambda (v) (string-ref v n)) vs)))) (loop (+ n 1))))))) (define (string-for-each f v . vs) (let* ((len (fold min (string-length v) (map string-length vs)))) (let loop ((n 0)) (unless (= n len) (apply f (string-ref v n) (map (lambda (v) (string-ref v n)) vs)) (loop (+ n 1)))))) (define (vector-map f v . vs) (let* ((len (fold min (vector-length v) (map vector-length vs))) (vec (make-vector len))) (let loop ((n 0)) (if (= n len) vec (begin (vector-set! vec n (apply f (cons (vector-ref v n) (map (lambda (v) (vector-ref v n)) vs)))) (loop (+ n 1))))))) (define (vector-for-each f v . vs) (let* ((len (fold min (vector-length v) (map vector-length vs)))) (let loop ((n 0)) (unless (= n len) (apply f (vector-ref v n) (map (lambda (v) (vector-ref v n)) vs)) (loop (+ n 1))))))