ikarus/scheme/ikarus.numerics.ss

3248 lines
106 KiB
Scheme

;;; Ikarus Scheme -- A compiler for R6RS Scheme.
;;; Copyright (C) 2006,2007,2008 Abdulaziz Ghuloum
;;;
;;; This program is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU General Public License version 3 as
;;; published by the Free Software Foundation.
;;;
;;; This program is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program. If not, see <http://www.gnu.org/licenses/>.
(library (ikarus flonums)
(export $flonum->exact $flonum->integer flonum-parts
inexact->exact exact $flonum-rational? $flonum-integer? $flzero?
$flnegative? flpositive? flabs fixnum->flonum
flsin flcos fltan flasin flacos flatan fleven? flodd?
flfloor flceiling flnumerator fldenominator flexp fllog
flinteger? flonum-bytes flnan? flfinite? flinfinite?
flexpt $flround flround)
(import
(ikarus system $bytevectors)
(ikarus system $fx)
(only (ikarus system $flonums) $fl>= $flonum-sbe)
(ikarus system $bignums)
(except (ikarus system $flonums) $flonum-rational?
$flonum-integer? $flround)
(except (ikarus) inexact->exact exact flpositive? flabs fixnum->flonum
flsin flcos fltan flasin flacos flatan fleven? flodd?
flfloor flceiling flnumerator fldenominator flexp fllog
flexpt flinteger? flonum-parts flonum-bytes flnan? flfinite?
flinfinite? flround))
(define (flonum-bytes f)
(unless (flonum? f)
(die 'flonum-bytes "not a flonum" f))
(values
($flonum-u8-ref f 0)
($flonum-u8-ref f 1)
($flonum-u8-ref f 2)
($flonum-u8-ref f 3)
($flonum-u8-ref f 4)
($flonum-u8-ref f 5)
($flonum-u8-ref f 6)
($flonum-u8-ref f 7)))
(define (flonum-parts x)
(unless (flonum? x)
(die 'flonum-parts "not a flonum" x))
(let-values ([(b0 b1 b2 b3 b4 b5 b6 b7) (flonum-bytes x)])
(values
(zero? (fxlogand b0 128))
(+ (fxsll (fxlogand b0 127) 4)
(fxsra b1 4))
(+ (+ b7 (fxsll b6 8) (fxsll b5 16))
(* (+ b4
(fxsll b3 8)
(fxsll b2 16)
(fxsll (fxlogand b1 #b1111) 24))
(expt 2 24))))))
(define ($zero-m? f)
(and ($fxzero? ($flonum-u8-ref f 7))
($fxzero? ($flonum-u8-ref f 6))
($fxzero? ($flonum-u8-ref f 5))
($fxzero? ($flonum-u8-ref f 4))
($fxzero? ($flonum-u8-ref f 3))
($fxzero? ($flonum-u8-ref f 2))
($fxzero? ($fxlogand ($flonum-u8-ref f 1) #b1111))))
(define ($flonum-rational? x)
(let ([be ($fxlogand ($flonum-sbe x)
($fxsub1 ($fxsll 1 11)))])
($fx< be 2047)))
(define ($flonum-integer? x)
(let ([be ($fxlogand ($flonum-sbe x)
($fxsub1 ($fxsll 1 11)))])
(cond
[($fx= be 2047) ;;; nans and infs
#f]
[($fx>= be 1075) ;;; magnitue large enough
#t]
[($fx= be 0) ;;; denormalized double, only +/-0.0 is integer
(and ($fx= ($flonum-u8-ref x 7) 0)
($fx= ($flonum-u8-ref x 6) 0)
($fx= ($flonum-u8-ref x 5) 0)
($fx= ($flonum-u8-ref x 4) 0)
($fx= ($flonum-u8-ref x 3) 0)
($fx= ($flonum-u8-ref x 2) 0)
($fx= ($flonum-u8-ref x 1) 0))]
[($fx< be ($fx+ 1075 -52)) ;;; too small to be an integer
#f]
[else ($fl= x ($flround x))])))
(define ($flround x)
(foreign-call "ikrt_fl_round" x ($make-flonum)))
(define (flround x)
(if (flonum? x)
($flround x)
(die 'flround "not a flonum" x)))
(module ($flonum->integer $flonum->exact)
(define ($flonum-signed-mantissa x)
(let ([b0 ($flonum-u8-ref x 0)])
(let ([m0 ($fx+ ($flonum-u8-ref x 7)
($fx+ ($fxsll ($flonum-u8-ref x 6) 8)
($fxsll ($flonum-u8-ref x 5) 16)))]
[m1 ($fx+ ($flonum-u8-ref x 4)
($fx+ ($fxsll ($flonum-u8-ref x 3) 8)
($fxsll ($flonum-u8-ref x 2) 16)))]
[m2 (let ([b1 ($flonum-u8-ref x 1)])
(if (and ($fx= ($fxlogand b0 #x7F) 0)
($fx= ($fxsra b1 4) 0))
($fxlogand b1 #xF)
($fxlogor ($fxlogand b1 #xF) #x10)))])
(if ($fx= 0 ($fxlogand #x80 b0))
(+ (bitwise-arithmetic-shift-left ($fxlogor m1 ($fxsll m2 24)) 24) m0)
(+ (bitwise-arithmetic-shift-left
($fx- 0 ($fxlogor m1 ($fxsll m2 24))) 24)
($fx- 0 m0))))))
(define ($flonum->integer x)
(let ([sbe ($flonum-sbe x)])
(let ([be ($fxlogand sbe #x7FF)])
(cond
[($fx= be 2047) #f] ;;; nans/infs
[($fx>= be 1075) ;;; magnitude large enough to be an integer
(bitwise-arithmetic-shift-left
($flonum-signed-mantissa x)
(- be 1075))]
[else
(let-values ([(pos? be m) (flonum-parts x)])
(cond
[(<= 1 be 2046) ; normalized flonum
(let ([n (+ m (expt 2 52))]
[d (expt 2 (- be 1075))])
(let-values ([(q r) (quotient+remainder n d)])
(if (= r 0)
(if pos? q (- q))
#f)))]
[(= be 0) (if (= m 0) 0 #f)]
[else #f]))]))))
(define-syntax ctexpt
(lambda (x)
(import (ikarus))
(syntax-case x ()
[(_ n m)
(expt (syntax->datum #'n) (syntax->datum #'m))])))
(define ($flonum->exact x)
(import (ikarus))
(let ([sbe ($flonum-sbe x)])
(let ([be ($fxlogand sbe #x7FF)])
(cond
[($fx= be 2047) #f] ;;; nans/infs
[($fx>= be 1075) ;;; magnitude large enough to be an integer
(bitwise-arithmetic-shift-left
($flonum-signed-mantissa x)
(- be 1075))]
[else
;;; this really needs to get optimized.
(let-values ([(pos? be m) (flonum-parts x)])
(cond
[(= be 0) ;;; denormalized
(if (= m 0)
0
(* (if pos? 1 -1)
(/ m (ctexpt 2 1074))))]
[else ; normalized flonum
(/ (+ m (ctexpt 2 52))
(bitwise-arithmetic-shift-left
(if pos? 1 -1)
(- 1075 be)))]))])))))
(define (flnumerator x)
(unless (flonum? x)
(die 'flnumerator "not a flonum" x))
(cond
[($flonum-integer? x) x]
[($flonum-rational? x)
(exact->inexact (numerator ($flonum->exact x)))]
[else x]))
(define (fldenominator x)
(unless (flonum? x)
(die 'fldenominator "not a flonum" x))
(cond
[($flonum-integer? x) 1.0]
[($flonum-rational? x)
(exact->inexact (denominator ($flonum->exact x)))]
[(flnan? x) x]
[else 1.0]))
(define (fleven? x)
;;; FIXME: optimize
(unless (flonum? x)
(die 'fleven? "not a flonum" x))
(let ([v ($flonum->exact x)])
(cond
[(fixnum? v) ($fx= ($fxlogand v 1) 0)]
[(bignum? v)
(foreign-call "ikrt_even_bn" v)]
[else (die 'fleven? "not an integer flonum" x)])))
(define (flodd? x)
(unless (flonum? x)
(die 'flodd? "not a flonum" x))
;;; FIXME: optimize
(let ([v ($flonum->exact x)])
(cond
[(fixnum? v) ($fx= ($fxlogand v 1) 1)]
[(bignum? v)
(not (foreign-call "ikrt_even_bn" v))]
[else (die 'flodd? "not an integer flonum" x)])))
(define (flinteger? x)
(if (flonum? x)
($flonum-integer? x)
(die 'flinteger? "not a flonum" x)))
(define (flinfinite? x)
(if (flonum? x)
(let ([be (fxlogand ($flonum-sbe x) (sub1 (fxsll 1 11)))])
(and (fx= be 2047) ;;; nans and infs
($zero-m? x)))
(die 'flinfinite? "not a flonum" x)))
(define (flnan? x)
(if (flonum? x)
(let ([be (fxlogand ($flonum-sbe x) (sub1 (fxsll 1 11)))])
(and (fx= be 2047) ;;; nans and infs
(not ($zero-m? x))))
(die 'flnan? "not a flonum" x)))
(define (flfinite? x)
(if (flonum? x)
(let ([be (fxlogand ($flonum-sbe x) (sub1 (fxsll 1 11)))])
(not (fx= be 2047)))
(die 'flfinite? "not a flonum" x)))
(define ($flzero? x)
(let ([be (fxlogand ($flonum-sbe x) (sub1 (fxsll 1 11)))])
(and
(fx= be 0) ;;; denormalized double, only +/-0.0 is integer
(and (fx= ($flonum-u8-ref x 7) 0)
(fx= ($flonum-u8-ref x 6) 0)
(fx= ($flonum-u8-ref x 5) 0)
(fx= ($flonum-u8-ref x 4) 0)
(fx= ($flonum-u8-ref x 3) 0)
(fx= ($flonum-u8-ref x 2) 0)
(fx= ($flonum-u8-ref x 1) 0)))))
(define ($flnegative? x)
(let ([b0 ($flonum-u8-ref x 0)])
(fx> b0 127)))
(define (inexact->exact x)
(cond
[(flonum? x)
(or ($flonum->exact x)
(die 'inexact->exact "no real value" x))]
[(or (fixnum? x) (ratnum? x) (bignum? x)) x]
[else
(die 'inexact->exact "not an inexact number" x)]))
(define (exact x)
(cond
[(flonum? x)
(or ($flonum->exact x)
(die 'exact "no real value" x))]
[(or (fixnum? x) (ratnum? x) (bignum? x)) x]
[else
(die 'exact "not an inexact number" x)]))
(define (flpositive? x)
(if (flonum? x)
($fl> x 0.0)
(die 'flpositive? "not a flonum" x)))
(define (flabs x)
(if (flonum? x)
(if ($fx> ($flonum-u8-ref x 0) 127)
($fl* x -1.0)
x)
(die 'flabs "not a flonum" x)))
(define (fixnum->flonum x)
(if (fixnum? x)
($fixnum->flonum x)
(die 'fixnum->flonum "not a fixnum")))
(define (flsin x)
(if (flonum? x)
(foreign-call "ikrt_fl_sin" x)
(die 'flsin "not a flonum" x)))
(define (flcos x)
(if (flonum? x)
(foreign-call "ikrt_fl_cos" x)
(die 'flcos "not a flonum" x)))
(define (fltan x)
(if (flonum? x)
(foreign-call "ikrt_fl_tan" x)
(die 'fltan "not a flonum" x)))
(define (flasin x)
(if (flonum? x)
(foreign-call "ikrt_fl_asin" x)
(die 'flasin "not a flonum" x)))
(define (flacos x)
(if (flonum? x)
(foreign-call "ikrt_fl_acos" x)
(die 'flacos "not a flonum" x)))
(define (flatan x)
(if (flonum? x)
(foreign-call "ikrt_fl_atan" x)
(die 'flatan "not a flonum" x)))
(define (flfloor x)
(define (ratnum-floor x)
(let ([n (numerator x)] [d (denominator x)])
(let ([q (quotient n d)])
(if (>= n 0) q (- q 1)))))
(cond
[(flonum? x)
;;; optimize for integer flonums case
(let ([e ($flonum->exact x)])
(cond
[(ratnum? e)
(exact->inexact (ratnum-floor e))]
[else x]))]
[else (die 'flfloor "not a flonum" x)]))
(define (flceiling x)
(cond
[(flonum? x)
;;; optimize for integer flonums case
(let ([e ($flonum->exact x)])
(cond
[(ratnum? e)
(exact->inexact (ceiling e))]
[else x]))]
[else (die 'flceiling "not a flonum" x)]))
(define (flexp x)
(if (flonum? x)
(foreign-call "ikrt_fl_exp" x ($make-flonum))
(die 'flexp "not a flonum" x)))
(define (fllog x)
(if (flonum? x)
(if ($fl>= x 0.0)
(foreign-call "ikrt_fl_log" x)
(die 'fllog "argument should not be negative" x))
(die 'fllog "not a flonum" x)))
(define (flexpt x y)
(if (flonum? x)
(if (flonum? y)
(let ([y^ ($flonum->exact y)])
;;; FIXME: performance bottleneck?
(cond
[(fixnum? y^) (inexact (expt x y^))]
[(bignum? y^) (inexact (expt x y^))]
[else
(foreign-call "ikrt_flfl_expt" x y ($make-flonum))]))
(die 'flexpt "not a flonum" y))
(die 'fllog "not a flonum" x)))
)
(library (ikarus generic-arithmetic)
(export + - * / zero? = < <= > >= add1 sub1 quotient remainder
modulo even? odd? bitwise-and bitwise-not
bitwise-arithmetic-shift-right bitwise-arithmetic-shift-left
bitwise-arithmetic-shift
bitwise-length
bitwise-copy-bit bitwise-bit-field
positive? negative? expt gcd lcm numerator denominator
exact-integer-sqrt
quotient+remainder number->string string->number min max
abs truncate fltruncate sra sll real->flonum
exact->inexact inexact floor ceiling round log fl=? fl<? fl<=? fl>?
fl>=? fl+ fl- fl* fl/ flsqrt flmin flzero? flnegative?
sin cos tan asin acos atan sqrt exp
flmax random
error@add1 error@sub1)
(import
(ikarus system $fx)
(ikarus system $flonums)
(ikarus system $ratnums)
(ikarus system $bignums)
(ikarus system $chars)
(ikarus system $strings)
(only (ikarus flonums) $flonum->exact $flzero? $flnegative?
$flonum->integer $flround)
(except (ikarus) + - * / zero? = < <= > >= add1 sub1 quotient
remainder modulo even? odd? quotient+remainder number->string
bitwise-arithmetic-shift-right bitwise-arithmetic-shift-left
bitwise-arithmetic-shift
bitwise-length
bitwise-copy-bit bitwise-bit-field
positive? negative? bitwise-and bitwise-not
string->number expt gcd lcm numerator denominator
exact->inexact inexact floor ceiling round log
exact-integer-sqrt min max abs real->flonum
fl=? fl<? fl<=? fl>? fl>=? fl+ fl- fl* fl/ flsqrt flmin
flzero? flnegative? sra sll exp
sin cos tan asin acos atan sqrt truncate fltruncate
flmax random))
(define (bignum->flonum x)
(foreign-call "ikrt_bignum_to_flonum" x 0 ($make-flonum)))
;;; (define (ratnum->flonum x)
;;; (define (->flonum n d)
;;; (let-values ([(q r) (quotient+remainder n d)])
;;; (if (= r 0)
;;; (inexact q)
;;; (if (= q 0)
;;; (/ (->flonum d n))
;;; (+ q (->flonum r d))))))
;;; (let ([n (numerator x)] [d (denominator x)])
;;; (let ([b (bitwise-first-bit-set n)])
;;; (if (eqv? b 0)
;;; (let ([b (bitwise-first-bit-set d)])
;;; (if (eqv? b 0)
;;; (->flonum n d)
;;; (/ (->flonum n (bitwise-arithmetic-shift-right d b))
;;; (expt 2.0 b))))
;;; (* (->flonum (bitwise-arithmetic-shift-right n b) d)
;;; (expt 2.0 b))))))
;;; (define (ratnum->flonum x)
;;; (let f ([n ($ratnum-n x)] [d ($ratnum-d x)])
;;; (let-values ([(q r) (quotient+remainder n d)])
;;; (if (= q 0)
;;; (/ 1.0 (f d n))
;;; (if (= r 0)
;;; (inexact q)
;;; (+ q (f r d)))))))
(define (ratnum->flonum num)
(define (rat n m)
(let-values ([(q r) (quotient+remainder n m)])
(if (= r 0)
(inexact q)
(fl+ (inexact q) (fl/ 1.0 (rat m r))))))
(define (pos n d)
(cond
[(> n d) (rat n d)]
[(even? n)
(* (pos (sra n 1) d) 2.0)]
[(even? d)
(/ (pos n (sra d 1)) 2.0)]
[else
(/ (rat d n))]))
(let ([n ($ratnum-n num)] [d ($ratnum-d num)])
(if (> n 0)
(pos n d)
(- (pos n d)))))
(define binary+
(lambda (x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_fxfxplus" x y)]
[(bignum? y)
(foreign-call "ikrt_fxbnplus" x y)]
[(flonum? y)
($fl+ ($fixnum->flonum x) y)]
[(ratnum? y)
($make-ratnum
(+ (* x ($ratnum-d y)) ($ratnum-n y))
($ratnum-d y))]
[else
(die '+ "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_fxbnplus" y x)]
[(bignum? y)
(foreign-call "ikrt_bnbnplus" x y)]
[(flonum? y)
($fl+ (bignum->flonum x) y)]
[(ratnum? y)
($make-ratnum
(+ (* x ($ratnum-d y)) ($ratnum-n y))
($ratnum-d y))]
[else
(die '+ "not a number" y)])]
[(flonum? x)
(cond
[(fixnum? y)
($fl+ x ($fixnum->flonum y))]
[(bignum? y)
($fl+ x (bignum->flonum y))]
[(flonum? y)
($fl+ x y)]
[(ratnum? y)
($fl+ x (ratnum->flonum y))]
[else
(die '+ "not a number" y)])]
[(ratnum? x)
(cond
[(or (fixnum? y) (bignum? y))
($make-ratnum
(+ (* y ($ratnum-d x)) ($ratnum-n x))
($ratnum-d x))]
[(flonum? y)
($fl+ y (ratnum->flonum x))]
[(ratnum? y)
(let ([n0 ($ratnum-n x)] [n1 ($ratnum-n y)]
[d0 ($ratnum-d x)] [d1 ($ratnum-d y)])
;;; FIXME: inefficient
(/ (+ (* n0 d1) (* n1 d0)) (* d0 d1)))]
[else
(die '+ "not a number" y)])]
[else (die '+ "not a number" x)])))
(define binary-bitwise-and
(lambda (x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y) ($fxlogand x y)]
[(bignum? y)
(foreign-call "ikrt_fxbnlogand" x y)]
[else
(die 'bitwise-and "not an exact integer" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_fxbnlogand" y x)]
[(bignum? y)
(foreign-call "ikrt_bnbnlogand" x y)]
[else
(die 'bitwise-and "not an exact integer" y)])]
[else (die 'bitwise-and "not an exact integer" x)])))
(define binary-
(lambda (x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_fxfxminus" x y)]
[(bignum? y)
(foreign-call "ikrt_fxbnminus" x y)]
[(flonum? y)
(if ($fx= x 0)
($fl* y -1.0)
($fl- ($fixnum->flonum x) y))]
[(ratnum? y)
(let ([n ($ratnum-n y)] [d ($ratnum-d y)])
(binary/ (binary- (binary* d x) n) d))]
[else
(die '- "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_bnfxminus" x y)]
[(bignum? y)
(foreign-call "ikrt_bnbnminus" x y)]
[(flonum? y)
($fl- (bignum->flonum x) y)]
[(ratnum? y)
(let ([n ($ratnum-n y)] [d ($ratnum-d y)])
(binary/ (binary- (binary* d x) n) d))]
[else
(die '- "not a number" y)])]
[(flonum? x)
(cond
[(fixnum? y)
($fl- x ($fixnum->flonum y))]
[(bignum? y)
($fl- x (bignum->flonum y))]
[(flonum? y)
($fl- x y)]
[(ratnum? y)
(let ([n ($ratnum-n y)] [d ($ratnum-d y)])
(binary/ (binary- (binary* d x) n) d))]
[else
(die '- "not a number" y)])]
[(ratnum? x)
(let ([nx ($ratnum-n x)] [dx ($ratnum-d x)])
(cond
[(or (fixnum? y) (bignum? y) (flonum? y))
(binary/ (binary- nx (binary* dx y)) dx)]
[(ratnum? y)
(let ([ny ($ratnum-n y)] [dy ($ratnum-d y)])
(binary/ (binary- (binary* nx dy) (binary* ny dx))
(binary* dx dy)))]
[else
(die '- "not a number" y)]))]
[else (die '- "not a number" x)])))
(define binary*
(lambda (x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_fxfxmult" x y)]
[(bignum? y)
(foreign-call "ikrt_fxbnmult" x y)]
[(flonum? y)
($fl* ($fixnum->flonum x) y)]
[(ratnum? y)
(binary/ (binary* x ($ratnum-n y)) ($ratnum-d y))]
[else
(die '* "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(foreign-call "ikrt_fxbnmult" y x)]
[(bignum? y)
(foreign-call "ikrt_bnbnmult" x y)]
[(flonum? y)
($fl* (bignum->flonum x) y)]
[(ratnum? y)
(binary/ (binary* x ($ratnum-n y)) ($ratnum-d y))]
[else
(die '* "not a number" y)])]
[(flonum? x)
(cond
[(fixnum? y)
($fl* x ($fixnum->flonum y))]
[(bignum? y)
($fl* x (bignum->flonum y))]
[(flonum? y)
($fl* x y)]
[(ratnum? y)
(binary/ (binary* x ($ratnum-n y)) ($ratnum-d y))]
[else
(die '* "not a number" y)])]
[(ratnum? x)
(if (ratnum? y)
(binary/ (binary* ($ratnum-n x) ($ratnum-n y))
(binary* ($ratnum-d x) ($ratnum-d y)))
(binary* y x))]
[else (die '* "not a number" x)])))
(define +
(case-lambda
[(x y) (binary+ x y)]
[(x y z) (binary+ (binary+ x y) z)]
[(a)
(cond
[(fixnum? a) a]
[(bignum? a) a]
[else (die '+ "not a number" a)])]
[() 0]
[(a b c d . e*)
(let f ([ac (binary+ (binary+ (binary+ a b) c) d)]
[e* e*])
(cond
[(null? e*) ac]
[else (f (binary+ ac (car e*)) (cdr e*))]))]))
(define bitwise-and
(case-lambda
[(x y) (binary-bitwise-and x y)]
[(x y z) (binary-bitwise-and (binary-bitwise-and x y) z)]
[(a)
(cond
[(fixnum? a) a]
[(bignum? a) a]
[else (die 'bitwise-and "not a number" a)])]
[() -1]
[(a b c d . e*)
(let f ([ac (binary-bitwise-and a
(binary-bitwise-and b
(binary-bitwise-and c d)))]
[e* e*])
(cond
[(null? e*) ac]
[else (f (binary-bitwise-and ac (car e*)) (cdr e*))]))]))
(define (bitwise-not x)
(cond
[(fixnum? x) ($fxlognot x)]
[(bignum? x) (foreign-call "ikrt_bnlognot" x)]
[else (die 'bitwise-not "invalid argument" x)]))
(define -
(case-lambda
[(x y) (binary- x y)]
[(x y z) (binary- (binary- x y) z)]
[(a) (binary- 0 a)]
[(a b c d . e*)
(let f ([ac (binary- (binary- (binary- a b) c) d)]
[e* e*])
(cond
[(null? e*) ac]
[else (f (binary- ac (car e*)) (cdr e*))]))]))
(define *
(case-lambda
[(x y) (binary* x y)]
[(x y z) (binary* (binary* x y) z)]
[(a)
(cond
[(fixnum? a) a]
[(bignum? a) a]
[else (die '* "not a number" a)])]
[() 1]
[(a b c d . e*)
(let f ([ac (binary* (binary* (binary* a b) c) d)]
[e* e*])
(cond
[(null? e*) ac]
[else (f (binary* ac (car e*)) (cdr e*))]))]))
(define (binary-gcd x y)
(define (gcd x y)
(cond
[($fx= y 0) x]
[else (gcd y (remainder x y))]))
(let ([x (if (< x 0) (- x) x)]
[y (if (< y 0) (- y) y)])
(cond
[(> x y) (gcd x y)]
[(< x y) (gcd y x)]
[else x])))
(define gcd
(case-lambda
[(x y)
(cond
[(or (fixnum? x) (bignum? x))
(cond
[(or (fixnum? y) (bignum? y))
(binary-gcd x y)]
[(number? y)
(die 'gcd "not an exact integer" y)]
[else
(die 'gcd "not a number" y)])]
[(number? x)
(die 'gcd "not an exact integer" x)]
[else
(die 'gcd "not a number" x)])]
[(x)
(cond
[(or (fixnum? x) (bignum? x)) x]
[(number? x)
(die 'gcd "not an exact integer" x)]
[else
(die 'gcd "not a number" x)])]
[() 0]
[(x y z . ls)
(let f ([g (gcd (gcd x y) z)] [ls ls])
(cond
[(null? ls) g]
[else (f (gcd g (car ls)) (cdr ls))]))]))
(define lcm
(case-lambda
[(x y)
(cond
[(or (fixnum? x) (bignum? x))
(cond
[(or (fixnum? y) (bignum? y))
(let ([x (if (< x 0) (- x) x)]
[y (if (< y 0) (- y) y)])
(let ([g (binary-gcd x y)])
(binary* y (quotient x g))))]
[(number? y)
(die 'lcm "not an exact integer" y)]
[else
(die 'lcm "not a number" y)])]
[(number? x)
(die 'lcm "not an exact integer" x)]
[else
(die 'lcm "not a number" x)])]
[(x)
(cond
[(or (fixnum? x) (bignum? x)) x]
[(number? x)
(die 'lcm "not an exact integer" x)]
[else
(die 'lcm "not a number" x)])]
[() 1]
[(x y z . ls)
(let f ([g (lcm (lcm x y) z)] [ls ls])
(cond
[(null? ls) g]
[else (f (lcm g (car ls)) (cdr ls))]))]))
(define binary/ ;;; implements ratnums
(lambda (x y)
(cond
[(flonum? x)
(cond
[(flonum? y) ($fl/ x y)]
[(fixnum? y) ($fl/ x ($fixnum->flonum y))]
[(bignum? y) ($fl/ x (bignum->flonum y))]
[(ratnum? y) ($fl/ x (ratnum->flonum y))]
[else (die '/ "not a number" y)])]
[(fixnum? x)
(cond
[(flonum? y) ($fl/ ($fixnum->flonum x) y)]
[(fixnum? y)
(cond
[($fx= y 0) (die '/ "division by 0")]
[($fx> y 0)
(if ($fx= y 1)
x
(let ([g (binary-gcd x y)])
(cond
[($fx= g y) (fxquotient x g)]
[($fx= g 1) ($make-ratnum x y)]
[else
($make-ratnum (fxquotient x g) (fxquotient y g))])))]
[else
(if ($fx= y -1)
(binary- 0 x)
(let ([g (binary-gcd x y)])
(cond
[($fx= ($fx- 0 g) y) (binary- 0 (fxquotient x g))]
[($fx= g 1) ($make-ratnum (binary- 0 x) (binary- 0 y))]
[else
($make-ratnum
(binary- 0 (fxquotient x g))
(binary- 0 (fxquotient y g)))])))])]
[(bignum? y)
(let ([g (binary-gcd x y)])
(cond
[(= g y) (quotient x g)] ;;; should not happen
[($bignum-positive? y)
(if ($fx= g 1)
($make-ratnum x y)
($make-ratnum (fxquotient x g) (quotient y g)))]
[else
(if ($fx= g 1)
($make-ratnum (binary- 0 x) (binary- 0 y))
($make-ratnum
(binary- 0 (fxquotient x g))
(binary- 0 (quotient y g))))]))]
[(ratnum? y)
(/ (* x ($ratnum-d y)) ($ratnum-n y))]
[else (die '/ "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(cond
[($fx= y 0) (die '/ "division by 0")]
[($fx> y 0)
(if ($fx= y 1)
x
(let ([g (binary-gcd x y)])
(cond
[($fx= g 1) ($make-ratnum x y)]
[($fx= g y) (quotient x g)]
[else
($make-ratnum (quotient x g) (quotient y g))])))]
[else
(if ($fx= y -1)
(- x)
(let ([g (binary-gcd x y)])
(cond
[(= (- g) y) (- (quotient x g))]
[else
($make-ratnum
(- (quotient x g))
(- (quotient y g)))])))])]
[(bignum? y)
(let ([g (binary-gcd x y)])
(cond
[($fx= g 1)
(if ($bignum-positive? y)
($make-ratnum x y)
($make-ratnum
(binary- 0 x)
(binary- 0 y)))]
[($bignum-positive? y)
(if (= g y)
(quotient x g)
($make-ratnum (quotient x g) (quotient y g)))]
[else
(let ([y (binary- 0 y)])
(if (= g y)
(binary- 0 (quotient x g))
($make-ratnum
(binary- 0 (quotient x g))
(quotient y g))))]))]
[(flonum? y) ($fl/ (bignum->flonum x) y)]
[(ratnum? y)
(binary/ (binary* x ($ratnum-n y)) ($ratnum-d y))]
[else (die '/ "not a number" y)])]
[(ratnum? x)
(cond
[(ratnum? y)
(binary/
(binary* ($ratnum-n x) ($ratnum-d y))
(binary* ($ratnum-n y) ($ratnum-d x)))]
[else (binary/ 1 (binary/ y x))])]
[else (die '/ "not a number" x)])))
(define /
(case-lambda
[(x y) (binary/ x y)]
[(x)
(cond
[(fixnum? x)
(cond
[($fxzero? x) (die '/ "division by 0")]
[($fx> x 0)
(if ($fx= x 1)
1
($make-ratnum 1 x))]
[else
(if ($fx= x -1)
-1
($make-ratnum -1 (- x)))])]
[(bignum? x)
(if ($bignum-positive? x)
($make-ratnum 1 x)
($make-ratnum -1 (- x)))]
[(flonum? x) (foreign-call "ikrt_fl_invert" x)]
[(ratnum? x)
(let ([n ($ratnum-n x)] [d ($ratnum-d x)])
(cond
[($fx= n 1) d]
[($fx= n -1) (- d)]
[else ($make-ratnum d n)]))]
[else (die '/ "not a number" x)])]
[(x y z . rest)
(let f ([a (binary/ x y)] [b z] [ls rest])
(cond
[(null? rest) (binary/ a b)]
[else (f (binary/ a b) (car ls) (cdr ls))]))]))
(define flmax
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
(if ($fl< x y)
y
x)
(die 'flmax "not a flonum" y))
(die 'flmax "not a flonum" x))]
[(x y z . rest)
(let f ([a (flmax x y)] [b z] [ls rest])
(cond
[(null? ls) (flmax a b)]
[else
(f (flmax a b) (car ls) (cdr ls))]))]
[(x)
(if (flonum? x)
x
(die 'flmax "not a number" x))]))
(define max
(case-lambda
[(x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y)
(if ($fx> x y) x y)]
[(bignum? y)
(if (positive-bignum? y) y x)]
[(flonum? y)
(let ([x ($fixnum->flonum x)])
(if ($fl>= y x) y x))]
[(ratnum? y) ;;; FIXME: optimize
(if (>= x y) x y)]
[else (die 'max "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(if (positive-bignum? x) x y)]
[(bignum? y)
(if (bnbn> x y) x y)]
[(flonum? y)
(let ([x (bignum->flonum x)])
(if ($fl>= y x) y x))]
[(ratnum? y) ;;; FIXME: optimize
(if (>= x y) x y)]
[else (die 'max "not a number" y)])]
[(flonum? x)
(cond
[(flonum? y)
(if ($fl>= x y) x y)]
[(fixnum? y)
(let ([y ($fixnum->flonum y)])
(if ($fl>= y x) y x))]
[(bignum? y)
(let ([y (bignum->flonum y)])
(if ($fl>= y x) y x))]
[(ratnum? y)
;;; FIXME: may be incorrect
(let ([y (ratnum->flonum y)])
(if ($fl>= y x) y x))]
[else (die 'max "not a number" y)])]
[(ratnum? x)
(cond
[(or (fixnum? y) (bignum? y) (ratnum? y))
(if (>= x y) x y)]
[(flonum? y)
(let ([x (ratnum->flonum x)])
(if ($fl>= x y) x y))]
[else (die 'max "not a number" y)])]
[else (die 'max "not a number" x)])]
[(x y z . rest)
(let f ([a (max x y)] [b z] [ls rest])
(cond
[(null? ls) (max a b)]
[else
(f (max a b) (car ls) (cdr ls))]))]
[(x)
(if (number? x)
x
(die 'max "not a number" x))]))
(define min
(case-lambda
[(x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y)
(if ($fx> x y) y x)]
[(bignum? y)
(if (positive-bignum? y) x y)]
[(flonum? y)
(let ([x ($fixnum->flonum x)])
(if ($fl>= y x) x y))]
[(ratnum? y) ;;; FIXME: optimize
(if (>= x y) y x)]
[else (die 'min "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(if (positive-bignum? x) y x)]
[(bignum? y)
(if (bnbn> x y) y x)]
[(flonum? y)
(let ([x (bignum->flonum x)])
(if ($fl>= y x) x y))]
[(ratnum? y) ;;; FIXME: optimize
(if (>= x y) y x)]
[else (die 'min "not a number" y)])]
[(flonum? x)
(cond
[(flonum? y)
(if ($fl>= x y) y x)]
[(fixnum? y)
(let ([y ($fixnum->flonum y)])
(if ($fl>= y x) x y))]
[(bignum? y)
(let ([y (bignum->flonum y)])
(if ($fl>= y x) x y))]
[(ratnum? y)
;;; FIXME: may be incorrect
(let ([y (ratnum->flonum y)])
(if ($fl>= y x) x y))]
[else (die 'min "not a number" y)])]
[(ratnum? x)
(cond
[(or (fixnum? y) (bignum? y) (ratnum? y))
(if (>= x y) y x)]
[(flonum? y)
(let ([x (ratnum->flonum x)])
(if ($fl>= x y) y x))]
[else (die 'min "not a number" y)])]
[else (die 'min "not a number" x)])]
[(x y z . rest)
(let f ([a (min x y)] [b z] [ls rest])
(cond
[(null? ls) (min a b)]
[else
(f (min a b) (car ls) (cdr ls))]))]
[(x)
(if (number? x)
x
(die 'min "not a number" x))]))
(define (abs x)
(cond
[(fixnum? x)
(if ($fx< x 0) (- x) x)]
[(bignum? x)
(if ($bignum-positive? x) x (- x))]
[(flonum? x)
(if ($fx> ($flonum-u8-ref x 0) 127)
($fl* x -1.0)
x)]
[(ratnum? x)
(let ([n ($ratnum-n x)])
(if (< n 0)
($make-ratnum (- n) ($ratnum-d x))
x))]
[else (die 'abs "not a number" x)]))
(define flmin
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
(if ($fl< x y) x y)
(die 'flmin "not a flonum" y))
(die 'flmin "not a flonum" x))]
[(x y z . rest)
(let f ([a (flmin x y)] [b z] [ls rest])
(cond
[(null? ls) (flmin a b)]
[else
(f (flmin a b) (car ls) (cdr ls))]))]
[(x)
(if (flonum? x)
x
(die 'flmin "not a flonum" x))]))
(define exact->inexact
(lambda (x)
(cond
[(fixnum? x) ($fixnum->flonum x)]
[(bignum? x) (bignum->flonum x)]
[(ratnum? x) (ratnum->flonum x)]
[else
(die 'exact->inexact
"not an exact number" x)])))
(define inexact
(lambda (x)
(cond
[(fixnum? x) ($fixnum->flonum x)]
[(bignum? x) (bignum->flonum x)]
[(ratnum? x) (ratnum->flonum x)]
[(flonum? x) x]
[else
(die 'inexact "not a number" x)])))
(define real->flonum
(lambda (x)
(cond
[(fixnum? x) ($fixnum->flonum x)]
[(bignum? x) (bignum->flonum x)]
[(ratnum? x) (ratnum->flonum x)]
[(flonum? x) x]
[else
(die 'real->flonum "not a real number" x)])))
(define positive-bignum?
(lambda (x)
(foreign-call "ikrt_positive_bn" x)))
(define even-bignum?
(lambda (x)
(foreign-call "ikrt_even_bn" x)))
(define ($fxeven? x)
($fxzero? ($fxlogand x 1)))
(define (even? x)
(cond
[(fixnum? x) ($fxeven? x)]
[(bignum? x) (even-bignum? x)]
[(flonum? x) (die 'even? "BUG" x)]
[else (die 'even? "not an integer" x)]))
(define (odd? x)
(not
(cond
[(fixnum? x) ($fxeven? x)]
[(bignum? x) (even-bignum? x)]
[(flonum? x) (die 'odd? "BUG" x)]
[else (die 'odd? "not an integer" x)])))
(module (number->string)
(module (bignum->string)
(define (bignum->decimal-string x)
(utf8->string (foreign-call "ikrt_bignum_to_bytevector" x)))
(module (bignum->power-string)
(define string-map "0123456789ABCDEF")
(define (init-string x chars)
(if ($bignum-positive? x)
(make-string chars)
(let ([s (make-string ($fxadd1 chars))])
(string-set! s 0 #\-)
s)))
(define (bignum-bits x)
(define (add-bits b n)
(cond
[($fxzero? b) n]
[else (add-bits ($fxsra b 1) ($fx+ n 1))]))
(let f ([i ($fxsub1 ($bignum-size x))])
(let ([b ($bignum-byte-ref x i)])
(cond
[($fxzero? b) (f ($fxsub1 i))]
[else (add-bits b ($fxsll i 3))]))))
(define (bignum->power-string x mask shift)
(let ([bits (bignum-bits x)])
(let ([chars (fxquotient (fx+ bits (fx- shift 1)) shift)])
(let* ([s (init-string x chars)]
[n ($fx- (string-length s) 1)])
(let f ([i 0] [j 0] [k 0] [b 0])
(cond
[($fx= i chars) s]
[($fx< k 8)
(f i ($fxadd1 j) ($fx+ k 8)
($fxlogor b
($fxsll ($bignum-byte-ref x j) k)))]
[else
(string-set! s ($fx- n i)
(string-ref string-map
($fxlogand mask b)))
(f ($fxadd1 i) j ($fx- k shift) ($fxsra b shift))])))))))
(define (bignum->string x r)
(case r
[(10) (bignum->decimal-string x)]
[(2) (bignum->power-string x 1 1)]
[(8) (bignum->power-string x 7 3)]
[(16) (bignum->power-string x 15 4)]
[else (die 'number->string "BUG")])))
(define ratnum->string
(lambda (x r)
(string-append
($number->string ($ratnum-n x) r)
"/"
($number->string ($ratnum-d x) r))))
(define $number->string
(lambda (x r)
(cond
[(fixnum? x) (fixnum->string x r)]
[(bignum? x) (bignum->string x r)]
[(flonum? x)
(unless (eqv? r 10)
(die 'number->string
"invalid radix for inexact number"
r x))
(flonum->string x)]
[(ratnum? x) (ratnum->string x r)]
[else (die 'number->string "not a number" x)])))
(define number->string
(case-lambda
[(x) ($number->string x 10)]
[(x r)
(unless (memv r '(2 8 10 16))
(die 'number->string "invalid radix" r))
($number->string x r)]
[(x r precision)
(die 'number->string
"BUG: precision is not supported yet")])))
(define modulo
(lambda (n m)
(cond
[(fixnum? n)
(cond
[(fixnum? m) ($fxmodulo n m)]
[(bignum? m)
(if ($fx< n 0)
(if ($bignum-positive? m)
(foreign-call "ikrt_fxbnplus" n m)
n)
(if ($bignum-positive? m)
n
(foreign-call "ikrt_fxbnplus" n m)))]
[(flonum? m)
(let ([v ($flonum->integer m)])
(cond
[v (inexact (modulo n v))]
[else
(die 'modulo "not an integer" m)]))]
[(ratnum? m) (die 'modulo "not an integer" m)]
[else (die 'modulo "not a number" m)])]
[(bignum? n)
(cond
[(fixnum? m)
(foreign-call "ikrt_bnfx_modulo" n m)]
[(bignum? m)
(if ($bignum-positive? n)
(if ($bignum-positive? m)
(remainder n m)
(+ m (remainder n m)))
(if ($bignum-positive? m)
(+ m (remainder n m))
(remainder n m)))]
[(flonum? m)
(let ([v ($flonum->integer m)])
(cond
[v (inexact (modulo n v))]
[else
(die 'modulo "not an integer" m)]))]
[(ratnum? m) (die 'modulo "not an integer" m)]
[else (die 'modulo "not a number" m)])]
[(flonum? n)
(let ([v ($flonum->integer n)])
(cond
[v (inexact (modulo v m))]
[else
(die 'modulo "not an integer" n)]))]
[(ratnum? n) (die 'modulo "not an integer" n)]
[else (die 'modulo "not a number" n)])))
(define-syntax mk<
(syntax-rules ()
[(_ name fxfx< fxbn< bnfx< bnbn<
fxfl< flfx< bnfl< flbn< flfl<
fxrt< rtfx< bnrt< rtbn< flrt< rtfl< rtrt<)
(let ()
(define err
(lambda (x) (die 'name "not a number" x)))
(define fxloopt
(lambda (x y ls)
(cond
[(fixnum? y)
(if (null? ls)
(fxfx< x y)
(if (fxfx< x y)
(fxloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(bignum? y)
(if (null? ls)
(fxbn< x y)
(if (fxbn< x y)
(bnloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(flonum? y)
(if (null? ls)
(fxfl< x y)
(if (fxfl< x y)
(flloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(ratnum? y)
(if (null? ls)
(fxrt< x y)
(if (fxrt< x y)
(rtloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[else (err y)])))
(define bnloopt
(lambda (x y ls)
(cond
[(fixnum? y)
(if (null? ls)
(bnfx< x y)
(if (bnfx< x y)
(fxloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(bignum? y)
(if (null? ls)
(bnbn< x y)
(if (bnbn< x y)
(bnloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(flonum? y)
(if (null? ls)
(bnfl< x y)
(if (bnfl< x y)
(flloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(ratnum? y)
(if (null? ls)
(bnrt< x y)
(if (bnrt< x y)
(rtloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[else (err y)])))
(define flloopt
(lambda (x y ls)
(cond
[(fixnum? y)
(if (null? ls)
(flfx< x y)
(if (flfx< x y)
(fxloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(bignum? y)
(if (null? ls)
(flbn< x y)
(if (flbn< x y)
(bnloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(flonum? y)
(if (null? ls)
(flfl< x y)
(if (flfl< x y)
(flloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(ratnum? y)
(if (null? ls)
(flrt< x y)
(if (flrt< x y)
(rtloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[else (err y)])))
(define rtloopt
(lambda (x y ls)
(cond
[(fixnum? y)
(if (null? ls)
(rtfx< x y)
(if (rtfx< x y)
(fxloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(bignum? y)
(if (null? ls)
(rtbn< x y)
(if (rtbn< x y)
(bnloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(flonum? y)
(if (null? ls)
(rtfl< x y)
(if (rtfl< x y)
(flloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[(ratnum? y)
(if (null? ls)
(rtrt< x y)
(if (rtrt< x y)
(rtloopt y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))]
[else (err y)])))
(define loopf
(lambda (x ls)
(cond
[(number? x)
(if (null? ls)
#f
(loopf (car ls) (cdr ls)))]
[else (err x)])))
(define f
(case-lambda
[(x y)
(cond
[(fixnum? x)
(cond
[(fixnum? y) (fxfx< x y)]
[(bignum? y) (fxbn< x y)]
[(flonum? y) (fxfl< x y)]
[(ratnum? y) (fxrt< x y)]
[else (err y)])]
[(bignum? x)
(cond
[(fixnum? y) (bnfx< x y)]
[(bignum? y) (bnbn< x y)]
[(flonum? y) (bnfl< x y)]
[(ratnum? y) (bnrt< x y)]
[else (err y)])]
[(flonum? x)
(cond
[(fixnum? y) (flfx< x y)]
[(bignum? y) (flbn< x y)]
[(flonum? y) (flfl< x y)]
[(ratnum? y) (flrt< x y)]
[else (err y)])]
[(ratnum? x)
(cond
[(fixnum? y) (rtfx< x y)]
[(bignum? y) (rtbn< x y)]
[(flonum? y) (rtfl< x y)]
[(ratnum? y) (rtrt< x y)]
[else (err y)])]
[else (err x)])]
[(x y z) (and (f x y) (f y z))]
[(x) (if (number? x) #t (err x))]
[(x y . ls)
(cond
[(fixnum? x) (fxloopt x y ls)]
[(bignum? x) (bnloopt x y ls)]
[(flonum? x) (flloopt x y ls)]
[(ratnum? x) (rtloopt x y ls)]
[else (err x)])]))
f)]))
(define-syntax false (syntax-rules () [(_ x y) #f]))
(define-syntax bnbncmp
(syntax-rules ()
[(_ x y cmp)
(cmp (foreign-call "ikrt_bnbncomp" x y) 0)]))
(define-syntax bnbn= (syntax-rules () [(_ x y) (bnbncmp x y $fx=)]))
(define-syntax bnbn< (syntax-rules () [(_ x y) (bnbncmp x y $fx<)]))
(define-syntax bnbn> (syntax-rules () [(_ x y) (bnbncmp x y $fx>)]))
(define-syntax bnbn<= (syntax-rules () [(_ x y) (bnbncmp x y $fx<=)]))
(define-syntax bnbn>= (syntax-rules () [(_ x y) (bnbncmp x y $fx>=)]))
(define-syntax fxbn< (syntax-rules () [(_ x y) (positive-bignum? y)]))
(define-syntax bnfx< (syntax-rules () [(_ x y) (not (positive-bignum? x))]))
(define-syntax fxbn> (syntax-rules () [(_ x y) (not (positive-bignum? y))]))
(define-syntax bnfx> (syntax-rules () [(_ x y) (positive-bignum? x)]))
(define-syntax flcmp
(syntax-rules ()
[(_ flfl? flfx? fxfl? flbn? bnfl? fl?)
(begin
(define-syntax flfl?
(syntax-rules () [(_ x y) (fl? x y)]))
(define-syntax flfx?
(syntax-rules () [(_ x y) (fl? x ($fixnum->flonum y))]))
(define-syntax flbn?
(syntax-rules () [(_ x y) (fl? x (bignum->flonum y))]))
(define-syntax fxfl?
(syntax-rules () [(_ x y) (fl? ($fixnum->flonum x) y)]))
(define-syntax bnfl?
(syntax-rules () [(_ x y) (fl? (bignum->flonum x) y)])))]))
;;; #;
;;; (begin
;;; (define-syntax $fl=
;;; (syntax-rules () [(_ x y) (foreign-call "ikrt_fl_equal" x y)]))
;;; (define-syntax $fl<
;;; (syntax-rules () [(_ x y) (foreign-call "ikrt_fl_less" x y)]))
;;; (define-syntax $fl<=
;;; (syntax-rules () [(_ x y) (foreign-call "ikrt_fl_less_or_equal" x y)]))
;;; (define-syntax $fl>
;;; (syntax-rules () [(_ x y) (foreign-call "ikrt_fl_less" y x)]))
;;; (define-syntax $fl>=
;;; (syntax-rules () [(_ x y) (foreign-call "ikrt_fl_less_or_equal" y x)])))
(define-syntax define-flcmp
(syntax-rules ()
[(_ fl<? $fl<)
(define fl<?
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
($fl< x y)
(die 'fl<? "not a flonum" y))
(die 'fl<? "not a flonum" x))]
[(x y z)
(if (flonum? x)
(if (flonum? y)
(if (flonum? z)
(and ($fl< x y) ($fl< y z))
(die 'fl<? "not a flonum" z))
(die 'fl<? "not a flonum" y))
(die 'fl<? "not a flonum" x))]
[(x)
(or (flonum? x)
(die 'fl<? "not a flonum" x))]
[(x y . rest)
(let ()
(define (loopf a ls)
(unless (flonum? a)
(die 'fl<? "not a flonum" a))
(if (null? ls)
#f
(loopf (car ls) (cdr ls))))
(if (flonum? x)
(if (flonum? y)
(if ($fl< x y)
(let f ([x y] [y (car rest)] [ls (cdr rest)])
(if (flonum? y)
(if (null? ls)
($fl< x y)
(if ($fl< x y)
(f y (car ls) (cdr ls))
(loopf (car ls) (cdr ls))))
(die 'fl<? "not a flonum" y)))
(loopf (car rest) (cdr rest)))
(die 'fl<? "not a flonum" y))
(die 'fl<? "not a flonum" x)))]))]))
(define-flcmp fl=? $fl=)
(define-flcmp fl<? $fl<)
(define-flcmp fl<=? $fl<=)
(define-flcmp fl>? $fl>)
(define-flcmp fl>=? $fl>=)
(define fl+
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
($fl+ x y)
(die 'fl+ "not a flonum" y))
(die 'fl+ "not a flonum" x))]
[(x y z)
(fl+ (fl+ x y) z)]
[(x y z q . rest)
(let f ([ac (fl+ (fl+ (fl+ x y) z) q)] [rest rest])
(if (null? rest)
ac
(f (fl+ ac (car rest)) (cdr rest))))]
[(x)
(if (flonum? x)
x
(die 'fl+ "not a flonum" x))]
[() (exact->inexact 0)]))
(define fl-
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
($fl- x y)
(die 'fl- "not a flonum" y))
(die 'fl- "not a flonum" x))]
[(x y z)
(fl- (fl- x y) z)]
[(x y z q . rest)
(let f ([ac (fl- (fl- (fl- x y) z) q)] [rest rest])
(if (null? rest)
ac
(f (fl- ac (car rest)) (cdr rest))))]
[(x)
(if (flonum? x)
($fl* -1.0 x)
(die 'fl+ "not a flonum" x))]))
(define fl*
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
($fl* x y)
(die 'fl* "not a flonum" y))
(die 'fl* "not a flonum" x))]
[(x y z)
(fl* (fl* x y) z)]
[(x y z q . rest)
(let f ([ac (fl* (fl* (fl* x y) z) q)] [rest rest])
(if (null? rest)
ac
(f (fl* ac (car rest)) (cdr rest))))]
[(x)
(if (flonum? x)
x
(die 'fl* "not a flonum" x))]
[() 1.0]))
(define fl/
(case-lambda
[(x y)
(if (flonum? x)
(if (flonum? y)
($fl/ x y)
(die 'fl/ "not a flonum" y))
(die 'fl/ "not a flonum" x))]
[(x y z)
(fl/ (fl/ x y) z)]
[(x y z q . rest)
(let f ([ac (fl/ (fl/ (fl/ x y) z) q)] [rest rest])
(if (null? rest)
ac
(f (fl/ ac (car rest)) (cdr rest))))]
[(x)
(if (flonum? x)
($fl/ 1.0 x)
(die 'fl/ "not a flonum" x))]))
(flcmp flfl= flfx= fxfl= flbn= bnfl= $fl=)
(flcmp flfl< flfx< fxfl< flbn< bnfl< $fl<)
(flcmp flfl> flfx> fxfl> flbn> bnfl> $fl>)
(flcmp flfl<= flfx<= fxfl<= flbn<= bnfl<= $fl<=)
(flcmp flfl>= flfx>= fxfl>= flbn>= bnfl>= $fl>=)
(define-syntax flrt= (syntax-rules () [(_ x y) (= (inexact->exact x) y)]))
(define-syntax rtfl= (syntax-rules () [(_ x y) (= x (inexact->exact y))]))
(define-syntax flrt< (syntax-rules () [(_ x y) (< (inexact->exact x) y)]))
(define-syntax rtfl< (syntax-rules () [(_ x y) (< x (inexact->exact y))]))
(define-syntax flrt<= (syntax-rules () [(_ x y) (<= (inexact->exact x) y)]))
(define-syntax rtfl<= (syntax-rules () [(_ x y) (<= x (inexact->exact y))]))
(define-syntax flrt> (syntax-rules () [(_ x y) (> (inexact->exact x) y)]))
(define-syntax rtfl> (syntax-rules () [(_ x y) (> x (inexact->exact y))]))
(define-syntax flrt>= (syntax-rules () [(_ x y) (>= (inexact->exact x) y)]))
(define-syntax rtfl>= (syntax-rules () [(_ x y) (>= x (inexact->exact y))]))
(define (exrt< x y) (< (* x ($ratnum-d y)) ($ratnum-n y)))
(define (rtex< x y) (< ($ratnum-n x) (* y ($ratnum-d x))))
(define (rtrt< x y) (< (* ($ratnum-n x) ($ratnum-d y)) (* ($ratnum-n y) ($ratnum-d x))))
(define (rtrt<= x y) (<= (* ($ratnum-n x) ($ratnum-d y)) (* ($ratnum-n y) ($ratnum-d x))))
(define (exrt> x y) (> (* x ($ratnum-d y)) ($ratnum-n y)))
(define (rtex> x y) (> ($ratnum-n x) (* y ($ratnum-d x))))
(define (rtrt> x y) (> (* ($ratnum-n x) ($ratnum-d y)) (* ($ratnum-n y) ($ratnum-d x))))
(define (rtrt>= x y) (>= (* ($ratnum-n x) ($ratnum-d y)) (* ($ratnum-n y) ($ratnum-d x))))
(define (rtrt= x y)
(and (= ($ratnum-n x) ($ratnum-n y)) (= ($ratnum-d x) ($ratnum-d y))))
(define =
(mk< = $fx= false false bnbn= fxfl= flfx= bnfl= flbn= flfl=
false false false false flrt= rtfl= rtrt=))
(define <
(mk< < $fx< fxbn< bnfx< bnbn< fxfl< flfx< bnfl< flbn< flfl<
exrt< rtex< exrt< rtex< flrt< rtfl< rtrt<))
(define >
(mk< > $fx> fxbn> bnfx> bnbn> fxfl> flfx> bnfl> flbn> flfl>
exrt> rtex> exrt> rtex> flrt> rtfl> rtrt>))
(define <=
(mk< <= $fx<= fxbn< bnfx< bnbn<= fxfl<= flfx<= bnfl<= flbn<= flfl<=
exrt< rtex< exrt< rtex< flrt<= rtfl<= rtrt<=))
(define >=
(mk< >= $fx>= fxbn> bnfx> bnbn>= fxfl>= flfx>= bnfl>= flbn>= flfl>=
exrt> rtex> exrt> rtex> flrt>= rtfl>= rtrt>=))
(define error@add1
(lambda (x)
(import (ikarus))
(cond
[(fixnum? x) (+ (greatest-fixnum) 1)]
[(number? x) (+ x 1)]
[else (die 'add1 "not a number" x)])))
(define add1
(lambda (x)
(import (ikarus))
(add1 x)))
(define error@sub1
(lambda (x)
(import (ikarus))
(cond
[(fixnum? x) (- (least-fixnum) 1)]
[(number? x) (- x 1)]
[else (die 'sub1 "not a number" x)])))
(define sub1
(lambda (x)
(import (ikarus))
(sub1 x)))
(define zero?
(lambda (x)
(cond
[(fixnum? x) (eq? x 0)]
[(bignum? x) #f]
[(flonum? x)
(or ($fl= x 0.0) ($fl= x -0.0))]
[else
(die 'zero? "not a number" x)])))
(define expt
(lambda (n m)
(define fxexpt
(lambda (n m)
(cond
[($fxzero? m) 1]
[($fxzero? ($fxlogand m 1))
(fxexpt (binary* n n) ($fxsra m 1))]
[else
(binary* n (fxexpt (binary* n n) ($fxsra m 1)))])))
(unless (number? n)
(die 'expt "not a numebr" n))
(cond
[(fixnum? m)
(if ($fx>= m 0)
(cond
[(ratnum? n)
($make-ratnum (expt ($ratnum-n n) m) (expt ($ratnum-d n) m))]
[else (fxexpt n m)])
(/ 1 (expt n (- m))))]
[(bignum? m)
(cond
[(eq? n 0) 0]
[(eq? n 1) 1]
[(eq? n -1)
(if (positive-bignum? m)
(if (even-bignum? m)
1
-1)
(/ 1 (expt n (- m))))]
[else
(die 'expt "result is too big to compute" n m)])]
[(flonum? m) (flexpt (inexact n) m)]
[(ratnum? m) (flexpt (inexact n) (inexact m))]
[else (die 'expt "not a number" m)])))
(define quotient
(lambda (x y)
(let-values ([(q r) (quotient+remainder x y)])
q)))
(define remainder
(lambda (x y)
(let-values ([(q r) (quotient+remainder x y)])
r)))
(define quotient+remainder
(lambda (x y)
(cond
[(eq? y 0)
(die 'quotient+remainder
"second argument must be non-zero")]
[(fixnum? x)
(cond
[(fixnum? y)
(values (fxquotient x y)
(fxremainder x y))]
[(bignum? y) (values 0 x)]
[(flonum? y)
(let ([v ($flonum->integer y)])
(cond
[v
(let-values ([(q r) (quotient+remainder x v)])
(values (inexact q) (inexact r)))]
[else
(die 'quotient+remainder "not an integer" y)]))]
[else (die 'quotient+remainder "not a number" y)])]
[(bignum? x)
(cond
[(fixnum? y)
(let ([p (foreign-call "ikrt_bnfxdivrem" x y)])
(values (car p) (cdr p)))]
[(bignum? y)
(let ([p (foreign-call "ikrt_bnbndivrem" x y)])
(values (car p) (cdr p)))]
[(flonum? y)
(let ([v ($flonum->integer y)])
(cond
[v
(let-values ([(q r) (quotient+remainder x v)])
(values (inexact q) (inexact r)))]
[else
(die 'quotient+remainder "not an integer" y)]))]
[else (die 'quotient+remainder "not a number" y)])]
[(flonum? x)
(let ([v ($flonum->integer x)])
(cond
[v
(let-values ([(q r) (quotient+remainder v y)])
(values (inexact q) (inexact r)))]
[else (die 'quotient+remainder "not an integer" x)]))]
[else (die 'quotient+remainder "not a number" x)])))
(define positive?
(lambda (x)
(cond
[(fixnum? x) ($fx> x 0)]
[(flonum? x) ($fl> x 0.0)]
[(bignum? x) (positive-bignum? x)]
[(ratnum? x) (positive? ($ratnum-n x))]
[else (die 'positive? "not a number" x)])))
(define negative?
(lambda (x)
(cond
[(fixnum? x) ($fx< x 0)]
[(flonum? x) ($fl< x 0.0)]
[(bignum? x) (not (positive-bignum? x))]
[(ratnum? x) (negative? ($ratnum-n x))]
[else (die 'negative? "not a number" x)])))
(define sin
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_sin" x)]
[(fixnum? x) (foreign-call "ikrt_fx_sin" x)]
[else (die 'sin "BUG: unsupported" x)])))
(define cos
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_cos" x)]
[(fixnum? x) (foreign-call "ikrt_fx_cos" x)]
[else (die 'cos "BUG: unsupported" x)])))
(define tan
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_tan" x)]
[(fixnum? x) (foreign-call "ikrt_fx_tan" x)]
[else (die 'tan "BUG: unsupported" x)])))
(define asin
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_asin" x)]
[(fixnum? x) (foreign-call "ikrt_fx_asin" x)]
[else (die 'asin "BUG: unsupported" x)])))
(define acos
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_acos" x)]
[(fixnum? x) (foreign-call "ikrt_fx_acos" x)]
[else (die 'acos "BUG: unsupported" x)])))
(define atan
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_atan" x)]
[(fixnum? x) (foreign-call "ikrt_fx_atan" x)]
[else (die 'atan "BUG: unsupported" x)])))
(define sqrt
(lambda (x)
(cond
[(flonum? x) (foreign-call "ikrt_fl_sqrt" x)]
[(fixnum? x)
(when ($fx< x 0)
(die 'sqrt "complex results not supported" x))
(foreign-call "ikrt_fx_sqrt" x)]
[(bignum? x)
(unless ($bignum-positive? x)
(die 'sqrt "complex results not supported" x))
(let-values ([(s r) (exact-integer-sqrt x)])
(cond
[(eq? r 0) s]
[else
(let ([v (sqrt (inexact x))])
;;; could the [dropped] residual ever affect the answer?
(cond
[(infinite? v)
(if (bignum? s)
(foreign-call "ikrt_bignum_to_flonum"
s
1 ;;; round up in case of a tie
($make-flonum))
(inexact s))]
[else v]))]))]
[(ratnum? x)
;;; FIXME: incorrect as per bug 180170
(/ (sqrt ($ratnum-n x)) (sqrt ($ratnum-d x)))]
[else (die 'sqrt "not a number" x)])))
(define flsqrt
(lambda (x)
(if (flonum? x)
(foreign-call "ikrt_fl_sqrt" x)
(die 'flsqrt "not a flonum" x))))
(define flzero?
(lambda (x)
(if (flonum? x)
($flzero? x)
(die 'flzero? "not a flonum" x))))
(define flnegative?
(lambda (x)
(if (flonum? x)
($fl< x 0.0)
(die 'flnegative? "not a flonum" x))))
(define exact-integer-sqrt
(lambda (x)
(define who 'exact-integer-sqrt)
(define (fxsqrt x i k)
(let ([j ($fxsra ($fx+ i k) 1)])
(let ([j^2 ($fx* j j)])
(if ($fx> j^2 x)
(fxsqrt x i j)
(if ($fx= i j)
(values j ($fx- x j^2))
(fxsqrt x j k))))))
(cond
[(fixnum? x)
(cond
[($fx< x 0) (die who "invalid argument" x)]
[($fx= x 0) (values 0 0)]
[($fx< x 4) (values 1 ($fx- x 1))]
[($fx< x 9) (values 2 ($fx- x 4))]
[($fx< x 46340) (fxsqrt x 3 ($fxsra x 1))]
[else (fxsqrt x 215 23171)])]
[(bignum? x)
(cond
[($bignum-positive? x)
(let ([r (foreign-call "ikrt_exact_bignum_sqrt" x)])
(values (car r) (cdr r)))]
[else (die who "invalid argument" x)])]
[else (die who "invalid argument" x)])))
(define numerator
(lambda (x)
(cond
[(ratnum? x) ($ratnum-n x)]
[(or (fixnum? x) (bignum? x)) x]
[(flonum? x) (flnumerator x)]
[else (die 'numerator "not an exact integer" x)])))
(define denominator
(lambda (x)
(cond
[(ratnum? x) ($ratnum-d x)]
[(or (fixnum? x) (bignum? x)) 1]
[(flonum? x) (fldenominator x)]
[else (die 'denominator "not an exact integer" x)])))
(define (floor x)
(define (ratnum-floor x)
(let ([n (numerator x)] [d (denominator x)])
(let ([q (quotient n d)])
(if (>= n 0) q (- q 1)))))
(cond
[(flonum? x)
;;; optimize for integer flonums
(let ([e (or ($flonum->exact x)
(die 'floor "number has no real value" x))])
(cond
[(ratnum? e)
(exact->inexact (ratnum-floor e))]
[else x]))]
[(ratnum? x) (ratnum-floor x)]
[(or (fixnum? x) (bignum? x)) x]
[else (die 'floor "not a number" x)]))
(define (ceiling x)
(define (ratnum-ceiling x)
(let ([n (numerator x)] [d (denominator x)])
(let ([q (quotient n d)])
(if (< n 0) q (+ q 1)))))
(cond
[(flonum? x)
;;; optimize for integer flonums
(let ([e (or ($flonum->exact x)
(die 'ceiling "number has no real value" x))])
(cond
[(ratnum? e) (exact->inexact (ratnum-ceiling e))]
[else x]))]
[(ratnum? x) (ratnum-ceiling x)]
[(or (fixnum? x) (bignum? x)) x]
[else (die 'ceiling "not a number" x)]))
(define ($ratnum-round x)
(let ([n ($ratnum-n x)] [d ($ratnum-d x)])
(let-values ([(q r) (quotient+remainder n d)])
(let ([r2 (+ r r)])
(if (> n 0)
(cond
[(< r2 d) q]
[(> r2 d) (+ q 1)]
[else
(if (even? q) q (+ q 1))])
(let ([r2 (- r2)])
(cond
[(< r2 d) q]
[(< r2 d) (- q 1)]
[else
(if (even? q) q (- q 1))])))))))
(define ($ratnum-truncate x)
(let ([n ($ratnum-n x)] [d ($ratnum-d x)])
(quotient n d)))
(define (round x)
(cond
[(flonum? x) ($flround x)]
[(ratnum? x) ($ratnum-round x)]
[(or (fixnum? x) (bignum? x)) x]
[else (die 'round "not a number" x)]))
(define (truncate x)
;;; FIXME: fltruncate should preserve the sign of -0.0.
;;;
(cond
[(flonum? x)
(let ([e (or ($flonum->exact x)
(die 'truncate "number has no real value" x))])
(cond
[(ratnum? e) (exact->inexact ($ratnum-truncate e))]
[else x]))]
[(ratnum? x) ($ratnum-truncate x)]
[(or (fixnum? x) (bignum? x)) x]
[else (die 'truncate "not a number" x)]))
(define (fltruncate x)
;;; FIXME: fltruncate should preserve the sign of -0.0.
(unless (flonum? x)
(die 'fltruncate "not a flonum" x))
(let ([v ($flonum->exact x)])
(cond
[(ratnum? v) (exact->inexact ($ratnum-truncate v))]
[else x])))
(define log
(lambda (x)
(cond
[(fixnum? x)
(cond
[($fx= x 1) 0]
[($fx= x 0) (die 'log "undefined around 0")]
[($fx> x 0) (foreign-call "ikrt_fx_log" x)]
[else (die 'log "negative argument" x)])]
[(flonum? x)
(cond
[(>= x 0) (foreign-call "ikrt_fl_log" x)]
[else (die 'log "negative argument" x)])]
[(bignum? x)
(unless ($bignum-positive? x)
(die 'log "negative argument" x))
(let ([v (log (inexact x))])
(cond
[(infinite? v)
(let-values ([(s r) (exact-integer-sqrt x)])
;;; could the [dropped] residual ever affect the answer?
(fl* 2.0 (log s)))]
[else v]))]
[(ratnum? x)
;;; FIXME: incorrect as per bug 180170
(- (log (numerator x)) (log (denominator x)))]
[else (die 'log "not a number" x)])))
(define string->number
(case-lambda
[(x) (string->number-radix-10 x)]
[(x r)
(unless (eqv? r 10)
(die 'string->number
"BUG: only radix 10 is supported"
x r))
(string->number-radix-10 x)]))
(define string->number-radix-10
(lambda (x)
(define (convert-char c radix)
(case radix
[(10)
(cond
[(char<=? #\0 c #\9)
(fx- (char->integer c) (char->integer #\0))]
[else #f])]
[(16)
(cond
[(char<=? #\0 c #\9)
(fx- (char->integer c) (char->integer #\0))]
[(char<=? #\a c #\f)
(fx- (char->integer c) (fx- (char->integer #\a) 10))]
[(char<=? #\A c #\F)
(fx- (char->integer c) (fx- (char->integer #\A) 10))]
[else #f])]
[(8)
(cond
[(char<=? #\0 c #\7)
(fx- (char->integer c) (char->integer #\0))]
[else #f])]
[(2)
(case c
[(#\0) 0]
[(#\1) 1]
[else #f])]
[else (die 'convert-char "invalid radix" radix)]))
(define (parse-exponent-start x n i radix)
(define (parse-exponent x n i radix ac)
(cond
[(fx= i n) ac]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-exponent x n (fxadd1 i) radix
(+ d (* ac radix))))]
[else #f]))]))
(define (parse-exponent-sign x n i radix)
(cond
[(fx= i n) #f]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d) (parse-exponent x n (fxadd1 i) radix d))]
[else #f]))]))
(cond
[(fx= i n) #f]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-exponent x n (fxadd1 i) radix d))]
[(char=? c #\+)
(parse-exponent-sign x n (fxadd1 i) radix)]
[(char=? c #\-)
(let ([v (parse-exponent-sign x n (fxadd1 i) radix)])
(and v (- v)))]
[else #f]))]))
(define (parse-decimal x n i pos? radix exact? ac exp)
(cond
[(fx= i n)
(let ([ac (* (if pos? ac (- ac)) (expt radix exp))])
(exact-conv (or exact? 'i) ac))]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-decimal x n (fxadd1 i) pos? radix exact?
(+ (* ac radix) d) (fxsub1 exp)))]
[(memv c '(#\e #\E))
(let ([ex (parse-exponent-start x n (fxadd1 i) radix)])
(and ex
(exact-conv (or exact? 'i)
(* (if pos? ac (- ac)) (expt radix (+ exp ex))))))]
[else #f]))]))
(define (parse-decimal-no-digits x n i pos? radix exact?)
(cond
[(fx= i n) #f]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-decimal x n (fxadd1 i) pos? radix exact? d -1))]
[else #f]))]))
(define (parse-integer x n i pos? radix exact? ac)
(define (parse-denom-start x n i radix)
(define (parse-denom x n i radix ac)
(cond
[(fx= n i) ac]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-denom x n (fxadd1 i) radix
(+ (* radix ac) d)))]
[else #f]))]))
(cond
[(fx= n i) #f]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-denom x n (fxadd1 i) radix d))]
[else #f]))]))
(cond
[(fx= i n)
(let ([ac (exact-conv exact? ac)])
(if pos? ac (- ac)))]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-integer x n (fxadd1 i) pos? radix exact? (+ (* ac radix) d)))]
[(char=? c #\.)
(parse-decimal x n (fxadd1 i) pos? radix exact? ac 0)]
[(char=? c #\/)
(let ([denom (parse-denom-start x n (fxadd1 i) radix)])
(and denom
(not (= denom 0))
(let ([ac (exact-conv exact? ac)])
(/ (if pos? ac (- ac)) denom))))]
[(memv c '(#\e #\E))
(let ([ex (parse-exponent-start x n (fxadd1 i) radix)])
(and ex
(let ([ac (* (if pos? ac (- ac)) (expt radix ex))])
(exact-conv (or exact? 'i) ac))))]
[else #f]))]))
(define (parse-integer-no-digits x n i pos? radix exact?)
(cond
[(fx= i n) #f]
[else
(let ([c (string-ref x i)])
(cond
[(convert-char c radix) =>
(lambda (d)
(parse-integer x n (fxadd1 i) pos? radix exact? d))]
[(char=? c #\.)
(parse-decimal-no-digits x n (fxadd1 i) pos? radix exact?)]
[else #f]))]))
(define (exact-conv exact? x)
(and x (if (eq? exact? 'i) (exact->inexact x) x)))
(define (start x n i exact? radix?)
(cond
[(fx= i n) #f]
[else
(let ([c (string-ref x i)])
(cond
[(char=? c #\-)
(parse-integer-no-digits x n (fxadd1 i) #f (or radix? 10) exact?)]
[(char=? c #\+)
(parse-integer-no-digits x n (fxadd1 i) #t (or radix? 10) exact?)]
[(char=? c #\#)
(let ([i (fxadd1 i)])
(cond
[(fx= i n) #f]
[else
(let ([c (string-ref x i)])
(case c
[(#\x #\X)
(and (not radix?) (start x n (fxadd1 i) exact? 16))]
[(#\b #\B)
(and (not radix?) (start x n (fxadd1 i) exact? 2))]
[(#\o #\O)
(and (not radix?) (start x n (fxadd1 i) exact? 8))]
[(#\d #\D)
(and (not radix?) (start x n (fxadd1 i) exact? 10))]
[(#\e #\E)
(and (not exact?) (start x n (fxadd1 i) 'e radix?))]
[(#\i #\I)
(and (not exact?) (start x n (fxadd1 i) 'i radix?))]
[else #f]))]))]
[(char=? c #\.)
(parse-decimal-no-digits x n (fxadd1 i) #t (or radix? 10) exact?)]
[(convert-char c (or radix? 10)) =>
(lambda (d)
(parse-integer x n (fxadd1 i) #t (or radix? 10) exact? d))]
[else #f]))]))
;;;
(unless (string? x)
(die 'string->number "not a string" x))
(let ([n (string-length x)])
(cond
[(fx= n (string-length "+xxx.0"))
(cond
[(string-ci=? x "+inf.0") +inf.0]
[(string-ci=? x "-inf.0") -inf.0]
[(string-ci=? x "+nan.0") +nan.0]
[(string-ci=? x "-nan.0") -nan.0]
[else (start x n 0 #f #f)])]
[(fx> n 0) (start x n 0 #f #f)]
[else #f]))))
(define (random n)
(if (fixnum? n)
(if (fx> n 1)
(foreign-call "ikrt_fxrandom" n)
(if (fx= n 1)
0
(die 'random "incorrect argument" n)))
(die 'random "not a fixnum" n)))
(define (shift-right-arithmetic n m who)
(cond
[(fixnum? m)
(cond
[(fixnum? n)
(cond
[($fx>= m 0) ($fxsra n m)]
[else (die who "offset must be non-negative" m)])]
[(bignum? n)
(cond
[($fx> m 0)
(foreign-call "ikrt_bignum_shift_right" n m)]
[($fx= m 0) n]
[else (die who "offset must be non-negative" m)])]
[else (die who "not an exact integer" n)])]
[(bignum? m)
(cond
[(fixnum? n) (if ($fx>= n 0) 0 -1)]
[(bignum? n) (if ($bignum-positive? n) 0 -1)]
[else (die who "not an exact integer" n)])]
[else (die who "not an exact integer offset" m)]))
(define (sra n m)
(shift-right-arithmetic n m 'sra))
(define (shift-left-logical n m who)
(unless (fixnum? m)
(die who "shift amount is not a fixnum"))
(cond
[(fixnum? n)
(cond
[($fx> m 0)
(foreign-call "ikrt_fixnum_shift_left" n m)]
[($fx= m 0) n]
[else (die who "offset must be non-negative" m)])]
[(bignum? n)
(cond
[($fx> m 0)
(foreign-call "ikrt_bignum_shift_left" n m)]
[($fx= m 0) n]
[else (die who "offset must be non-negative" m)])]
[else (die who "not an exact integer" n)]))
(define (sll n m)
(shift-left-logical n m 'sll))
(define (bitwise-arithmetic-shift-right n m)
(shift-right-arithmetic n m 'bitwise-arithmetic-shift-right))
(define (bitwise-arithmetic-shift-left n m)
(shift-left-logical n m 'bitwise-arithmetic-shift-left))
(define (bitwise-arithmetic-shift n m)
(define who 'bitwise-arithmetic-shift)
(unless (fixnum? m)
(die who "shift amount is not a fixnum"))
(cond
[(fixnum? n)
(cond
[($fx> m 0)
(foreign-call "ikrt_fixnum_shift_left" n m)]
[($fx= m 0) n]
[else
(let ([m^ (- m)])
(unless (fixnum? m^)
(die who "shift amount is too big" m))
($fxsra n m^))])]
[(bignum? n)
(cond
[($fx> m 0)
(foreign-call "ikrt_bignum_shift_left" n m)]
[($fx= m 0) n]
[else
(let ([m^ (- m)])
(unless (fixnum? m^)
(die who "shift amount is too big" m))
(foreign-call "ikrt_bignum_shift_right" n m^))])]
[else (die who "not an exact integer" n)]))
(define (exp x)
(cond
[(flonum? x) (flexp x)]
[(fixnum? x)
(if ($fx= x 0) 1 (flexp (fixnum->flonum x)))]
[(bignum? x) (flexp (bignum->flonum x))]
[(ratnum? x) (flexp (ratnum->flonum x))]
[else (die 'exp "not a number" x)]))
(define (bitwise-length n)
(cond
[(fixnum? n) (fxlength n)]
[(bignum? n) (foreign-call "ikrt_bignum_length" n)]
[else (die 'bitwise-length "not an exact integer" n)]))
(define (bitwise-copy-bit n idx bit)
(define who 'bitwise-copy-bit)
(define (do-copy-bit n idx bit)
(case bit
[(0)
(cond
[(bitwise-bit-set? n idx)
(bitwise-and n (bitwise-not (sll 1 idx)))]
[else n])]
[(1)
(cond
[(bitwise-bit-set? n idx) n]
[(>= n 0) (+ n (sll 1 idx))]
[else
(bitwise-not
(bitwise-and
(bitwise-not n)
(bitwise-not (sll 1 idx))))])]
[else (die who "bit must be either 0 or 1" bit)]))
(cond
[(fixnum? idx)
(cond
[(fx< idx 0)
(die who "negative bit index" idx)]
[(or (fixnum? n) (bignum? n))
(do-copy-bit n idx bit)]
[else (die who "not an exact integer" n)])]
[(bignum? idx)
(unless (or (fixnum? n) (bignum? n))
(die who "not an exact integer" n))
(if ($bignum-positive? idx)
(case bit
[(0)
(if (>= n 0)
n
(die who "unrepresentable result"))]
[(1)
(if (< n 0)
n
(die who "unrepresentable result"))]
[else (die who "bit must be either 0 or 1" bit)])
(die who "negative bit index" idx))]
[else (die who "index is not an exact integer" idx)]))
(define (bitwise-bit-field n idx1 idx2)
(define who 'bitwise-bit-field)
(cond
[(and (fixnum? idx1) (fx>= idx1 0))
(cond
[(and (fixnum? idx2) (fx>= idx2 0))
(cond
[(fx<= idx1 idx2)
(cond
[(or (fixnum? n) (bignum? n))
(bitwise-and
(sra n idx1)
(- (sll 1 (- idx2 idx1)) 1))]
[else (die who "not an exact integer" n)])]
[else (die who "invalid order for indices" idx1 idx2)])]
[else
(if (not (fixnum? idx2))
(die who "invalid index" idx2)
(die who "negative index" idx2))])]
[else
(if (not (fixnum? idx1))
(die who "invalid index" idx1)
(die who "negative index" idx1))]))
)
(library (ikarus complexnums)
(export real-part imag-part magnitude)
(import (except (ikarus) real-part imag-part magnitude))
;;; stub implementation since we don't have a way of
;;; constructing complex numbers yet.
(define magnitude
(lambda (x)
(if (number? x)
(abs x)
(die 'magnitude "not a number" x))))
(define real-part
(lambda (x)
(if (number? x)
x
(die 'real-part "not a number" x))))
(define imag-part
(lambda (x)
(cond
[(fixnum? x) 0]
[(bignum? x) 0]
[(ratnum? x) 0]
[(flonum? x) 0.0]
[else
(die 'imag-part "not a number" x)]))))
(library (ikarus flonum-conversion)
(export string->flonum flonum->string)
(import
(rnrs bytevectors)
(ikarus system $bytevectors)
(ikarus system $flonums)
(except (ikarus) flonum->string string->flonum ))
(module (flonum->string)
(module (flonum->digits)
(define flonum->digits
(lambda (f e min-e p b B)
;;; flonum v = f * b^e
;;; p = precision (p >= 1)
(let ([round? (even? f)])
(if (>= e 0)
(if (not (= f (expt b (- p 1))))
(let ([be (expt b e)])
(scale (* f be 2) 2 be be 0 B round? f e))
(let* ([be (expt b e)] [be1 (* be b)])
(scale (* f be1 2) (* b 2) be1 be 0 B round? f e)))
(if (or (= e min-e) (not (= f (expt b (- p 1)))))
(scale (* f 2) (* (expt b (- e)) 2) 1 1 0 B round? f e)
(scale (* f b 2) (* (expt b (- 1 e)) 2) b 1 0 B round? f e))))))
(define (len n)
(let f ([n n] [i 0])
(cond
[(zero? n) i]
[else (f (quotient n 2) (+ i 1))])))
(define scale
(lambda (r s m+ m- k B round? f e)
(let ([est (inexact->exact
(ceiling
(- (* (+ e (len f) -1) (invlog2of B))
1e-10)))])
(if (>= est 0)
(fixup r (* s (exptt B est)) m+ m- est B round?)
(let ([scale (exptt B (- est))])
(fixup (* r scale) s (* m+ scale) (* m- scale) est B round?))))))
(define fixup
(lambda (r s m+ m- k B round?)
(if ((if round? >= >) (+ r m+) s) ; too low?
(values (+ k 1) (generate r s m+ m- B round?))
(values k (generate (* r B) s (* m+ B) (* m- B) B round?)))))
(define (chr x)
(vector-ref '#(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9) x))
(define generate
(lambda (r s m+ m- B round?)
(let-values ([(q r) (quotient+remainder r s)])
(let ([tc1 ((if round? <= <) r m-)]
[tc2 ((if round? >= >) (+ r m+) s)])
(if (not tc1)
(if (not tc2)
(cons (chr q) (generate (* r B) s (* m+ B) (* m- B) B round?))
(list (chr (+ q 1))))
(if (not tc2)
(list (chr q))
(if (< (* r 2) s)
(list (chr q))
(list (chr (+ q 1))))))))))
(define invlog2of
(let ([table (make-vector 37)]
[log2 (log 2)])
(do ([B 2 (+ B 1)])
((= B 37))
(vector-set! table B (/ log2 (log B))))
(lambda (B)
(if (<= 2 B 36)
(vector-ref table B)
(/ log2 (log B))))))
(define exptt
(let ([table (make-vector 326)])
(do ([k 0 (+ k 1)] [v 1 (* v 10)])
((= k 326))
(vector-set! table k v))
(lambda (B k)
(if (and (= B 10) (<= 0 k 325))
(vector-ref table k)
(expt B k))))))
(define (format-flonum pos? expt digits)
(define (next x)
(if (null? x)
(values #\0 '())
(values (car x) (cdr x))))
(define (format-flonum-no-expt expt d0 d*)
(cond
[(= expt 1)
(cons d0 (if (null? d*) '(#\. #\0) (cons #\. d*)))]
[else
(cons d0
(let-values ([(d0 d*) (next d*)])
(format-flonum-no-expt (- expt 1) d0 d*)))]))
(define (format-flonum-no-expt/neg expt d*)
(cond
[(= expt 0) d*]
[else (cons #\0 (format-flonum-no-expt/neg (+ expt 1) d*))]))
(define (sign pos? ls)
(if pos?
(list->string ls)
(list->string (cons #\- ls))))
(let ([d0 (car digits)] [d* (cdr digits)])
(cond
[(null? d*)
(if (char=? d0 #\0)
(if pos? "0.0" "-0.0")
(if (= expt 1)
(if pos?
(string d0 #\. #\0)
(string #\- d0 #\. #\0))
(if (= expt 0)
(if pos?
(string #\0 #\. d0)
(string #\- #\0 #\. d0))
(string-append
(if pos? "" "-")
(string d0) "e" (fixnum->string (- expt 1))))))]
[(and (null? d*) (char=? d0 #\0)) (if pos? "0.0" "-0.0")]
[(<= 1 expt 9)
(sign pos? (format-flonum-no-expt expt d0 d*))]
[(<= -3 expt 0)
(sign pos? (cons* #\0 #\. (format-flonum-no-expt/neg expt digits)))]
[else
(string-append
(if pos? "" "-")
(string d0) "." (list->string d*)
"e" (fixnum->string (- expt 1)))])))
(define (flo->string pos? m e p)
(let-values ([(expt digits) (flonum->digits m e 10 p 2 10)])
(format-flonum pos? expt digits)))
(define (flonum->string x)
(let-values ([(pos? be m) (flonum-parts x)])
(cond
[(<= 1 be 2046) ; normalized flonum
(flo->string pos? (+ m (expt 2 52)) (- be 1075) 53)]
[(= be 0)
(flo->string pos? m -1074 52)]
[(= be 2047)
(if (= m 0)
(if pos? "+inf.0" "-inf.0")
;;; Gee! nans have no sign!
"+nan.0")]
[else (die 'flonum->string "cannot happen")]))))
;;;
(define (string->flonum x)
(cond
[(string? x)
(foreign-call "ikrt_bytevector_to_flonum"
(string->utf8 x))]
[else
(die 'string->flonum "not a string" x)])) )
(library (ikarus rationalize)
(export rationalize)
(import
(except (ikarus) rationalize))
(define (rationalize x eps)
(define who 'rationalize)
(define (simplest x y)
(cond
[(< y x) (simplest y x)]
[(= x y) x]
[(> x 0)
(let ([n (numerator x)] [d (denominator x)]
[n^ (numerator y)] [d^ (denominator y)])
(simplest^ n d n^ d^))]
[(< y 0)
(let ([n (numerator x)] [d (denominator x)]
[n^ (numerator y)] [d^ (denominator y)])
(- (simplest^ (- n^) d^ (- n) d)))]
[else 1]))
(define (simplest^ n d n^ d^)
(let-values ([(q r) (quotient+remainder n d)])
(if (= r 0)
q
(let-values ([(q^ r^) (quotient+remainder n^ d^)])
(if (= q q^)
(let ([v (simplest^ d^ r^ d r)])
(let ([n^^ (numerator v)] [d^^ (denominator v)])
(/ (+ (* q n^^) d^^) n^^)))
(+ q 1))))))
(define (go x eps)
(simplest (- x eps) (+ x eps)))
(cond
[(flonum? x)
(if (flfinite? x)
(cond
[(flonum? eps)
(if (flfinite? eps) (go x eps) +nan.0)]
[(or (fixnum? eps) (bignum? eps) (ratnum? eps))
(go x eps)]
[else (die who "not a number" eps)])
(cond
[(flonum? eps)
(if (flfinite? eps) x +nan.0)]
[(or (fixnum? eps) (bignum? eps) (ratnum? eps))
x]
[else (die who "not a number" eps)]))]
[(or (fixnum? x) (bignum? x) (ratnum? x))
(cond
[(flonum? eps)
(if (flfinite? eps) (go x eps) +nan.0)]
[(or (fixnum? eps) (bignum? eps) (ratnum? eps))
(go x eps)]
[else (die who "not a number" eps)])]
[else (die who "not a number" x)])))
(library (ikarus r6rs-fu div/mod)
(export div mod div-and-mod div0 mod0 div0-and-mod0)
(import
(except (ikarus)
div mod div-and-mod div0 mod0 div0-and-mod0))
(define (div-and-mod* n m who)
(import (ikarus system $fx)
(only (ikarus system $flonums) $fl=)
(ikarus flonums))
(define (int-div-and-mod n m)
(let ([d0 (quotient n m)])
(let ([m0 (- n (* d0 m))])
(if (>= m0 0)
(values d0 m0)
(if (>= m 0)
(values (- d0 1) (+ m0 m))
(values (+ d0 1) (- m0 m)))))))
(define (rat-div-and-mod n m)
(let ([x (/ n m)])
(cond
[(or (fixnum? x) (bignum? x))
(values x 0)]
[else
(let-values ([(a b)
(int-div-and-mod (numerator x) (denominator x))])
(values a (/ b m)))])))
(cond
[(fixnum? m)
(cond
[($fx= m 0)
(die who "division by 0")]
[(or (fixnum? n) (bignum? n))
(int-div-and-mod n m)]
[(flonum? n)
(fldiv-and-mod n (fixnum->flonum m))]
[(ratnum? n)
(rat-div-and-mod n m)]
[else (die who "not a number" n)])]
[(bignum? m)
(cond
[(or (fixnum? n) (bignum? n))
(int-div-and-mod n m)]
[(flonum? n)
(let ([v ($flonum->exact n)])
(unless v
(die who "invalid argument" n))
(let-values ([(a b) (div-and-mod* v m who)])
(values (inexact a) (inexact b))))]
[(ratnum? n)
(rat-div-and-mod n m)]
[else (die who "not a number" n)])]
[(ratnum? m)
(cond
[(or (fixnum? n) (bignum? n) (ratnum? n))
(rat-div-and-mod n m)]
[(flonum? n)
(let ([v ($flonum->exact n)])
(unless v
(die who "invalid argument" n))
(let-values ([(a b) (div-and-mod* v m who)])
(values (inexact a) (inexact b))))]
[else (die who "not a number" n)])]
[(flonum? m)
(cond
[($fl= m 0.0)
(die who "division by 0.0")]
[(flonum? n) (fldiv-and-mod n m)]
[(fixnum? n)
(fldiv-and-mod (fixnum->flonum n) m)]
[(or (bignum? n) (ratnum? n))
(let ([v ($flonum->exact m)])
(unless v
(die who "invalid argument" m))
(let-values ([(a b) (div-and-mod* n v who)])
(values (inexact a) (inexact b))))]
[else (die who "not a number" n)])]
[else (die who "not a number" m)]))
(define (div-and-mod n m)
(div-and-mod* n m 'div-and-mod))
(define (div n m)
(import (ikarus system $fx))
(cond
[(and (fixnum? n) (fixnum? m))
(cond
[(eq? m 0) (error 'div "division by 0")]
[else
(let ([d0 ($fxquotient n m)])
(if ($fx>= n ($fx* d0 m))
d0
(if ($fx>= m 0)
($fx- d0 1)
($fx+ d0 1))))])]
[else
(let-values ([(a b) (div-and-mod* n m 'div)])
a)]))
(define (mod n m)
(import (ikarus system $fx))
(cond
[(and (fixnum? n) (fixnum? m))
(cond
[(eq? m 0) (error 'mod "division by 0")]
[else
(let ([d0 ($fxquotient n m)])
(let ([m0 ($fx- n ($fx* d0 m))])
(if ($fx>= m0 0)
m0
(if ($fx>= m 0)
($fx+ m0 m)
($fx- m0 m)))))])]
[else
(let-values ([(a b) (div-and-mod* n m 'mod)])
b)]))
(define (div0-and-mod0 x y)
(let-values ([(d m) (div-and-mod* x y 'div0-and-mod0)])
(if (> y 0)
(if (< m (/ y 2))
(values d m)
(values (+ d 1) (- m y)))
(if (> m (/ y -2))
(values (- d 1) (+ m y))
(values d m)))))
(define (div0 x y)
(let-values ([(d m) (div-and-mod* x y 'div0)])
(if (> y 0)
(if (< m (/ y 2))
d
(+ d 1))
(if (> m (/ y -2))
(- d 1)
d))))
(define (mod0 x y)
(let-values ([(d m) (div-and-mod* x y 'mod0)])
(if (> y 0)
(if (< m (/ y 2))
m
(- m y))
(if (> m (/ y -2))
(+ m y)
m))))
)
(library (ikarus flonums div-and-mod)
(export fldiv flmod fldiv-and-mod fldiv0 flmod0 fldiv0-and-mod0)
(import
(ikarus system $flonums)
(ikarus system $fx)
(except (ikarus)
fldiv flmod fldiv-and-mod fldiv0 flmod0 fldiv0-and-mod0))
(define ($flmod n m)
(let ([d0 (fltruncate ($fl/ n m))])
(let ([m0 ($fl- n ($fl* d0 m))])
(if ($fl>= m0 0.0)
m0
(if ($fl>= m 0.0)
($fl+ m0 m)
($fl- m0 m))))))
(define ($fldiv n m)
(let ([d0 (fltruncate ($fl/ n m))])
(if ($fl>= n ($fl* d0 m))
d0
(if ($fl>= m 0.0)
($fl- d0 1.0)
($fl+ d0 1.0)))))
(define ($fldiv-and-mod n m)
(let ([d0 (fltruncate ($fl/ n m))])
(let ([m0 ($fl- n ($fl* d0 m))])
(if ($fl>= m0 0.0)
(values d0 m0)
(if ($fl>= m 0.0)
(values ($fl- d0 1.0) ($fl+ m0 m))
(values ($fl+ d0 1.0) ($fl- m0 m)))))))
(define (fldiv n m)
(if (flonum? n)
(if (flonum? m)
($fldiv n m)
(die 'fldiv "not a flonum" m))
(die 'fldiv "not a flonum" n)))
(define (flmod n m)
(if (flonum? n)
(if (flonum? m)
($flmod n m)
(die 'flmod "not a flonum" m))
(die 'flmod "not a flonum" n)))
(define (fldiv-and-mod n m)
(if (flonum? n)
(if (flonum? m)
($fldiv-and-mod n m)
(die 'fldiv-and-mod "not a flonum" m))
(die 'fldiv-and-mod "not a flonum" n)))
(define ($fldiv0-and-mod0 n m)
(let ([d0 (fltruncate ($fl/ n m))])
(let ([m0 ($fl- n ($fl* d0 m))])
(if ($fl>= m 0.0)
(if ($fl< m0 ($fl/ m 2.0))
(if ($fl>= m0 ($fl/ m -2.0))
(values d0 m0)
(values ($fl- d0 1.0) ($fl+ m0 m)))
(values ($fl+ d0 1.0) ($fl- m0 m)))
(if ($fl< m0 ($fl/ m -2.0))
(if ($fl>= m0 ($fl/ m 2.0))
(values d0 m0)
(values ($fl+ d0 1.0) ($fl- m0 m)))
(values ($fl- d0 1.0) ($fl+ m0 m)))))))
(define ($fldiv0 n m)
(let ([d0 (fltruncate ($fl/ n m))])
(let ([m0 ($fl- n ($fl* d0 m))])
(if ($fl>= m 0.0)
(if ($fl< m0 ($fl/ m 2.0))
(if ($fl>= m0 ($fl/ m -2.0))
d0
($fl- d0 1.0))
($fl+ d0 1.0))
(if ($fl< m0 ($fl/ m -2.0))
(if ($fl>= m0 ($fl/ m 2.0))
d0
($fl+ d0 1.0))
($fl- d0 1.0))))))
(define ($flmod0 n m)
(let ([d0 (fltruncate ($fl/ n m))])
(let ([m0 ($fl- n ($fl* d0 m))])
(if ($fl>= m 0.0)
(if ($fl< m0 ($fl/ m 2.0))
(if ($fl>= m0 ($fl/ m -2.0))
m0
($fl+ m0 m))
($fl- m0 m))
(if ($fl< m0 ($fl/ m -2.0))
(if ($fl>= m0 ($fl/ m 2.0))
m0
($fl- m0 m))
($fl+ m0 m))))))
(define (fldiv0 n m)
(if (flonum? n)
(if (flonum? m)
($fldiv0 n m)
(die 'fldiv0 "not a flonum" m))
(die 'fldiv0 "not a flonum" n)))
(define (flmod0 n m)
(if (flonum? n)
(if (flonum? m)
($flmod0 n m)
(die 'flmod0 "not a flonum" m))
(die 'flmod0 "not a flonum" n)))
(define (fldiv0-and-mod0 n m)
(if (flonum? n)
(if (flonum? m)
($fldiv0-and-mod0 n m)
(die 'fldiv0-and-mod0 "not a flonum" m))
(die 'fldiv0-and-mod0 "not a flonum" n))))
(library (ikarus bitwise misc)
(export fxfirst-bit-set bitwise-bit-set? bitwise-first-bit-set
fxbit-count bitwise-bit-count
fxlength
fxbit-set?
fxcopy-bit
fxcopy-bit-field
fxbit-field)
(import
(ikarus system $fx)
(ikarus system $bignums)
(ikarus system $flonums)
(except (ikarus)
fxfirst-bit-set bitwise-bit-set? bitwise-first-bit-set
fxbit-count bitwise-bit-count
fxlength
fxbit-set?
fxcopy-bit
fxcopy-bit-field
fxbit-field))
(module (bitwise-first-bit-set fxfirst-bit-set)
(define (byte-first-bit-set x i)
(import (ikarus system $bytevectors))
(define-syntax make-first-bit-set-bytevector
(lambda (x)
(define (fst n)
(cond
[(zero? n) 0]
[(even? n) (fst (bitwise-arithmetic-shift-right n 1))]
[else (+ 1 (fst (bitwise-arithmetic-shift-right n 1)))]))
(u8-list->bytevector
(let f ([i 0])
(cond
[(= i 256) '()]
[else (cons (fst i) (f (+ i 1)))])))))
(define bv (make-first-bit-set-bytevector))
($fx+ i ($bytevector-u8-ref bv i)))
(define ($fxloop x i)
(let ([y ($fxlogand x 255)])
(if ($fx= y 0)
($fxloop ($fxsra x 8) ($fx+ i 8))
(byte-first-bit-set y i))))
(define ($bnloop x i idx)
(let ([b ($bignum-byte-ref x idx)])
(if ($fxzero? b)
($bnloop x ($fx+ i 8) ($fx+ idx 1))
(byte-first-bit-set b i))))
(define ($fxfirst-bit-set x)
(if ($fx> x 0)
($fxloop x 0)
(if ($fx= x 0)
-1
(if ($fx> x (least-fixnum))
($fxloop ($fx- 0 x) 0)
($bnloop (- x) 0 0)))))
(define (fxfirst-bit-set x)
(cond
[(fixnum? x)
($fxfirst-bit-set x)]
[else (die 'fxfirst-bit-set "not a fixnum" x)]))
(define (bitwise-first-bit-set x)
(cond
[(fixnum? x)
($fxfirst-bit-set x)]
[(bignum? x) ($bnloop x 0 0)]
[else (die 'bitwise-first-bit-set "not an exact integer" x)])))
(module (fxbit-count bitwise-bit-count)
(define (pos-fxbitcount n)
;;; nifty parrallel count from:
;;; http://infolab.stanford.edu/~manku/bitcount/bitcount.html
(let ([m0 #x15555555]
[m1 #x13333333]
[m2 #x0f0f0f0f])
(let* ([n ($fx+ ($fxlogand n m0) ($fxlogand ($fxsra n 1) m0))]
[n ($fx+ ($fxlogand n m1) ($fxlogand ($fxsra n 2) m1))]
[n ($fx+ ($fxlogand n m2) ($fxlogand ($fxsra n 4) m2))])
($fxmodulo n 255))))
(define ($fxbitcount n)
(if ($fx< n 0)
(fxlognot (pos-fxbitcount (fxlognot n)))
(pos-fxbitcount n)))
(define (bnbitcount n)
(define (poscount x idx c)
(let ([c (+ c
($fx+ (pos-fxbitcount
($fxlogor
($fxsll ($bignum-byte-ref x ($fx+ idx 3)) 8)
($bignum-byte-ref x ($fx+ idx 2))))
(pos-fxbitcount
($fxlogor
($fxsll ($bignum-byte-ref x ($fxadd1 idx)) 8)
($bignum-byte-ref x idx)))))])
(if ($fx= idx 0)
c
(poscount x ($fx- idx 4) c))))
(if ($bignum-positive? n)
(poscount n ($fx- ($bignum-size n) 4) 0)
(let ([n (bitwise-not n)])
(bitwise-not (poscount n ($fx- ($bignum-size n) 4) 0)))))
(define (fxbit-count n)
(cond
[(fixnum? n) ($fxbitcount n)]
[else (die 'fxbit-count "not a fixnum" n)]))
(define (bitwise-bit-count n)
(cond
[(fixnum? n) ($fxbitcount n)]
[(bignum? n) (bnbitcount n)]
[else (die 'bitwise-bit-count "not an exact integer" n)])))
(define (fxlength x)
(if (fixnum? x)
(let ([fl ($fixnum->flonum
(if ($fx< x 0) ($fxlognot x) x))])
(let ([sbe ($fxlogor
($fxsll ($flonum-u8-ref fl 0) 4)
($fxsra ($flonum-u8-ref fl 1) 4))])
(cond
[($fx= sbe 0) 0]
[else ($fx- sbe 1022)])))
(die 'fxlength "not a fixnum" x)))
(define (fxbit-set? x i)
(define who 'fxbit-set?)
(if (fixnum? x)
(if (fixnum? i)
(if (and ($fx<= 0 i) ($fx< i (fixnum-width)))
(not ($fxzero? ($fxlogand ($fxsra x i) 1)))
(die who "index out of range" i))
(die who "index is not a fixnum" i))
(die who "not a fixnum" x)))
(define (bitwise-bit-set? x i)
(define who 'bitwise-bit-set?)
(cond
[(fixnum? i)
(when ($fx< i 0)
(die who "index must be non-negative" i))
(cond
[(fixnum? x)
(if ($fx< i (fixnum-width))
($fx= ($fxlogand ($fxsra x i) 1) 1)
($fx< x 0))]
[(bignum? x)
(let ([n ($bignum-size x)])
(let ([m ($fx* n 8)])
(if ($fx< m i)
(not ($bignum-positive? x))
(if ($bignum-positive? x)
(let ([b ($bignum-byte-ref x ($fxsra i 3))])
($fx= ($fxlogand ($fxsra b ($fxlogand i 7)) 1) 1))
(= 1 (bitwise-and
(bitwise-arithmetic-shift-right x i)
1))))))]
[else (die who "not an exact integer" x)])]
[(bignum? i)
(unless ($bignum-positive? i)
(die who "index must be non-negative"))
(cond
[(fixnum? x) ($fx< x 0)]
[(bignum? x)
(= 1 (bitwise-and (bitwise-arithmetic-shift-right x i) 1))]
[else (die who "not an exact integer" x)])]
[else
(die who "index is not an exact integer" i)]))
(define (fxcopy-bit x i b)
(define who 'fxcopy-bit)
(if (fixnum? x)
(if (fixnum? i)
(if (and ($fx<= 0 i) ($fx< i (fixnum-width)))
(case b
[(0) ($fxlogand x ($fxlognot ($fxsll 1 i)))]
[(1) ($fxlogor x ($fxsll 1 i))]
[else (die who "invalid bit value" b)])
(die who "index out of range" i))
(die who "index is not a fixnum" i))
(die who "not a fixnum" x)))
(define (fxcopy-bit-field x i j b)
(define who 'fxcopy-bit-field)
(if (fixnum? x)
(if (fixnum? i)
(if ($fx<= 0 i)
(if (fixnum? j)
(if ($fx< j (fixnum-width))
(if ($fx<= i j)
(if (fixnum? b)
(let ([m
($fxlogxor
($fxsub1 ($fxsll 1 i))
($fxsub1 ($fxsll 1 j)))])
($fxlogor
($fxlogand m b)
($fxlogand ($fxlognot m) x)))
(die who "not a fixnum" b))
(if ($fx<= 0 j)
(die who "index out of range" j)
(die who "indices not in order" i j)))
(die who "index out of range" j))
(die who "not a fixnum" j))
(die who "index out of range" i))
(die who "not a fixnum" i))
(die who "not a fixnum" x)))
(define (fxbit-field x i j)
(define who 'fxbit-field)
(if (fixnum? x)
(if (fixnum? i)
(if ($fx<= 0 i)
(if (fixnum? j)
(if ($fx< j (fixnum-width))
(if ($fx<= i j)
($fxsra
($fxlogand x ($fxsub1 ($fxsll 1 j)))
i)
(if ($fx<= 0 j)
(die who "index out of range" j)
(die who "indices not in order" i j)))
(die who "index out of range" j))
(die who "not a fixnum" j))
(die who "index out of range" i))
(die who "not a fixnum" i))
(die who "not a fixnum" x)))
)