159 lines
6.8 KiB
Scheme
159 lines
6.8 KiB
Scheme
;;; PI -- Compute PI using bignums.
|
|
|
|
; See http://mathworld.wolfram.com/Pi.html for the various algorithms.
|
|
|
|
(library (rnrs-benchmarks pi)
|
|
(export main)
|
|
(import (rnrs) (rnrs-benchmarks))
|
|
|
|
; Utilities.
|
|
|
|
(define (width x)
|
|
(let loop ((i 0) (n 1))
|
|
(if (< x n) i (loop (+ i 1) (* n 2)))))
|
|
|
|
(define (root x y)
|
|
(let loop ((g (expt
|
|
2
|
|
(quotient (+ (width x) (- y 1)) y))))
|
|
(let ((a (expt g (- y 1))))
|
|
(let ((b (* a y)))
|
|
(let ((c (* a (- y 1))))
|
|
(let ((d (quotient (+ x (* g c)) b)))
|
|
(if (< d g) (loop d) g)))))))
|
|
|
|
(define (square-root x)
|
|
(root x 2))
|
|
|
|
(define (quartic-root x)
|
|
(root x 4))
|
|
|
|
(define (square x)
|
|
(* x x))
|
|
|
|
; Compute pi using the 'brent-salamin' method.
|
|
|
|
(define (pi-brent-salamin nb-digits)
|
|
(let ((one (expt 10 nb-digits)))
|
|
(let loop ((a one)
|
|
(b (square-root (quotient (square one) 2)))
|
|
(t (quotient one 4))
|
|
(x 1))
|
|
(if (= a b)
|
|
(quotient (square (+ a b)) (* 4 t))
|
|
(let ((new-a (quotient (+ a b) 2)))
|
|
(loop new-a
|
|
(square-root (* a b))
|
|
(- t
|
|
(quotient
|
|
(* x (square (- new-a a)))
|
|
one))
|
|
(* 2 x)))))))
|
|
|
|
; Compute pi using the quadratically converging 'borwein' method.
|
|
|
|
(define (pi-borwein2 nb-digits)
|
|
(let* ((one (expt 10 nb-digits))
|
|
(one^2 (square one))
|
|
(one^4 (square one^2))
|
|
(sqrt2 (square-root (* one^2 2)))
|
|
(qurt2 (quartic-root (* one^4 2))))
|
|
(let loop ((x (quotient
|
|
(* one (+ sqrt2 one))
|
|
(* 2 qurt2)))
|
|
(y qurt2)
|
|
(p (+ (* 2 one) sqrt2)))
|
|
(let ((new-p (quotient (* p (+ x one))
|
|
(+ y one))))
|
|
(if (= x one)
|
|
new-p
|
|
(let ((sqrt-x (square-root (* one x))))
|
|
(loop (quotient
|
|
(* one (+ x one))
|
|
(* 2 sqrt-x))
|
|
(quotient
|
|
(* one (+ (* x y) one^2))
|
|
(* (+ y one) sqrt-x))
|
|
new-p)))))))
|
|
|
|
; Compute pi using the quartically converging 'borwein' method.
|
|
|
|
(define (pi-borwein4 nb-digits)
|
|
(let* ((one (expt 10 nb-digits))
|
|
(one^2 (square one))
|
|
(one^4 (square one^2))
|
|
(sqrt2 (square-root (* one^2 2))))
|
|
(let loop ((y (- sqrt2 one))
|
|
(a (- (* 6 one) (* 4 sqrt2)))
|
|
(x 8))
|
|
(if (= y 0)
|
|
(quotient one^2 a)
|
|
(let* ((t1 (quartic-root (- one^4 (square (square y)))))
|
|
(t2 (quotient
|
|
(* one (- one t1))
|
|
(+ one t1)))
|
|
(t3 (quotient
|
|
(square (quotient (square (+ one t2)) one))
|
|
one))
|
|
(t4 (+ one
|
|
(+ t2
|
|
(quotient (square t2) one)))))
|
|
(loop t2
|
|
(quotient
|
|
(- (* t3 a) (* x (* t2 t4)))
|
|
one)
|
|
(* 4 x)))))))
|
|
|
|
; Try it.
|
|
|
|
(define (pies n m s)
|
|
(if (< m n)
|
|
'()
|
|
(let ((bs (pi-brent-salamin n))
|
|
(b2 (pi-borwein2 n))
|
|
(b4 (pi-borwein4 n)))
|
|
(cons (list b2 (- bs b2) (- b4 b2))
|
|
(pies (+ n s) m s)))))
|
|
|
|
(define expected
|
|
'((314159265358979323846264338327950288419716939937507
|
|
-54
|
|
124)
|
|
(31415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170673
|
|
-51
|
|
-417)
|
|
(3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408122
|
|
-57
|
|
-819)
|
|
(314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038195
|
|
-76
|
|
332)
|
|
(31415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019089
|
|
-83
|
|
477)
|
|
(3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141268
|
|
-72
|
|
-2981)
|
|
(314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536431
|
|
-70
|
|
-2065)
|
|
(31415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116089
|
|
-79
|
|
1687)
|
|
(3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118542
|
|
-92
|
|
-2728)
|
|
(314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194907
|
|
-76
|
|
-3726)))
|
|
|
|
(define (main . args)
|
|
(run-benchmark
|
|
"pi"
|
|
pi-iters
|
|
(lambda (result) (equal? result expected))
|
|
(lambda (n m s) (lambda () (pies n m s)))
|
|
50
|
|
500
|
|
50)))
|