789 lines
29 KiB
Scheme
789 lines
29 KiB
Scheme
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; File: sboyer.sch
|
|
; Description: The Boyer benchmark
|
|
; Author: Bob Boyer
|
|
; Created: 5-Apr-85
|
|
; Modified: 10-Apr-85 14:52:20 (Bob Shaw)
|
|
; 22-Jul-87 (Will Clinger)
|
|
; 2-Jul-88 (Will Clinger -- distinguished #f and the empty list)
|
|
; 13-Feb-97 (Will Clinger -- fixed bugs in unifier and rules,
|
|
; rewrote to eliminate property lists, and added
|
|
; a scaling parameter suggested by Bob Boyer)
|
|
; 19-Mar-99 (Will Clinger -- cleaned up comments)
|
|
; Language: Scheme
|
|
; Status: Public Domain
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
;;; SBOYER -- Logic programming benchmark, originally written by Bob Boyer.
|
|
;;; Much less CONS-intensive than NBOYER because it uses Henry Baker's
|
|
;;; "sharing cons".
|
|
|
|
; Note: The version of this benchmark that appears in Dick Gabriel's book
|
|
; contained several bugs that are corrected here. These bugs are discussed
|
|
; by Henry Baker, "The Boyer Benchmark Meets Linear Logic", ACM SIGPLAN Lisp
|
|
; Pointers 6(4), October-December 1993, pages 3-10. The fixed bugs are:
|
|
;
|
|
; The benchmark now returns a boolean result.
|
|
; FALSEP and TRUEP use TERM-MEMBER? rather than MEMV (which is called MEMBER
|
|
; in Common Lisp)
|
|
; ONE-WAY-UNIFY1 now treats numbers correctly
|
|
; ONE-WAY-UNIFY1-LST now treats empty lists correctly
|
|
; Rule 19 has been corrected (this rule was not touched by the original
|
|
; benchmark, but is used by this version)
|
|
; Rules 84 and 101 have been corrected (but these rules are never touched
|
|
; by the benchmark)
|
|
;
|
|
; According to Baker, these bug fixes make the benchmark 10-25% slower.
|
|
; Please do not compare the timings from this benchmark against those of
|
|
; the original benchmark.
|
|
;
|
|
; This version of the benchmark also prints the number of rewrites as a sanity
|
|
; check, because it is too easy for a buggy version to return the correct
|
|
; boolean result. The correct number of rewrites is
|
|
;
|
|
; n rewrites peak live storage (approximate, in bytes)
|
|
; 0 95024
|
|
; 1 591777
|
|
; 2 1813975
|
|
; 3 5375678
|
|
; 4 16445406
|
|
; 5 51507739
|
|
|
|
; Sboyer is a 2-phase benchmark.
|
|
; The first phase attaches lemmas to symbols. This phase is not timed,
|
|
; but it accounts for very little of the runtime anyway.
|
|
; The second phase creates the test problem, and tests to see
|
|
; whether it is implied by the lemmas.
|
|
|
|
(library (rnrs-benchmarks sboyer)
|
|
(export main)
|
|
(import (rnrs) (rnrs-benchmarks))
|
|
|
|
(define (main . args)
|
|
(let ((n (if (null? args) 0 (car args))))
|
|
(setup-boyer)
|
|
(run-benchmark
|
|
(string-append "sboyer"
|
|
(number->string n))
|
|
sboyer-iters
|
|
(lambda (rewrites)
|
|
(and (number? rewrites)
|
|
(case n
|
|
((0) (= rewrites 95024))
|
|
((1) (= rewrites 591777))
|
|
((2) (= rewrites 1813975))
|
|
((3) (= rewrites 5375678))
|
|
((4) (= rewrites 16445406))
|
|
((5) (= rewrites 51507739))
|
|
; If it works for n <= 5, assume it works.
|
|
(else #t))))
|
|
(lambda (alist term n) (lambda () (test-boyer alist term n)))
|
|
(quote ((x f (plus (plus a b)
|
|
(plus c (zero))))
|
|
(y f (times (times a b)
|
|
(plus c d)))
|
|
(z f (reverse (append (append a b)
|
|
(nil))))
|
|
(u equal (plus a b)
|
|
(difference x y))
|
|
(w lessp (remainder a b)
|
|
(member a (length b)))))
|
|
(quote (implies (and (implies x y)
|
|
(and (implies y z)
|
|
(and (implies z u)
|
|
(implies u w))))
|
|
(implies x w)))
|
|
n)))
|
|
|
|
(define (setup-boyer) #t) ; assigned below
|
|
(define (test-boyer) #t) ; assigned below
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;
|
|
; The first phase.
|
|
;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
; In the original benchmark, it stored a list of lemmas on the
|
|
; property lists of symbols.
|
|
; In the new benchmark, it maintains an association list of
|
|
; symbols and symbol-records, and stores the list of lemmas
|
|
; within the symbol-records.
|
|
|
|
(let ()
|
|
|
|
(define (setup)
|
|
(add-lemma-lst
|
|
(quote ((equal (compile form)
|
|
(reverse (codegen (optimize form)
|
|
(nil))))
|
|
(equal (eqp x y)
|
|
(equal (fix x)
|
|
(fix y)))
|
|
(equal (greaterp x y)
|
|
(lessp y x))
|
|
(equal (lesseqp x y)
|
|
(not (lessp y x)))
|
|
(equal (greatereqp x y)
|
|
(not (lessp x y)))
|
|
(equal (boolean x)
|
|
(or (equal x (t))
|
|
(equal x (f))))
|
|
(equal (iff x y)
|
|
(and (implies x y)
|
|
(implies y x)))
|
|
(equal (even1 x)
|
|
(if (zerop x)
|
|
(t)
|
|
(odd (_1- x))))
|
|
(equal (countps- l pred)
|
|
(countps-loop l pred (zero)))
|
|
(equal (fact- i)
|
|
(fact-loop i 1))
|
|
(equal (reverse- x)
|
|
(reverse-loop x (nil)))
|
|
(equal (divides x y)
|
|
(zerop (remainder y x)))
|
|
(equal (assume-true var alist)
|
|
(cons (cons var (t))
|
|
alist))
|
|
(equal (assume-false var alist)
|
|
(cons (cons var (f))
|
|
alist))
|
|
(equal (tautology-checker x)
|
|
(tautologyp (normalize x)
|
|
(nil)))
|
|
(equal (falsify x)
|
|
(falsify1 (normalize x)
|
|
(nil)))
|
|
(equal (prime x)
|
|
(and (not (zerop x))
|
|
(not (equal x (add1 (zero))))
|
|
(prime1 x (_1- x))))
|
|
(equal (and p q)
|
|
(if p (if q (t)
|
|
(f))
|
|
(f)))
|
|
(equal (or p q)
|
|
(if p (t)
|
|
(if q (t)
|
|
(f))))
|
|
(equal (not p)
|
|
(if p (f)
|
|
(t)))
|
|
(equal (implies p q)
|
|
(if p (if q (t)
|
|
(f))
|
|
(t)))
|
|
(equal (fix x)
|
|
(if (numberp x)
|
|
x
|
|
(zero)))
|
|
(equal (if (if a b c)
|
|
d e)
|
|
(if a (if b d e)
|
|
(if c d e)))
|
|
(equal (zerop x)
|
|
(or (equal x (zero))
|
|
(not (numberp x))))
|
|
(equal (plus (plus x y)
|
|
z)
|
|
(plus x (plus y z)))
|
|
(equal (equal (plus a b)
|
|
(zero))
|
|
(and (zerop a)
|
|
(zerop b)))
|
|
(equal (difference x x)
|
|
(zero))
|
|
(equal (equal (plus a b)
|
|
(plus a c))
|
|
(equal (fix b)
|
|
(fix c)))
|
|
(equal (equal (zero)
|
|
(difference x y))
|
|
(not (lessp y x)))
|
|
(equal (equal x (difference x y))
|
|
(and (numberp x)
|
|
(or (equal x (zero))
|
|
(zerop y))))
|
|
(equal (meaning (plus-tree (append x y))
|
|
a)
|
|
(plus (meaning (plus-tree x)
|
|
a)
|
|
(meaning (plus-tree y)
|
|
a)))
|
|
(equal (meaning (plus-tree (plus-fringe x))
|
|
a)
|
|
(fix (meaning x a)))
|
|
(equal (append (append x y)
|
|
z)
|
|
(append x (append y z)))
|
|
(equal (reverse (append a b))
|
|
(append (reverse b)
|
|
(reverse a)))
|
|
(equal (times x (plus y z))
|
|
(plus (times x y)
|
|
(times x z)))
|
|
(equal (times (times x y)
|
|
z)
|
|
(times x (times y z)))
|
|
(equal (equal (times x y)
|
|
(zero))
|
|
(or (zerop x)
|
|
(zerop y)))
|
|
(equal (exec (append x y)
|
|
pds envrn)
|
|
(exec y (exec x pds envrn)
|
|
envrn))
|
|
(equal (mc-flatten x y)
|
|
(append (flatten x)
|
|
y))
|
|
(equal (member x (append a b))
|
|
(or (member x a)
|
|
(member x b)))
|
|
(equal (member x (reverse y))
|
|
(member x y))
|
|
(equal (length (reverse x))
|
|
(length x))
|
|
(equal (member a (intersect b c))
|
|
(and (member a b)
|
|
(member a c)))
|
|
(equal (nth (zero)
|
|
i)
|
|
(zero))
|
|
(equal (exp i (plus j k))
|
|
(times (exp i j)
|
|
(exp i k)))
|
|
(equal (exp i (times j k))
|
|
(exp (exp i j)
|
|
k))
|
|
(equal (reverse-loop x y)
|
|
(append (reverse x)
|
|
y))
|
|
(equal (reverse-loop x (nil))
|
|
(reverse x))
|
|
(equal (count-list z (sort-lp x y))
|
|
(plus (count-list z x)
|
|
(count-list z y)))
|
|
(equal (equal (append a b)
|
|
(append a c))
|
|
(equal b c))
|
|
(equal (plus (remainder x y)
|
|
(times y (quotient x y)))
|
|
(fix x))
|
|
(equal (power-eval (big-plus1 l i base)
|
|
base)
|
|
(plus (power-eval l base)
|
|
i))
|
|
(equal (power-eval (big-plus x y i base)
|
|
base)
|
|
(plus i (plus (power-eval x base)
|
|
(power-eval y base))))
|
|
(equal (remainder y 1)
|
|
(zero))
|
|
(equal (lessp (remainder x y)
|
|
y)
|
|
(not (zerop y)))
|
|
(equal (remainder x x)
|
|
(zero))
|
|
(equal (lessp (quotient i j)
|
|
i)
|
|
(and (not (zerop i))
|
|
(or (zerop j)
|
|
(not (equal j 1)))))
|
|
(equal (lessp (remainder x y)
|
|
x)
|
|
(and (not (zerop y))
|
|
(not (zerop x))
|
|
(not (lessp x y))))
|
|
(equal (power-eval (power-rep i base)
|
|
base)
|
|
(fix i))
|
|
(equal (power-eval (big-plus (power-rep i base)
|
|
(power-rep j base)
|
|
(zero)
|
|
base)
|
|
base)
|
|
(plus i j))
|
|
(equal (gcd x y)
|
|
(gcd y x))
|
|
(equal (nth (append a b)
|
|
i)
|
|
(append (nth a i)
|
|
(nth b (difference i (length a)))))
|
|
(equal (difference (plus x y)
|
|
x)
|
|
(fix y))
|
|
(equal (difference (plus y x)
|
|
x)
|
|
(fix y))
|
|
(equal (difference (plus x y)
|
|
(plus x z))
|
|
(difference y z))
|
|
(equal (times x (difference c w))
|
|
(difference (times c x)
|
|
(times w x)))
|
|
(equal (remainder (times x z)
|
|
z)
|
|
(zero))
|
|
(equal (difference (plus b (plus a c))
|
|
a)
|
|
(plus b c))
|
|
(equal (difference (add1 (plus y z))
|
|
z)
|
|
(add1 y))
|
|
(equal (lessp (plus x y)
|
|
(plus x z))
|
|
(lessp y z))
|
|
(equal (lessp (times x z)
|
|
(times y z))
|
|
(and (not (zerop z))
|
|
(lessp x y)))
|
|
(equal (lessp y (plus x y))
|
|
(not (zerop x)))
|
|
(equal (gcd (times x z)
|
|
(times y z))
|
|
(times z (gcd x y)))
|
|
(equal (value (normalize x)
|
|
a)
|
|
(value x a))
|
|
(equal (equal (flatten x)
|
|
(cons y (nil)))
|
|
(and (nlistp x)
|
|
(equal x y)))
|
|
(equal (listp (gopher x))
|
|
(listp x))
|
|
(equal (samefringe x y)
|
|
(equal (flatten x)
|
|
(flatten y)))
|
|
(equal (equal (greatest-factor x y)
|
|
(zero))
|
|
(and (or (zerop y)
|
|
(equal y 1))
|
|
(equal x (zero))))
|
|
(equal (equal (greatest-factor x y)
|
|
1)
|
|
(equal x 1))
|
|
(equal (numberp (greatest-factor x y))
|
|
(not (and (or (zerop y)
|
|
(equal y 1))
|
|
(not (numberp x)))))
|
|
(equal (times-list (append x y))
|
|
(times (times-list x)
|
|
(times-list y)))
|
|
(equal (prime-list (append x y))
|
|
(and (prime-list x)
|
|
(prime-list y)))
|
|
(equal (equal z (times w z))
|
|
(and (numberp z)
|
|
(or (equal z (zero))
|
|
(equal w 1))))
|
|
(equal (greatereqp x y)
|
|
(not (lessp x y)))
|
|
(equal (equal x (times x y))
|
|
(or (equal x (zero))
|
|
(and (numberp x)
|
|
(equal y 1))))
|
|
(equal (remainder (times y x)
|
|
y)
|
|
(zero))
|
|
(equal (equal (times a b)
|
|
1)
|
|
(and (not (equal a (zero)))
|
|
(not (equal b (zero)))
|
|
(numberp a)
|
|
(numberp b)
|
|
(equal (_1- a)
|
|
(zero))
|
|
(equal (_1- b)
|
|
(zero))))
|
|
(equal (lessp (length (delete x l))
|
|
(length l))
|
|
(member x l))
|
|
(equal (sort2 (delete x l))
|
|
(delete x (sort2 l)))
|
|
(equal (dsort x)
|
|
(sort2 x))
|
|
(equal (length (cons x1
|
|
(cons x2
|
|
(cons x3 (cons x4
|
|
(cons x5
|
|
(cons x6 x7)))))))
|
|
(plus 6 (length x7)))
|
|
(equal (difference (add1 (add1 x))
|
|
2)
|
|
(fix x))
|
|
(equal (quotient (plus x (plus x y))
|
|
2)
|
|
(plus x (quotient y 2)))
|
|
(equal (sigma (zero)
|
|
i)
|
|
(quotient (times i (add1 i))
|
|
2))
|
|
(equal (plus x (add1 y))
|
|
(if (numberp y)
|
|
(add1 (plus x y))
|
|
(add1 x)))
|
|
(equal (equal (difference x y)
|
|
(difference z y))
|
|
(if (lessp x y)
|
|
(not (lessp y z))
|
|
(if (lessp z y)
|
|
(not (lessp y x))
|
|
(equal (fix x)
|
|
(fix z)))))
|
|
(equal (meaning (plus-tree (delete x y))
|
|
a)
|
|
(if (member x y)
|
|
(difference (meaning (plus-tree y)
|
|
a)
|
|
(meaning x a))
|
|
(meaning (plus-tree y)
|
|
a)))
|
|
(equal (times x (add1 y))
|
|
(if (numberp y)
|
|
(plus x (times x y))
|
|
(fix x)))
|
|
(equal (nth (nil)
|
|
i)
|
|
(if (zerop i)
|
|
(nil)
|
|
(zero)))
|
|
(equal (last (append a b))
|
|
(if (listp b)
|
|
(last b)
|
|
(if (listp a)
|
|
(cons (car (last a))
|
|
b)
|
|
b)))
|
|
(equal (equal (lessp x y)
|
|
z)
|
|
(if (lessp x y)
|
|
(equal (t) z)
|
|
(equal (f) z)))
|
|
(equal (assignment x (append a b))
|
|
(if (assignedp x a)
|
|
(assignment x a)
|
|
(assignment x b)))
|
|
(equal (car (gopher x))
|
|
(if (listp x)
|
|
(car (flatten x))
|
|
(zero)))
|
|
(equal (flatten (cdr (gopher x)))
|
|
(if (listp x)
|
|
(cdr (flatten x))
|
|
(cons (zero)
|
|
(nil))))
|
|
(equal (quotient (times y x)
|
|
y)
|
|
(if (zerop y)
|
|
(zero)
|
|
(fix x)))
|
|
(equal (get j (set i val mem))
|
|
(if (eqp j i)
|
|
val
|
|
(get j mem)))))))
|
|
|
|
(define (add-lemma-lst lst)
|
|
(cond ((null? lst)
|
|
#t)
|
|
(else (add-lemma (car lst))
|
|
(add-lemma-lst (cdr lst)))))
|
|
|
|
(define (add-lemma term)
|
|
(cond ((and (pair? term)
|
|
(eq? (car term)
|
|
(quote equal))
|
|
(pair? (cadr term)))
|
|
(put (car (cadr term))
|
|
(quote lemmas)
|
|
(cons
|
|
(translate-term term)
|
|
(get (car (cadr term)) (quote lemmas)))))
|
|
(else (fatal-error "ADD-LEMMA did not like term: " term))))
|
|
|
|
; Translates a term by replacing its constructor symbols by symbol-records.
|
|
|
|
(define (translate-term term)
|
|
(cond ((not (pair? term))
|
|
term)
|
|
(else (cons (symbol->symbol-record (car term))
|
|
(translate-args (cdr term))))))
|
|
|
|
(define (translate-args lst)
|
|
(cond ((null? lst)
|
|
'())
|
|
(else (cons (translate-term (car lst))
|
|
(translate-args (cdr lst))))))
|
|
|
|
; For debugging only, so the use of MAP does not change
|
|
; the first-order character of the benchmark.
|
|
|
|
(define (untranslate-term term)
|
|
(cond ((not (pair? term))
|
|
term)
|
|
(else (cons (get-name (car term))
|
|
(map untranslate-term (cdr term))))))
|
|
|
|
; A symbol-record is represented as a vector with two fields:
|
|
; the symbol (for debugging) and
|
|
; the list of lemmas associated with the symbol.
|
|
|
|
(define (put sym property value)
|
|
(put-lemmas! (symbol->symbol-record sym) value))
|
|
|
|
(define (get sym property)
|
|
(get-lemmas (symbol->symbol-record sym)))
|
|
|
|
(define (symbol->symbol-record sym)
|
|
(let ((x (assq sym *symbol-records-alist*)))
|
|
(if x
|
|
(cdr x)
|
|
(let ((r (make-symbol-record sym)))
|
|
(set! *symbol-records-alist*
|
|
(cons (cons sym r)
|
|
*symbol-records-alist*))
|
|
r))))
|
|
|
|
; Association list of symbols and symbol-records.
|
|
|
|
(define *symbol-records-alist* '())
|
|
|
|
; A symbol-record is represented as a vector with two fields:
|
|
; the symbol (for debugging) and
|
|
; the list of lemmas associated with the symbol.
|
|
|
|
(define (make-symbol-record sym)
|
|
(vector sym '()))
|
|
|
|
(define (put-lemmas! symbol-record lemmas)
|
|
(vector-set! symbol-record 1 lemmas))
|
|
|
|
(define (get-lemmas symbol-record)
|
|
(vector-ref symbol-record 1))
|
|
|
|
(define (get-name symbol-record)
|
|
(vector-ref symbol-record 0))
|
|
|
|
(define (symbol-record-equal? r1 r2)
|
|
(eq? r1 r2))
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;
|
|
; The second phase.
|
|
;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
(define (test alist term n)
|
|
(let ((term
|
|
(apply-subst
|
|
(translate-alist alist)
|
|
(translate-term
|
|
(do ((term term (list 'or term '(f)))
|
|
(n n (- n 1)))
|
|
((zero? n) term))))))
|
|
(tautp term)))
|
|
|
|
(define (translate-alist alist)
|
|
(cond ((null? alist)
|
|
'())
|
|
(else (cons (cons (caar alist)
|
|
(translate-term (cdar alist)))
|
|
(translate-alist (cdr alist))))))
|
|
|
|
(define (apply-subst alist term)
|
|
(cond ((not (pair? term))
|
|
(let ((temp-temp (assq term alist)))
|
|
(if temp-temp
|
|
(cdr temp-temp)
|
|
term)))
|
|
(else (cons (car term)
|
|
(apply-subst-lst alist (cdr term))))))
|
|
|
|
(define (apply-subst-lst alist lst)
|
|
(cond ((null? lst)
|
|
'())
|
|
(else (cons (apply-subst alist (car lst))
|
|
(apply-subst-lst alist (cdr lst))))))
|
|
|
|
(define (tautp x)
|
|
(tautologyp (rewrite x)
|
|
'() '()))
|
|
|
|
(define (tautologyp x true-lst false-lst)
|
|
(cond ((truep x true-lst)
|
|
#t)
|
|
((falsep x false-lst)
|
|
#f)
|
|
((not (pair? x))
|
|
#f)
|
|
((eq? (car x) if-constructor)
|
|
(cond ((truep (cadr x)
|
|
true-lst)
|
|
(tautologyp (caddr x)
|
|
true-lst false-lst))
|
|
((falsep (cadr x)
|
|
false-lst)
|
|
(tautologyp (cadddr x)
|
|
true-lst false-lst))
|
|
(else (and (tautologyp (caddr x)
|
|
(cons (cadr x)
|
|
true-lst)
|
|
false-lst)
|
|
(tautologyp (cadddr x)
|
|
true-lst
|
|
(cons (cadr x)
|
|
false-lst))))))
|
|
(else #f)))
|
|
|
|
(define if-constructor '*) ; becomes (symbol->symbol-record 'if)
|
|
|
|
(define rewrite-count 0) ; sanity check
|
|
|
|
; The next procedure is Henry Baker's sharing CONS, which avoids
|
|
; allocation if the result is already in hand.
|
|
; The REWRITE and REWRITE-ARGS procedures have been modified to
|
|
; use SCONS instead of CONS.
|
|
|
|
(define (scons x y original)
|
|
(if (and (eq? x (car original))
|
|
(eq? y (cdr original)))
|
|
original
|
|
(cons x y)))
|
|
|
|
(define (rewrite term)
|
|
(set! rewrite-count (+ rewrite-count 1))
|
|
(cond ((not (pair? term))
|
|
term)
|
|
(else (rewrite-with-lemmas (scons (car term)
|
|
(rewrite-args (cdr term))
|
|
term)
|
|
(get-lemmas (car term))))))
|
|
|
|
(define (rewrite-args lst)
|
|
(cond ((null? lst)
|
|
'())
|
|
(else (scons (rewrite (car lst))
|
|
(rewrite-args (cdr lst))
|
|
lst))))
|
|
|
|
(define (rewrite-with-lemmas term lst)
|
|
(cond ((null? lst)
|
|
term)
|
|
((one-way-unify term (cadr (car lst)))
|
|
(rewrite (apply-subst unify-subst (caddr (car lst)))))
|
|
(else (rewrite-with-lemmas term (cdr lst)))))
|
|
|
|
(define unify-subst '*)
|
|
|
|
(define (one-way-unify term1 term2)
|
|
(begin (set! unify-subst '())
|
|
(one-way-unify1 term1 term2)))
|
|
|
|
(define (one-way-unify1 term1 term2)
|
|
(cond ((not (pair? term2))
|
|
(let ((temp-temp (assq term2 unify-subst)))
|
|
(cond (temp-temp
|
|
(term-equal? term1 (cdr temp-temp)))
|
|
((number? term2) ; This bug fix makes
|
|
(equal? term1 term2)) ; nboyer 10-25% slower!
|
|
(else
|
|
(set! unify-subst (cons (cons term2 term1)
|
|
unify-subst))
|
|
#t))))
|
|
((not (pair? term1))
|
|
#f)
|
|
((eq? (car term1)
|
|
(car term2))
|
|
(one-way-unify1-lst (cdr term1)
|
|
(cdr term2)))
|
|
(else #f)))
|
|
|
|
(define (one-way-unify1-lst lst1 lst2)
|
|
(cond ((null? lst1)
|
|
(null? lst2))
|
|
((null? lst2)
|
|
#f)
|
|
((one-way-unify1 (car lst1)
|
|
(car lst2))
|
|
(one-way-unify1-lst (cdr lst1)
|
|
(cdr lst2)))
|
|
(else #f)))
|
|
|
|
(define (falsep x lst)
|
|
(or (term-equal? x false-term)
|
|
(term-member? x lst)))
|
|
|
|
(define (truep x lst)
|
|
(or (term-equal? x true-term)
|
|
(term-member? x lst)))
|
|
|
|
(define false-term '*) ; becomes (translate-term '(f))
|
|
(define true-term '*) ; becomes (translate-term '(t))
|
|
|
|
; The next two procedures were in the original benchmark
|
|
; but were never used.
|
|
|
|
(define (trans-of-implies n)
|
|
(translate-term
|
|
(list (quote implies)
|
|
(trans-of-implies1 n)
|
|
(list (quote implies)
|
|
0 n))))
|
|
|
|
(define (trans-of-implies1 n)
|
|
(cond ((equal? n 1)
|
|
(list (quote implies)
|
|
0 1))
|
|
(else (list (quote and)
|
|
(list (quote implies)
|
|
(- n 1)
|
|
n)
|
|
(trans-of-implies1 (- n 1))))))
|
|
|
|
; Translated terms can be circular structures, which can't be
|
|
; compared using Scheme's equal? and member procedures, so we
|
|
; use these instead.
|
|
|
|
(define (term-equal? x y)
|
|
(cond ((pair? x)
|
|
(and (pair? y)
|
|
(symbol-record-equal? (car x) (car y))
|
|
(term-args-equal? (cdr x) (cdr y))))
|
|
(else (equal? x y))))
|
|
|
|
(define (term-args-equal? lst1 lst2)
|
|
(cond ((null? lst1)
|
|
(null? lst2))
|
|
((null? lst2)
|
|
#f)
|
|
((term-equal? (car lst1) (car lst2))
|
|
(term-args-equal? (cdr lst1) (cdr lst2)))
|
|
(else #f)))
|
|
|
|
(define (term-member? x lst)
|
|
(cond ((null? lst)
|
|
#f)
|
|
((term-equal? x (car lst))
|
|
#t)
|
|
(else (term-member? x (cdr lst)))))
|
|
|
|
(set! setup-boyer
|
|
(lambda ()
|
|
(set! *symbol-records-alist* '())
|
|
(set! if-constructor (symbol->symbol-record 'if))
|
|
(set! false-term (translate-term '(f)))
|
|
(set! true-term (translate-term '(t)))
|
|
(setup)))
|
|
|
|
(set! test-boyer
|
|
(lambda (alist term n)
|
|
(set! rewrite-count 0)
|
|
(let ((answer (test alist term n)))
|
|
; (write rewrite-count)
|
|
; (display " rewrites")
|
|
; (newline)
|
|
(if answer
|
|
rewrite-count
|
|
#f))))))
|