ikarus/benchmarks/src/sboyer.scm

785 lines
28 KiB
Scheme

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; File: sboyer.sch
; Description: The Boyer benchmark
; Author: Bob Boyer
; Created: 5-Apr-85
; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
; 22-Jul-87 (Will Clinger)
; 2-Jul-88 (Will Clinger -- distinguished #f and the empty list)
; 13-Feb-97 (Will Clinger -- fixed bugs in unifier and rules,
; rewrote to eliminate property lists, and added
; a scaling parameter suggested by Bob Boyer)
; 19-Mar-99 (Will Clinger -- cleaned up comments)
; Language: Scheme
; Status: Public Domain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SBOYER -- Logic programming benchmark, originally written by Bob Boyer.
;;; Much less CONS-intensive than NBOYER because it uses Henry Baker's
;;; "sharing cons".
; Note: The version of this benchmark that appears in Dick Gabriel's book
; contained several bugs that are corrected here. These bugs are discussed
; by Henry Baker, "The Boyer Benchmark Meets Linear Logic", ACM SIGPLAN Lisp
; Pointers 6(4), October-December 1993, pages 3-10. The fixed bugs are:
;
; The benchmark now returns a boolean result.
; FALSEP and TRUEP use TERM-MEMBER? rather than MEMV (which is called MEMBER
; in Common Lisp)
; ONE-WAY-UNIFY1 now treats numbers correctly
; ONE-WAY-UNIFY1-LST now treats empty lists correctly
; Rule 19 has been corrected (this rule was not touched by the original
; benchmark, but is used by this version)
; Rules 84 and 101 have been corrected (but these rules are never touched
; by the benchmark)
;
; According to Baker, these bug fixes make the benchmark 10-25% slower.
; Please do not compare the timings from this benchmark against those of
; the original benchmark.
;
; This version of the benchmark also prints the number of rewrites as a sanity
; check, because it is too easy for a buggy version to return the correct
; boolean result. The correct number of rewrites is
;
; n rewrites peak live storage (approximate, in bytes)
; 0 95024
; 1 591777
; 2 1813975
; 3 5375678
; 4 16445406
; 5 51507739
; Sboyer is a 2-phase benchmark.
; The first phase attaches lemmas to symbols. This phase is not timed,
; but it accounts for very little of the runtime anyway.
; The second phase creates the test problem, and tests to see
; whether it is implied by the lemmas.
(define (main . args)
(let ((n (if (null? args) 0 (car args))))
(setup-boyer)
(run-benchmark
(string-append "sboyer"
(number->string n))
sboyer-iters
(lambda (rewrites)
(and (number? rewrites)
(case n
((0) (= rewrites 95024))
((1) (= rewrites 591777))
((2) (= rewrites 1813975))
((3) (= rewrites 5375678))
((4) (= rewrites 16445406))
((5) (= rewrites 51507739))
; If it works for n <= 5, assume it works.
(else #t))))
(lambda (alist term n) (lambda () (test-boyer alist term n)))
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y f (times (times a b)
(plus c d)))
(z f (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b)))))
(quote (implies (and (implies x y)
(and (implies y z)
(and (implies z u)
(implies u w))))
(implies x w)))
n)))
(define (setup-boyer) #t) ; assigned below
(define (test-boyer) #t) ; assigned below
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The first phase.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; In the original benchmark, it stored a list of lemmas on the
; property lists of symbols.
; In the new benchmark, it maintains an association list of
; symbols and symbol-records, and stores the list of lemmas
; within the symbol-records.
(let ()
(define (setup)
(add-lemma-lst
(quote ((equal (compile form)
(reverse (codegen (optimize form)
(nil))))
(equal (eqp x y)
(equal (fix x)
(fix y)))
(equal (greaterp x y)
(lessp y x))
(equal (lesseqp x y)
(not (lessp y x)))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (boolean x)
(or (equal x (t))
(equal x (f))))
(equal (iff x y)
(and (implies x y)
(implies y x)))
(equal (even1 x)
(if (zerop x)
(t)
(odd (_1- x))))
(equal (countps- l pred)
(countps-loop l pred (zero)))
(equal (fact- i)
(fact-loop i 1))
(equal (reverse- x)
(reverse-loop x (nil)))
(equal (divides x y)
(zerop (remainder y x)))
(equal (assume-true var alist)
(cons (cons var (t))
alist))
(equal (assume-false var alist)
(cons (cons var (f))
alist))
(equal (tautology-checker x)
(tautologyp (normalize x)
(nil)))
(equal (falsify x)
(falsify1 (normalize x)
(nil)))
(equal (prime x)
(and (not (zerop x))
(not (equal x (add1 (zero))))
(prime1 x (_1- x))))
(equal (and p q)
(if p (if q (t)
(f))
(f)))
(equal (or p q)
(if p (t)
(if q (t)
(f))))
(equal (not p)
(if p (f)
(t)))
(equal (implies p q)
(if p (if q (t)
(f))
(t)))
(equal (fix x)
(if (numberp x)
x
(zero)))
(equal (if (if a b c)
d e)
(if a (if b d e)
(if c d e)))
(equal (zerop x)
(or (equal x (zero))
(not (numberp x))))
(equal (plus (plus x y)
z)
(plus x (plus y z)))
(equal (equal (plus a b)
(zero))
(and (zerop a)
(zerop b)))
(equal (difference x x)
(zero))
(equal (equal (plus a b)
(plus a c))
(equal (fix b)
(fix c)))
(equal (equal (zero)
(difference x y))
(not (lessp y x)))
(equal (equal x (difference x y))
(and (numberp x)
(or (equal x (zero))
(zerop y))))
(equal (meaning (plus-tree (append x y))
a)
(plus (meaning (plus-tree x)
a)
(meaning (plus-tree y)
a)))
(equal (meaning (plus-tree (plus-fringe x))
a)
(fix (meaning x a)))
(equal (append (append x y)
z)
(append x (append y z)))
(equal (reverse (append a b))
(append (reverse b)
(reverse a)))
(equal (times x (plus y z))
(plus (times x y)
(times x z)))
(equal (times (times x y)
z)
(times x (times y z)))
(equal (equal (times x y)
(zero))
(or (zerop x)
(zerop y)))
(equal (exec (append x y)
pds envrn)
(exec y (exec x pds envrn)
envrn))
(equal (mc-flatten x y)
(append (flatten x)
y))
(equal (member x (append a b))
(or (member x a)
(member x b)))
(equal (member x (reverse y))
(member x y))
(equal (length (reverse x))
(length x))
(equal (member a (intersect b c))
(and (member a b)
(member a c)))
(equal (nth (zero)
i)
(zero))
(equal (exp i (plus j k))
(times (exp i j)
(exp i k)))
(equal (exp i (times j k))
(exp (exp i j)
k))
(equal (reverse-loop x y)
(append (reverse x)
y))
(equal (reverse-loop x (nil))
(reverse x))
(equal (count-list z (sort-lp x y))
(plus (count-list z x)
(count-list z y)))
(equal (equal (append a b)
(append a c))
(equal b c))
(equal (plus (remainder x y)
(times y (quotient x y)))
(fix x))
(equal (power-eval (big-plus1 l i base)
base)
(plus (power-eval l base)
i))
(equal (power-eval (big-plus x y i base)
base)
(plus i (plus (power-eval x base)
(power-eval y base))))
(equal (remainder y 1)
(zero))
(equal (lessp (remainder x y)
y)
(not (zerop y)))
(equal (remainder x x)
(zero))
(equal (lessp (quotient i j)
i)
(and (not (zerop i))
(or (zerop j)
(not (equal j 1)))))
(equal (lessp (remainder x y)
x)
(and (not (zerop y))
(not (zerop x))
(not (lessp x y))))
(equal (power-eval (power-rep i base)
base)
(fix i))
(equal (power-eval (big-plus (power-rep i base)
(power-rep j base)
(zero)
base)
base)
(plus i j))
(equal (gcd x y)
(gcd y x))
(equal (nth (append a b)
i)
(append (nth a i)
(nth b (difference i (length a)))))
(equal (difference (plus x y)
x)
(fix y))
(equal (difference (plus y x)
x)
(fix y))
(equal (difference (plus x y)
(plus x z))
(difference y z))
(equal (times x (difference c w))
(difference (times c x)
(times w x)))
(equal (remainder (times x z)
z)
(zero))
(equal (difference (plus b (plus a c))
a)
(plus b c))
(equal (difference (add1 (plus y z))
z)
(add1 y))
(equal (lessp (plus x y)
(plus x z))
(lessp y z))
(equal (lessp (times x z)
(times y z))
(and (not (zerop z))
(lessp x y)))
(equal (lessp y (plus x y))
(not (zerop x)))
(equal (gcd (times x z)
(times y z))
(times z (gcd x y)))
(equal (value (normalize x)
a)
(value x a))
(equal (equal (flatten x)
(cons y (nil)))
(and (nlistp x)
(equal x y)))
(equal (listp (gopher x))
(listp x))
(equal (samefringe x y)
(equal (flatten x)
(flatten y)))
(equal (equal (greatest-factor x y)
(zero))
(and (or (zerop y)
(equal y 1))
(equal x (zero))))
(equal (equal (greatest-factor x y)
1)
(equal x 1))
(equal (numberp (greatest-factor x y))
(not (and (or (zerop y)
(equal y 1))
(not (numberp x)))))
(equal (times-list (append x y))
(times (times-list x)
(times-list y)))
(equal (prime-list (append x y))
(and (prime-list x)
(prime-list y)))
(equal (equal z (times w z))
(and (numberp z)
(or (equal z (zero))
(equal w 1))))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (equal x (times x y))
(or (equal x (zero))
(and (numberp x)
(equal y 1))))
(equal (remainder (times y x)
y)
(zero))
(equal (equal (times a b)
1)
(and (not (equal a (zero)))
(not (equal b (zero)))
(numberp a)
(numberp b)
(equal (_1- a)
(zero))
(equal (_1- b)
(zero))))
(equal (lessp (length (delete x l))
(length l))
(member x l))
(equal (sort2 (delete x l))
(delete x (sort2 l)))
(equal (dsort x)
(sort2 x))
(equal (length (cons x1
(cons x2
(cons x3 (cons x4
(cons x5
(cons x6 x7)))))))
(plus 6 (length x7)))
(equal (difference (add1 (add1 x))
2)
(fix x))
(equal (quotient (plus x (plus x y))
2)
(plus x (quotient y 2)))
(equal (sigma (zero)
i)
(quotient (times i (add1 i))
2))
(equal (plus x (add1 y))
(if (numberp y)
(add1 (plus x y))
(add1 x)))
(equal (equal (difference x y)
(difference z y))
(if (lessp x y)
(not (lessp y z))
(if (lessp z y)
(not (lessp y x))
(equal (fix x)
(fix z)))))
(equal (meaning (plus-tree (delete x y))
a)
(if (member x y)
(difference (meaning (plus-tree y)
a)
(meaning x a))
(meaning (plus-tree y)
a)))
(equal (times x (add1 y))
(if (numberp y)
(plus x (times x y))
(fix x)))
(equal (nth (nil)
i)
(if (zerop i)
(nil)
(zero)))
(equal (last (append a b))
(if (listp b)
(last b)
(if (listp a)
(cons (car (last a))
b)
b)))
(equal (equal (lessp x y)
z)
(if (lessp x y)
(equal (t) z)
(equal (f) z)))
(equal (assignment x (append a b))
(if (assignedp x a)
(assignment x a)
(assignment x b)))
(equal (car (gopher x))
(if (listp x)
(car (flatten x))
(zero)))
(equal (flatten (cdr (gopher x)))
(if (listp x)
(cdr (flatten x))
(cons (zero)
(nil))))
(equal (quotient (times y x)
y)
(if (zerop y)
(zero)
(fix x)))
(equal (get j (set i val mem))
(if (eqp j i)
val
(get j mem)))))))
(define (add-lemma-lst lst)
(cond ((null? lst)
#t)
(else (add-lemma (car lst))
(add-lemma-lst (cdr lst)))))
(define (add-lemma term)
(cond ((and (pair? term)
(eq? (car term)
(quote equal))
(pair? (cadr term)))
(put (car (cadr term))
(quote lemmas)
(cons
(translate-term term)
(get (car (cadr term)) (quote lemmas)))))
(else (fatal-error "ADD-LEMMA did not like term: " term))))
; Translates a term by replacing its constructor symbols by symbol-records.
(define (translate-term term)
(cond ((not (pair? term))
term)
(else (cons (symbol->symbol-record (car term))
(translate-args (cdr term))))))
(define (translate-args lst)
(cond ((null? lst)
'())
(else (cons (translate-term (car lst))
(translate-args (cdr lst))))))
; For debugging only, so the use of MAP does not change
; the first-order character of the benchmark.
(define (untranslate-term term)
(cond ((not (pair? term))
term)
(else (cons (get-name (car term))
(map untranslate-term (cdr term))))))
; A symbol-record is represented as a vector with two fields:
; the symbol (for debugging) and
; the list of lemmas associated with the symbol.
(define (put sym property value)
(put-lemmas! (symbol->symbol-record sym) value))
(define (get sym property)
(get-lemmas (symbol->symbol-record sym)))
(define (symbol->symbol-record sym)
(let ((x (assq sym *symbol-records-alist*)))
(if x
(cdr x)
(let ((r (make-symbol-record sym)))
(set! *symbol-records-alist*
(cons (cons sym r)
*symbol-records-alist*))
r))))
; Association list of symbols and symbol-records.
(define *symbol-records-alist* '())
; A symbol-record is represented as a vector with two fields:
; the symbol (for debugging) and
; the list of lemmas associated with the symbol.
(define (make-symbol-record sym)
(vector sym '()))
(define (put-lemmas! symbol-record lemmas)
(vector-set! symbol-record 1 lemmas))
(define (get-lemmas symbol-record)
(vector-ref symbol-record 1))
(define (get-name symbol-record)
(vector-ref symbol-record 0))
(define (symbol-record-equal? r1 r2)
(eq? r1 r2))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The second phase.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (test alist term n)
(let ((term
(apply-subst
(translate-alist alist)
(translate-term
(do ((term term (list 'or term '(f)))
(n n (- n 1)))
((zero? n) term))))))
(tautp term)))
(define (translate-alist alist)
(cond ((null? alist)
'())
(else (cons (cons (caar alist)
(translate-term (cdar alist)))
(translate-alist (cdr alist))))))
(define (apply-subst alist term)
(cond ((not (pair? term))
(let ((temp-temp (assq term alist)))
(if temp-temp
(cdr temp-temp)
term)))
(else (cons (car term)
(apply-subst-lst alist (cdr term))))))
(define (apply-subst-lst alist lst)
(cond ((null? lst)
'())
(else (cons (apply-subst alist (car lst))
(apply-subst-lst alist (cdr lst))))))
(define (tautp x)
(tautologyp (rewrite x)
'() '()))
(define (tautologyp x true-lst false-lst)
(cond ((truep x true-lst)
#t)
((falsep x false-lst)
#f)
((not (pair? x))
#f)
((eq? (car x) if-constructor)
(cond ((truep (cadr x)
true-lst)
(tautologyp (caddr x)
true-lst false-lst))
((falsep (cadr x)
false-lst)
(tautologyp (cadddr x)
true-lst false-lst))
(else (and (tautologyp (caddr x)
(cons (cadr x)
true-lst)
false-lst)
(tautologyp (cadddr x)
true-lst
(cons (cadr x)
false-lst))))))
(else #f)))
(define if-constructor '*) ; becomes (symbol->symbol-record 'if)
(define rewrite-count 0) ; sanity check
; The next procedure is Henry Baker's sharing CONS, which avoids
; allocation if the result is already in hand.
; The REWRITE and REWRITE-ARGS procedures have been modified to
; use SCONS instead of CONS.
(define (scons x y original)
(if (and (eq? x (car original))
(eq? y (cdr original)))
original
(cons x y)))
(define (rewrite term)
(set! rewrite-count (+ rewrite-count 1))
(cond ((not (pair? term))
term)
(else (rewrite-with-lemmas (scons (car term)
(rewrite-args (cdr term))
term)
(get-lemmas (car term))))))
(define (rewrite-args lst)
(cond ((null? lst)
'())
(else (scons (rewrite (car lst))
(rewrite-args (cdr lst))
lst))))
(define (rewrite-with-lemmas term lst)
(cond ((null? lst)
term)
((one-way-unify term (cadr (car lst)))
(rewrite (apply-subst unify-subst (caddr (car lst)))))
(else (rewrite-with-lemmas term (cdr lst)))))
(define unify-subst '*)
(define (one-way-unify term1 term2)
(begin (set! unify-subst '())
(one-way-unify1 term1 term2)))
(define (one-way-unify1 term1 term2)
(cond ((not (pair? term2))
(let ((temp-temp (assq term2 unify-subst)))
(cond (temp-temp
(term-equal? term1 (cdr temp-temp)))
((number? term2) ; This bug fix makes
(equal? term1 term2)) ; nboyer 10-25% slower!
(else
(set! unify-subst (cons (cons term2 term1)
unify-subst))
#t))))
((not (pair? term1))
#f)
((eq? (car term1)
(car term2))
(one-way-unify1-lst (cdr term1)
(cdr term2)))
(else #f)))
(define (one-way-unify1-lst lst1 lst2)
(cond ((null? lst1)
(null? lst2))
((null? lst2)
#f)
((one-way-unify1 (car lst1)
(car lst2))
(one-way-unify1-lst (cdr lst1)
(cdr lst2)))
(else #f)))
(define (falsep x lst)
(or (term-equal? x false-term)
(term-member? x lst)))
(define (truep x lst)
(or (term-equal? x true-term)
(term-member? x lst)))
(define false-term '*) ; becomes (translate-term '(f))
(define true-term '*) ; becomes (translate-term '(t))
; The next two procedures were in the original benchmark
; but were never used.
(define (trans-of-implies n)
(translate-term
(list (quote implies)
(trans-of-implies1 n)
(list (quote implies)
0 n))))
(define (trans-of-implies1 n)
(cond ((equal? n 1)
(list (quote implies)
0 1))
(else (list (quote and)
(list (quote implies)
(- n 1)
n)
(trans-of-implies1 (- n 1))))))
; Translated terms can be circular structures, which can't be
; compared using Scheme's equal? and member procedures, so we
; use these instead.
(define (term-equal? x y)
(cond ((pair? x)
(and (pair? y)
(symbol-record-equal? (car x) (car y))
(term-args-equal? (cdr x) (cdr y))))
(else (equal? x y))))
(define (term-args-equal? lst1 lst2)
(cond ((null? lst1)
(null? lst2))
((null? lst2)
#f)
((term-equal? (car lst1) (car lst2))
(term-args-equal? (cdr lst1) (cdr lst2)))
(else #f)))
(define (term-member? x lst)
(cond ((null? lst)
#f)
((term-equal? x (car lst))
#t)
(else (term-member? x (cdr lst)))))
(set! setup-boyer
(lambda ()
(set! *symbol-records-alist* '())
(set! if-constructor (symbol->symbol-record 'if))
(set! false-term (translate-term '(f)))
(set! true-term (translate-term '(t)))
(setup)))
(set! test-boyer
(lambda (alist term n)
(set! rewrite-count 0)
(let ((answer (test alist term n)))
; (write rewrite-count)
; (display " rewrites")
; (newline)
(if answer
rewrite-count
#f)))))