729 lines
25 KiB
Scheme
729 lines
25 KiB
Scheme
;;; MAZE -- Constructs a maze on a hexagonal grid, written by Olin Shivers.
|
|
|
|
;------------------------------------------------------------------------------
|
|
; Was file "rand.scm".
|
|
|
|
; Minimal Standard Random Number Generator
|
|
; Park & Miller, CACM 31(10), Oct 1988, 32 bit integer version.
|
|
; better constants, as proposed by Park.
|
|
; By Ozan Yigit
|
|
|
|
;;; Rehacked by Olin 4/1995.
|
|
|
|
(define (random-state n)
|
|
(cons n #f))
|
|
|
|
(define (rand state)
|
|
(let ((seed (car state))
|
|
(A 2813) ; 48271
|
|
(M 8388607) ; 2147483647
|
|
(Q 2787) ; 44488
|
|
(R 2699)) ; 3399
|
|
(let* ((hi (quotient seed Q))
|
|
(lo (modulo seed Q))
|
|
(test (- (* A lo) (* R hi)))
|
|
(val (if (> test 0) test (+ test M))))
|
|
(set-car! state val)
|
|
val)))
|
|
|
|
(define (random-int n state)
|
|
(modulo (rand state) n))
|
|
|
|
; poker test
|
|
; seed 1
|
|
; cards 0-9 inclusive (random 10)
|
|
; five cards per hand
|
|
; 10000 hands
|
|
;
|
|
; Poker Hand Example Probability Calculated
|
|
; 5 of a kind (aaaaa) 0.0001 0
|
|
; 4 of a kind (aaaab) 0.0045 0.0053
|
|
; Full house (aaabb) 0.009 0.0093
|
|
; 3 of a kind (aaabc) 0.072 0.0682
|
|
; two pairs (aabbc) 0.108 0.1104
|
|
; Pair (aabcd) 0.504 0.501
|
|
; Bust (abcde) 0.3024 0.3058
|
|
|
|
; (define (random n)
|
|
; (let* ((M 2147483647)
|
|
; (slop (modulo M n)))
|
|
; (let loop ((r (rand)))
|
|
; (if (> r slop)
|
|
; (modulo r n)
|
|
; (loop (rand))))))
|
|
;
|
|
; (define (rngtest)
|
|
; (display "implementation ")
|
|
; (srand 1)
|
|
; (let loop ((n 0))
|
|
; (if (< n 10000)
|
|
; (begin
|
|
; (rand)
|
|
; (loop (1+ n)))))
|
|
; (if (= *seed* 399268537)
|
|
; (display "looks correct.")
|
|
; (begin
|
|
; (display "failed.")
|
|
; (newline)
|
|
; (display " current seed ") (display *seed*)
|
|
; (newline)
|
|
; (display " correct seed 399268537")))
|
|
; (newline))
|
|
|
|
;------------------------------------------------------------------------------
|
|
; Was file "uf.scm".
|
|
|
|
;;; Tarjan's amortised union-find data structure.
|
|
;;; Copyright (c) 1995 by Olin Shivers.
|
|
|
|
;;; This data structure implements disjoint sets of elements.
|
|
;;; Four operations are supported. The implementation is extremely
|
|
;;; fast -- any sequence of N operations can be performed in time
|
|
;;; so close to linear it's laughable how close it is. See your
|
|
;;; intro data structures book for more. The operations are:
|
|
;;;
|
|
;;; - (base-set nelts) -> set
|
|
;;; Returns a new set, of size NELTS.
|
|
;;;
|
|
;;; - (set-size s) -> integer
|
|
;;; Returns the number of elements in set S.
|
|
;;;
|
|
;;; - (union! set1 set2)
|
|
;;; Unions the two sets -- SET1 and SET2 are now considered the same set
|
|
;;; by SET-EQUAL?.
|
|
;;;
|
|
;;; - (set-equal? set1 set2)
|
|
;;; Returns true <==> the two sets are the same.
|
|
|
|
;;; Representation: a set is a cons cell. Every set has a "representative"
|
|
;;; cons cell, reached by chasing cdr links until we find the cons with
|
|
;;; cdr = (). Set equality is determined by comparing representatives using
|
|
;;; EQ?. A representative's car contains the number of elements in the set.
|
|
|
|
;;; The speed of the algorithm comes because when we chase links to find
|
|
;;; representatives, we collapse links by changing all the cells in the path
|
|
;;; we followed to point directly to the representative, so that next time
|
|
;;; we walk the cdr-chain, we'll go directly to the representative in one hop.
|
|
|
|
|
|
(define (base-set nelts) (cons nelts '()))
|
|
|
|
;;; Sets are chained together through cdr links. Last guy in the chain
|
|
;;; is the root of the set.
|
|
|
|
(define (get-set-root s)
|
|
(let lp ((r s)) ; Find the last pair
|
|
(let ((next (cdr r))) ; in the list. That's
|
|
(cond ((pair? next) (lp next)) ; the root r.
|
|
|
|
(else
|
|
(if (not (eq? r s)) ; Now zip down the list again,
|
|
(let lp ((x s)) ; changing everyone's cdr to r.
|
|
(let ((next (cdr x)))
|
|
(cond ((not (eq? r next))
|
|
(set-cdr! x r)
|
|
(lp next))))))
|
|
r))))) ; Then return r.
|
|
|
|
(define (set-equal? s1 s2) (eq? (get-set-root s1) (get-set-root s2)))
|
|
|
|
(define (set-size s) (car (get-set-root s)))
|
|
|
|
(define (union! s1 s2)
|
|
(let* ((r1 (get-set-root s1))
|
|
(r2 (get-set-root s2))
|
|
(n1 (set-size r1))
|
|
(n2 (set-size r2))
|
|
(n (+ n1 n2)))
|
|
|
|
(cond ((> n1 n2)
|
|
(set-cdr! r2 r1)
|
|
(set-car! r1 n))
|
|
(else
|
|
(set-cdr! r1 r2)
|
|
(set-car! r2 n)))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
; Was file "maze.scm".
|
|
|
|
;;; Building mazes with union/find disjoint sets.
|
|
;;; Copyright (c) 1995 by Olin Shivers.
|
|
|
|
;;; This is the algorithmic core of the maze constructor.
|
|
;;; External dependencies:
|
|
;;; - RANDOM-INT
|
|
;;; - Union/find code
|
|
;;; - bitwise logical functions
|
|
|
|
; (define-record wall
|
|
; owner ; Cell that owns this wall.
|
|
; neighbor ; The other cell bordering this wall.
|
|
; bit) ; Integer -- a bit identifying this wall in OWNER's cell.
|
|
|
|
; (define-record cell
|
|
; reachable ; Union/find set -- all reachable cells.
|
|
; id ; Identifying info (e.g., the coords of the cell).
|
|
; (walls -1) ; A bitset telling which walls are still standing.
|
|
; (parent #f) ; For DFS spanning tree construction.
|
|
; (mark #f)) ; For marking the solution path.
|
|
|
|
(define (make-wall owner neighbor bit)
|
|
(vector 'wall owner neighbor bit))
|
|
|
|
(define (wall:owner o) (vector-ref o 1))
|
|
(define (set-wall:owner o v) (vector-set! o 1 v))
|
|
(define (wall:neighbor o) (vector-ref o 2))
|
|
(define (set-wall:neighbor o v) (vector-set! o 2 v))
|
|
(define (wall:bit o) (vector-ref o 3))
|
|
(define (set-wall:bit o v) (vector-set! o 3 v))
|
|
|
|
(define (make-cell reachable id)
|
|
(vector 'cell reachable id -1 #f #f))
|
|
|
|
(define (cell:reachable o) (vector-ref o 1))
|
|
(define (set-cell:reachable o v) (vector-set! o 1 v))
|
|
(define (cell:id o) (vector-ref o 2))
|
|
(define (set-cell:id o v) (vector-set! o 2 v))
|
|
(define (cell:walls o) (vector-ref o 3))
|
|
(define (set-cell:walls o v) (vector-set! o 3 v))
|
|
(define (cell:parent o) (vector-ref o 4))
|
|
(define (set-cell:parent o v) (vector-set! o 4 v))
|
|
(define (cell:mark o) (vector-ref o 5))
|
|
(define (set-cell:mark o v) (vector-set! o 5 v))
|
|
|
|
;;; Iterates in reverse order.
|
|
|
|
(define (vector-for-each proc v)
|
|
(let lp ((i (- (vector-length v) 1)))
|
|
(cond ((>= i 0)
|
|
(proc (vector-ref v i))
|
|
(lp (- i 1))))))
|
|
|
|
|
|
;;; Randomly permute a vector.
|
|
|
|
(define (permute-vec! v random-state)
|
|
(let lp ((i (- (vector-length v) 1)))
|
|
(cond ((> i 1)
|
|
(let ((elt-i (vector-ref v i))
|
|
(j (random-int i random-state))) ; j in [0,i)
|
|
(vector-set! v i (vector-ref v j))
|
|
(vector-set! v j elt-i))
|
|
(lp (- i 1)))))
|
|
v)
|
|
|
|
|
|
;;; This is the core of the algorithm.
|
|
|
|
(define (dig-maze walls ncells)
|
|
(call-with-current-continuation
|
|
(lambda (quit)
|
|
(vector-for-each
|
|
(lambda (wall) ; For each wall,
|
|
(let* ((c1 (wall:owner wall)) ; find the cells on
|
|
(set1 (cell:reachable c1))
|
|
|
|
(c2 (wall:neighbor wall)) ; each side of the wall
|
|
(set2 (cell:reachable c2)))
|
|
|
|
;; If there is no path from c1 to c2, knock down the
|
|
;; wall and union the two sets of reachable cells.
|
|
;; If the new set of reachable cells is the whole set
|
|
;; of cells, quit.
|
|
(if (not (set-equal? set1 set2))
|
|
(let ((walls (cell:walls c1))
|
|
(wall-mask (bitwise-not (wall:bit wall))))
|
|
(union! set1 set2)
|
|
(set-cell:walls c1 (bitwise-and walls wall-mask))
|
|
(if (= (set-size set1) ncells) (quit #f))))))
|
|
walls))))
|
|
|
|
|
|
;;; Some simple DFS routines useful for determining path length
|
|
;;; through the maze.
|
|
|
|
;;; Build a DFS tree from ROOT.
|
|
;;; (DO-CHILDREN proc maze node) applies PROC to each of NODE's children.
|
|
;;; We assume there are no loops in the maze; if this is incorrect, the
|
|
;;; algorithm will diverge.
|
|
|
|
(define (dfs-maze maze root do-children)
|
|
(let search ((node root) (parent #f))
|
|
(set-cell:parent node parent)
|
|
(do-children (lambda (child)
|
|
(if (not (eq? child parent))
|
|
(search child node)))
|
|
maze node)))
|
|
|
|
;;; Move the root to NEW-ROOT.
|
|
|
|
(define (reroot-maze new-root)
|
|
(let lp ((node new-root) (new-parent #f))
|
|
(let ((old-parent (cell:parent node)))
|
|
(set-cell:parent node new-parent)
|
|
(if old-parent (lp old-parent node)))))
|
|
|
|
;;; How far from CELL to the root?
|
|
|
|
(define (path-length cell)
|
|
(do ((len 0 (+ len 1))
|
|
(node (cell:parent cell) (cell:parent node)))
|
|
((not node) len)))
|
|
|
|
;;; Mark the nodes from NODE back to root. Used to mark the winning path.
|
|
|
|
(define (mark-path node)
|
|
(let lp ((node node))
|
|
(set-cell:mark node #t)
|
|
(cond ((cell:parent node) => lp))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
; Was file "harr.scm".
|
|
|
|
;;; Hex arrays
|
|
;;; Copyright (c) 1995 by Olin Shivers.
|
|
|
|
;;; External dependencies:
|
|
;;; - define-record
|
|
|
|
;;; ___ ___ ___
|
|
;;; / \ / \ / \
|
|
;;; ___/ A \___/ A \___/ A \___
|
|
;;; / \ / \ / \ / \
|
|
;;; / A \___/ A \___/ A \___/ A \
|
|
;;; \ / \ / \ / \ /
|
|
;;; \___/ \___/ \___/ \___/
|
|
;;; / \ / \ / \ / \
|
|
;;; / \___/ \___/ \___/ \
|
|
;;; \ / \ / \ / \ /
|
|
;;; \___/ \___/ \___/ \___/
|
|
;;; / \ / \ / \ / \
|
|
;;; / \___/ \___/ \___/ \
|
|
;;; \ / \ / \ / \ /
|
|
;;; \___/ \___/ \___/ \___/
|
|
|
|
;;; Hex arrays are indexed by the (x,y) coord of the center of the hexagonal
|
|
;;; element. Hexes are three wide and two high; e.g., to get from the center
|
|
;;; of an elt to its {NW, N, NE} neighbors, add {(-3,1), (0,2), (3,1)}
|
|
;;; respectively.
|
|
;;;
|
|
;;; Hex arrays are represented with a matrix, essentially made by shoving the
|
|
;;; odd columns down a half-cell so things line up. The mapping is as follows:
|
|
;;; Center coord row/column
|
|
;;; ------------ ----------
|
|
;;; (x, y) -> (y/2, x/3)
|
|
;;; (3c, 2r + c&1) <- (r, c)
|
|
|
|
|
|
; (define-record harr
|
|
; nrows
|
|
; ncols
|
|
; elts)
|
|
|
|
(define (make-harr nrows ncols elts)
|
|
(vector 'harr nrows ncols elts))
|
|
|
|
(define (harr:nrows o) (vector-ref o 1))
|
|
(define (set-harr:nrows o v) (vector-set! o 1 v))
|
|
(define (harr:ncols o) (vector-ref o 2))
|
|
(define (set-harr:ncols o v) (vector-set! o 2 v))
|
|
(define (harr:elts o) (vector-ref o 3))
|
|
(define (set-harr:elts o v) (vector-set! o 3 v))
|
|
|
|
(define (harr r c)
|
|
(make-harr r c (make-vector (* r c))))
|
|
|
|
|
|
|
|
(define (href ha x y)
|
|
(let ((r (quotient y 2))
|
|
(c (quotient x 3)))
|
|
(vector-ref (harr:elts ha)
|
|
(+ (* (harr:ncols ha) r) c))))
|
|
|
|
(define (hset! ha x y val)
|
|
(let ((r (quotient y 2))
|
|
(c (quotient x 3)))
|
|
(vector-set! (harr:elts ha)
|
|
(+ (* (harr:ncols ha) r) c)
|
|
val)))
|
|
|
|
(define (href/rc ha r c)
|
|
(vector-ref (harr:elts ha)
|
|
(+ (* (harr:ncols ha) r) c)))
|
|
|
|
;;; Create a nrows x ncols hex array. The elt centered on coord (x, y)
|
|
;;; is the value returned by (PROC x y).
|
|
|
|
(define (harr-tabulate nrows ncols proc)
|
|
(let ((v (make-vector (* nrows ncols))))
|
|
|
|
(do ((r (- nrows 1) (- r 1)))
|
|
((< r 0))
|
|
(do ((c 0 (+ c 1))
|
|
(i (* r ncols) (+ i 1)))
|
|
((= c ncols))
|
|
(vector-set! v i (proc (* 3 c) (+ (* 2 r) (bitwise-and c 1))))))
|
|
|
|
(make-harr nrows ncols v)))
|
|
|
|
|
|
(define (harr-for-each proc harr)
|
|
(vector-for-each proc (harr:elts harr)))
|
|
|
|
;------------------------------------------------------------------------------
|
|
; Was file "hex.scm".
|
|
|
|
;;; Hexagonal hackery for maze generation.
|
|
;;; Copyright (c) 1995 by Olin Shivers.
|
|
|
|
;;; External dependencies:
|
|
;;; - cell and wall records
|
|
;;; - Functional Postscript for HEXES->PATH
|
|
;;; - logical functions for bit hacking
|
|
;;; - hex array code.
|
|
|
|
;;; To have the maze span (0,0) to (1,1):
|
|
;;; (scale (/ (+ 1 (* 3 ncols))) (/ (+ 1 (* 2 nrows)))
|
|
;;; (translate (point 2 1) maze))
|
|
|
|
;;; Every elt of the hex array manages his SW, S, and SE wall.
|
|
;;; Terminology: - An even column is one whose column index is even. That
|
|
;;; means the first, third, ... columns (indices 0, 2, ...).
|
|
;;; - An odd column is one whose column index is odd. That
|
|
;;; means the second, fourth... columns (indices 1, 3, ...).
|
|
;;; The even/odd flip-flop is confusing; be careful to keep it
|
|
;;; straight. The *even* columns are the low ones. The *odd*
|
|
;;; columns are the high ones.
|
|
;;; _ _
|
|
;;; _/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/
|
|
;;; 0 1 2 3
|
|
|
|
(define south-west 1)
|
|
(define south 2)
|
|
(define south-east 4)
|
|
|
|
(define (gen-maze-array r c)
|
|
(harr-tabulate r c (lambda (x y) (make-cell (base-set 1) (cons x y)))))
|
|
|
|
;;; This could be made more efficient.
|
|
(define (make-wall-vec harr)
|
|
(let* ((nrows (harr:nrows harr))
|
|
(ncols (harr:ncols harr))
|
|
(xmax (* 3 (- ncols 1)))
|
|
|
|
;; Accumulate walls.
|
|
(walls '())
|
|
(add-wall (lambda (o n b) ; owner neighbor bit
|
|
(set! walls (cons (make-wall o n b) walls)))))
|
|
|
|
;; Do everything but the bottom row.
|
|
(do ((x (* (- ncols 1) 3) (- x 3)))
|
|
((< x 0))
|
|
(do ((y (+ (* (- nrows 1) 2) (bitwise-and x 1))
|
|
(- y 2)))
|
|
((<= y 1)) ; Don't do bottom row.
|
|
(let ((hex (href harr x y)))
|
|
(if (not (zero? x))
|
|
(add-wall hex (href harr (- x 3) (- y 1)) south-west))
|
|
(add-wall hex (href harr x (- y 2)) south)
|
|
(if (< x xmax)
|
|
(add-wall hex (href harr (+ x 3) (- y 1)) south-east)))))
|
|
|
|
;; Do the SE and SW walls of the odd columns on the bottom row.
|
|
;; If the rightmost bottom hex lies in an odd column, however,
|
|
;; don't add it's SE wall -- it's a corner hex, and has no SE neighbor.
|
|
(if (> ncols 1)
|
|
(let ((rmoc-x (+ 3 (* 6 (quotient (- ncols 2) 2)))))
|
|
;; Do rightmost odd col.
|
|
(let ((rmoc-hex (href harr rmoc-x 1)))
|
|
(if (< rmoc-x xmax) ; Not a corner -- do E wall.
|
|
(add-wall rmoc-hex (href harr xmax 0) south-east))
|
|
(add-wall rmoc-hex (href harr (- rmoc-x 3) 0) south-west))
|
|
|
|
(do ((x (- rmoc-x 6) ; Do the rest of the bottom row's odd cols.
|
|
(- x 6)))
|
|
((< x 3)) ; 3 is X coord of leftmost odd column.
|
|
(add-wall (href harr x 1) (href harr (- x 3) 0) south-west)
|
|
(add-wall (href harr x 1) (href harr (+ x 3) 0) south-east))))
|
|
|
|
(list->vector walls)))
|
|
|
|
|
|
;;; Find the cell ctop from the top row, and the cell cbot from the bottom
|
|
;;; row such that cbot is furthest from ctop.
|
|
;;; Return [ctop-x, ctop-y, cbot-x, cbot-y].
|
|
|
|
(define (pick-entrances harr)
|
|
(dfs-maze harr (href/rc harr 0 0) for-each-hex-child)
|
|
(let ((nrows (harr:nrows harr))
|
|
(ncols (harr:ncols harr)))
|
|
(let tp-lp ((max-len -1)
|
|
(entrance #f)
|
|
(exit #f)
|
|
(tcol (- ncols 1)))
|
|
(if (< tcol 0) (vector entrance exit)
|
|
(let ((top-cell (href/rc harr (- nrows 1) tcol)))
|
|
(reroot-maze top-cell)
|
|
(let ((result
|
|
(let bt-lp ((max-len max-len)
|
|
(entrance entrance)
|
|
(exit exit)
|
|
(bcol (- ncols 1)))
|
|
; (format #t "~a ~a ~a ~a~%" max-len entrance exit bcol)
|
|
(if (< bcol 0) (vector max-len entrance exit)
|
|
(let ((this-len (path-length (href/rc harr 0 bcol))))
|
|
(if (> this-len max-len)
|
|
(bt-lp this-len tcol bcol (- bcol 1))
|
|
(bt-lp max-len entrance exit (- bcol 1))))))))
|
|
(let ((max-len (vector-ref result 0))
|
|
(entrance (vector-ref result 1))
|
|
(exit (vector-ref result 2)))
|
|
(tp-lp max-len entrance exit (- tcol 1)))))))))
|
|
|
|
|
|
|
|
;;; Apply PROC to each node reachable from CELL.
|
|
(define (for-each-hex-child proc harr cell)
|
|
(let* ((walls (cell:walls cell))
|
|
(id (cell:id cell))
|
|
(x (car id))
|
|
(y (cdr id))
|
|
(nr (harr:nrows harr))
|
|
(nc (harr:ncols harr))
|
|
(maxy (* 2 (- nr 1)))
|
|
(maxx (* 3 (- nc 1))))
|
|
(if (not (bit-test walls south-west)) (proc (href harr (- x 3) (- y 1))))
|
|
(if (not (bit-test walls south)) (proc (href harr x (- y 2))))
|
|
(if (not (bit-test walls south-east)) (proc (href harr (+ x 3) (- y 1))))
|
|
|
|
;; NW neighbor, if there is one (we may be in col 1, or top row/odd col)
|
|
(if (and (> x 0) ; Not in first column.
|
|
(or (<= y maxy) ; Not on top row or
|
|
(zero? (modulo x 6)))) ; not in an odd column.
|
|
(let ((nw (href harr (- x 3) (+ y 1))))
|
|
(if (not (bit-test (cell:walls nw) south-east)) (proc nw))))
|
|
|
|
;; N neighbor, if there is one (we may be on top row).
|
|
(if (< y maxy) ; Not on top row
|
|
(let ((n (href harr x (+ y 2))))
|
|
(if (not (bit-test (cell:walls n) south)) (proc n))))
|
|
|
|
;; NE neighbor, if there is one (we may be in last col, or top row/odd col)
|
|
(if (and (< x maxx) ; Not in last column.
|
|
(or (<= y maxy) ; Not on top row or
|
|
(zero? (modulo x 6)))) ; not in an odd column.
|
|
(let ((ne (href harr (+ x 3) (+ y 1))))
|
|
(if (not (bit-test (cell:walls ne) south-west)) (proc ne))))))
|
|
|
|
|
|
|
|
;;; The top-level
|
|
(define (make-maze nrows ncols)
|
|
(let* ((cells (gen-maze-array nrows ncols))
|
|
(walls (permute-vec! (make-wall-vec cells) (random-state 20))))
|
|
(dig-maze walls (* nrows ncols))
|
|
(let ((result (pick-entrances cells)))
|
|
(let ((entrance (vector-ref result 0))
|
|
(exit (vector-ref result 1)))
|
|
(let* ((exit-cell (href/rc cells 0 exit))
|
|
(walls (cell:walls exit-cell)))
|
|
(reroot-maze (href/rc cells (- nrows 1) entrance))
|
|
(mark-path exit-cell)
|
|
(set-cell:walls exit-cell (bitwise-and walls (bitwise-not south)))
|
|
(vector cells entrance exit))))))
|
|
|
|
|
|
(define (pmaze nrows ncols)
|
|
(let ((result (make-maze nrows ncols)))
|
|
(let ((cells (vector-ref result 0))
|
|
(entrance (vector-ref result 1))
|
|
(exit (vector-ref result 2)))
|
|
(print-hexmaze cells entrance))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
; Was file "hexprint.scm".
|
|
|
|
;;; Print out a hex array with characters.
|
|
;;; Copyright (c) 1995 by Olin Shivers.
|
|
|
|
;;; External dependencies:
|
|
;;; - hex array code
|
|
;;; - hex cell code
|
|
|
|
;;; _ _
|
|
;;; _/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/
|
|
|
|
;;; Top part of top row looks like this:
|
|
;;; _ _ _ _
|
|
;;; _/ \_/ \/ \_/ \
|
|
;;; /
|
|
|
|
(define output #f) ; the list of all characters written out, in reverse order.
|
|
|
|
(define (write-ch c)
|
|
(set! output (cons c output)))
|
|
|
|
(define (print-hexmaze harr entrance)
|
|
(let* ((nrows (harr:nrows harr))
|
|
(ncols (harr:ncols harr))
|
|
(ncols2 (* 2 (quotient ncols 2))))
|
|
|
|
;; Print out the flat tops for the top row's odd cols.
|
|
(do ((c 1 (+ c 2)))
|
|
((>= c ncols))
|
|
; (display " ")
|
|
(write-ch #\space)
|
|
(write-ch #\space)
|
|
(write-ch #\space)
|
|
(write-ch (if (= c entrance) #\space #\_)))
|
|
; (newline)
|
|
(write-ch #\newline)
|
|
|
|
;; Print out the slanted tops for the top row's odd cols
|
|
;; and the flat tops for the top row's even cols.
|
|
(write-ch #\space)
|
|
(do ((c 0 (+ c 2)))
|
|
((>= c ncols2))
|
|
; (format #t "~a/~a\\"
|
|
; (if (= c entrance) #\space #\_)
|
|
; (dot/space harr (- nrows 1) (+ c 1)))
|
|
(write-ch (if (= c entrance) #\space #\_))
|
|
(write-ch #\/)
|
|
(write-ch (dot/space harr (- nrows 1) (+ c 1)))
|
|
(write-ch #\\))
|
|
(if (odd? ncols)
|
|
(write-ch (if (= entrance (- ncols 1)) #\space #\_)))
|
|
; (newline)
|
|
(write-ch #\newline)
|
|
|
|
(do ((r (- nrows 1) (- r 1)))
|
|
((< r 0))
|
|
|
|
;; Do the bottoms for row r's odd cols.
|
|
(write-ch #\/)
|
|
(do ((c 1 (+ c 2)))
|
|
((>= c ncols2))
|
|
;; The dot/space for the even col just behind c.
|
|
(write-ch (dot/space harr r (- c 1)))
|
|
(display-hexbottom (cell:walls (href/rc harr r c))))
|
|
|
|
(cond ((odd? ncols)
|
|
(write-ch (dot/space harr r (- ncols 1)))
|
|
(write-ch #\\)))
|
|
; (newline)
|
|
(write-ch #\newline)
|
|
|
|
;; Do the bottoms for row r's even cols.
|
|
(do ((c 0 (+ c 2)))
|
|
((>= c ncols2))
|
|
(display-hexbottom (cell:walls (href/rc harr r c)))
|
|
;; The dot/space is for the odd col just after c, on row below.
|
|
(write-ch (dot/space harr (- r 1) (+ c 1))))
|
|
|
|
(cond ((odd? ncols)
|
|
(display-hexbottom (cell:walls (href/rc harr r (- ncols 1)))))
|
|
((not (zero? r)) (write-ch #\\)))
|
|
; (newline)
|
|
(write-ch #\newline))))
|
|
|
|
(define (bit-test j bit)
|
|
(not (zero? (bitwise-and j bit))))
|
|
|
|
;;; Return a . if harr[r,c] is marked, otherwise a space.
|
|
;;; We use the dot to mark the solution path.
|
|
(define (dot/space harr r c)
|
|
(if (and (>= r 0) (cell:mark (href/rc harr r c))) #\. #\space))
|
|
|
|
;;; Print a \_/ hex bottom.
|
|
(define (display-hexbottom hexwalls)
|
|
(write-ch (if (bit-test hexwalls south-west) #\\ #\space))
|
|
(write-ch (if (bit-test hexwalls south ) #\_ #\space))
|
|
(write-ch (if (bit-test hexwalls south-east) #\/ #\space)))
|
|
|
|
;;; _ _
|
|
;;; _/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \_/
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \
|
|
;;; / \_/ \_/
|
|
;;; \_/ \_/ \_/
|
|
|
|
;------------------------------------------------------------------------------
|
|
|
|
(define (run nrows ncols)
|
|
(set! output '())
|
|
(pmaze nrows ncols)
|
|
(reverse output))
|
|
|
|
(define (main . args)
|
|
(run-benchmark
|
|
"maze"
|
|
maze-iters
|
|
(lambda (result)
|
|
(equal? result '
|
|
(#\ #\ #\ #\_ #\ #\ #\ #\_ #\ #\ #\ #\_ #\newline
|
|
#\ #\_ #\/ #\ #\\ #\_ #\/ #\ #\\ #\_ #\/ #\. #\\ #\ #\newline
|
|
#\/ #\ #\\ #\ #\ #\ #\\ #\_ #\ #\. #\ #\ #\/ #\. #\\ #\newline
|
|
#\\ #\ #\ #\ #\\ #\ #\/ #\. #\ #\_ #\/ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\/ #\. #\ #\_ #\/ #\ #\\ #\_ #\ #\. #\\ #\newline
|
|
#\\ #\ #\/ #\ #\\ #\ #\/ #\ #\ #\_ #\/ #\ #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\ #\_ #\/ #\. #\\ #\ #\/ #\ #\\ #\ #\/ #\ #\\ #\newline
|
|
#\\ #\ #\/ #\ #\\ #\ #\/ #\ #\ #\_ #\/ #\ #\ #\ #\/ #\newline
|
|
#\/ #\ #\\ #\ #\/ #\. #\\ #\ #\/ #\. #\\ #\_ #\/ #\ #\\ #\newline
|
|
#\\ #\_ #\/ #\ #\\ #\ #\/ #\. #\ #\_ #\ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\ #\. #\ #\_ #\/ #\ #\\ #\ #\ #\ #\\ #\newline
|
|
#\\ #\_ #\ #\ #\\ #\_ #\/ #\ #\ #\_ #\/ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\ #\_ #\/ #\ #\ #\ #\/ #\ #\\ #\ #\/ #\ #\\ #\newline
|
|
#\\ #\_ #\ #\ #\\ #\ #\/ #\ #\\ #\_ #\ #\. #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\ #\ #\\ #\_ #\ #\ #\\ #\_ #\ #\. #\\ #\newline
|
|
#\\ #\_ #\ #\ #\\ #\_ #\/ #\ #\ #\_ #\/ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\ #\ #\\ #\ #\/ #\. #\\ #\ #\ #\. #\\ #\newline
|
|
#\\ #\ #\/ #\. #\\ #\_ #\ #\. #\ #\ #\/ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\ #\ #\ #\. #\ #\_ #\/ #\. #\\ #\ #\/ #\ #\\ #\newline
|
|
#\\ #\ #\/ #\. #\\ #\_ #\/ #\. #\\ #\_ #\ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\ #\. #\ #\ #\/ #\ #\ #\_ #\/ #\ #\\ #\newline
|
|
#\\ #\_ #\ #\ #\\ #\_ #\/ #\. #\\ #\_ #\ #\ #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\ #\_ #\/ #\ #\\ #\ #\/ #\ #\\ #\_ #\ #\ #\\ #\newline
|
|
#\\ #\_ #\/ #\ #\ #\_ #\/ #\. #\\ #\_ #\ #\ #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\\ #\ #\/ #\ #\ #\_ #\ #\. #\ #\_ #\ #\ #\\ #\newline
|
|
#\\ #\ #\/ #\ #\\ #\_ #\/ #\. #\ #\_ #\ #\ #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\ #\_ #\ #\ #\\ #\ #\ #\ #\\ #\_ #\/ #\ #\\ #\newline
|
|
#\\ #\_ #\/ #\. #\\ #\_ #\ #\. #\\ #\_ #\/ #\ #\ #\_ #\/ #\newline
|
|
#\/ #\ #\\ #\ #\ #\. #\ #\_ #\/ #\ #\ #\ #\/ #\ #\\ #\newline
|
|
#\\ #\ #\/ #\. #\\ #\_ #\/ #\ #\\ #\_ #\/ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\ #\. #\ #\_ #\/ #\. #\ #\ #\ #\ #\\ #\newline
|
|
#\\ #\ #\ #\ #\ #\ #\ #\. #\ #\ #\/ #\. #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\/ #\ #\\ #\_ #\/ #\ #\\ #\_ #\ #\. #\\ #\newline
|
|
#\\ #\_ #\/ #\ #\ #\ #\/ #\ #\\ #\_ #\/ #\. #\ #\ #\/ #\newline
|
|
#\/ #\ #\ #\ #\/ #\ #\ #\_ #\ #\ #\\ #\ #\/ #\ #\\ #\newline
|
|
#\\ #\_ #\/ #\ #\\ #\_ #\/ #\ #\\ #\_ #\/ #\. #\\ #\_ #\/ #\newline
|
|
#\/ #\ #\\ #\_ #\/ #\ #\ #\_ #\/ #\ #\\ #\_ #\ #\. #\\ #\newline
|
|
#\\ #\ #\ #\ #\ #\_ #\/ #\. #\ #\ #\/ #\. #\ #\_ #\/ #\newline
|
|
#\/ #\ #\\ #\ #\/ #\. #\ #\ #\/ #\ #\\ #\_ #\ #\. #\\ #\newline
|
|
#\\ #\_ #\/ #\. #\ #\_ #\/ #\. #\\ #\_ #\/ #\. #\\ #\ #\/ #\newline
|
|
#\/ #\ #\ #\_ #\ #\. #\\ #\_ #\ #\. #\ #\_ #\ #\. #\\ #\newline
|
|
#\\ #\_ #\/ #\ #\\ #\ #\/ #\ #\\ #\_ #\/ #\ #\\ #\_ #\/ #\newline)))
|
|
(lambda (nrows ncols) (lambda () (run nrows ncols)))
|
|
20
|
|
7))
|