; Although looking like a magic, it works nice. (define (car x) (car x)) (define (cdr x) (cdr x)) (define (zero? n) (= n 0)) (define (positive? x) (> x 0)) (define (negative? x) (< x 0)) (define (caar p) (car (car p))) (define (cadr p) (car (cdr p))) (define (cdar p) (cdr (car p))) (define (cddr p) (cdr (cdr p))) (define (list . args) args) (define (list? obj) (if (null? obj) #t (if (pair? obj) (list? (cdr obj)) #f))) (define (make-list k . args) (if (null? args) (make-list k #f) (if (zero? k) '() (cons (car args) (make-list (- k 1) (car args)))))) (define (length list) (if (null? list) 0 (+ 1 (length (cdr list))))) (define (append xs ys) (if (null? xs) ys (cons (car xs) (append (cdr xs) ys)))) (define (reverse list . args) (if (null? args) (reverse list '()) (if (null? list) (car args) (reverse (cdr list) (cons (car list) (car args)))))) (define (list-tail list k) (if (zero? k) list (list-tail (cdr list) (- k 1)))) (define (list-ref list k) (car (list-tail list k))) (define (list-set! list k obj) (set-car! (list-tail list k) obj)) (define (list-copy obj) (if (null? obj) obj (cons (car obj) (list-copy (cdr obj))))) (define (map f list) (if (null? list) '() (cons (f (car list)) (map f (cdr list))))) (define-macro let (lambda (bindings . body) (cons (cons 'lambda (cons (map car bindings) body)) (map cadr bindings))))