1641 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			Scheme
		
	
	
	
			
		
		
	
	
			1641 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			Scheme
		
	
	
	
| ;;; SRFI-1 list-processing library 			-*- Scheme -*-
 | |
| ;;; Reference implementation
 | |
| ;;;
 | |
| ;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
 | |
| ;;; this code as long as you do not remove this copyright notice or
 | |
| ;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
 | |
| ;;;     -Olin
 | |
| 
 | |
| ;;; This is a library of list- and pair-processing functions. I wrote it after
 | |
| ;;; carefully considering the functions provided by the libraries found in
 | |
| ;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common
 | |
| ;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty
 | |
| ;;; rich toolkit, providing a superset of the functionality found in any of
 | |
| ;;; the various Schemes I considered.
 | |
| 
 | |
| ;;; This implementation is intended as a portable reference implementation
 | |
| ;;; for SRFI-1. See the porting notes below for more information.
 | |
| 
 | |
| (library (SRFI-1)
 | |
|   (export
 | |
|     ;;; Exported:
 | |
|     xcons tree-copy make-list list-tabulate cons* list-copy 
 | |
|     proper-list? circular-list? dotted-list? not-pair? null-list? list=
 | |
|     circular-list length+
 | |
|     iota
 | |
|     first second third fourth fifth sixth seventh eighth ninth tenth
 | |
|     car+cdr
 | |
|     take       drop       
 | |
|     take-right drop-right 
 | |
|     take!      drop-right!
 | |
|     split-at   split-at!
 | |
|     last last-pair
 | |
|     zip unzip1 unzip2 unzip3 unzip4 unzip5
 | |
|     count
 | |
|     append! append-reverse append-reverse! concatenate concatenate! 
 | |
|     unfold       fold       pair-fold       reduce
 | |
|     unfold-right fold-right pair-fold-right reduce-right
 | |
|     append-map append-map! map! pair-for-each filter-map map-in-order
 | |
|     filter  partition  remove
 | |
|     filter! partition! remove! 
 | |
|     find find-tail any every list-index
 | |
|     take-while drop-while take-while!
 | |
|     span break span! break!
 | |
|     delete delete!
 | |
|     alist-cons alist-copy
 | |
|     delete-duplicates delete-duplicates!
 | |
|     alist-delete alist-delete!
 | |
|     reverse! 
 | |
|     lset<= lset= lset-adjoin  
 | |
|     lset-union  lset-intersection  lset-difference  lset-xor  
 | |
|     lset-diff+intersection
 | |
|     lset-union! lset-intersection! lset-difference! lset-xor!
 | |
|     lset-diff+intersection!)
 | |
|   (import 
 | |
|     (except (ikarus) map member assoc))
 | |
| 
 | |
| ;;; 
 | |
| ;;; In principle, the following R4RS list- and pair-processing procedures
 | |
| ;;; are also part of this package's exports, although they are not defined
 | |
| ;;; in this file:
 | |
| ;;;   Primitives: cons pair? null? car cdr set-car! set-cdr!
 | |
| ;;;   Non-primitives: list length append reverse cadr ... cddddr list-ref
 | |
| ;;;                   memq memv assq assv
 | |
| ;;;   (The non-primitives are defined in this file, but commented out.)
 | |
| ;;;
 | |
| ;;; These R4RS procedures have extended definitions in SRFI-1 and are defined
 | |
| ;;; in this file:
 | |
| ;;;   map for-each member assoc
 | |
| ;;;
 | |
| ;;; The remaining two R4RS list-processing procedures are not included: 
 | |
| ;;;   list-tail (use drop)
 | |
| ;;;   list? (use proper-list?)
 | |
| 
 | |
| 
 | |
| ;;; A note on recursion and iteration/reversal:
 | |
| ;;; Many iterative list-processing algorithms naturally compute the elements
 | |
| ;;; of the answer list in the wrong order (left-to-right or head-to-tail) from
 | |
| ;;; the order needed to cons them into the proper answer (right-to-left, or
 | |
| ;;; tail-then-head). One style or idiom of programming these algorithms, then,
 | |
| ;;; loops, consing up the elements in reverse order, then destructively 
 | |
| ;;; reverses the list at the end of the loop. I do not do this. The natural
 | |
| ;;; and efficient way to code these algorithms is recursively. This trades off
 | |
| ;;; intermediate temporary list structure for intermediate temporary stack
 | |
| ;;; structure. In a stack-based system, this improves cache locality and
 | |
| ;;; lightens the load on the GC system. Don't stand on your head to iterate!
 | |
| ;;; Recurse, where natural. Multiple-value returns make this even more
 | |
| ;;; convenient, when the recursion/iteration has multiple state values.
 | |
| 
 | |
| ;;; Porting:
 | |
| ;;; This is carefully tuned code; do not modify casually.
 | |
| ;;;   - It is careful to share storage when possible;
 | |
| ;;;   - Side-effecting code tries not to perform redundant writes.
 | |
| ;;; 
 | |
| ;;; That said, a port of this library to a specific Scheme system might wish
 | |
| ;;; to tune this code to exploit particulars of the implementation. 
 | |
| ;;; The single most important compiler-specific optimisation you could make
 | |
| ;;; to this library would be to add rewrite rules or transforms to:
 | |
| ;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND,
 | |
| ;;;   LSET-UNION) into multiple applications of a primitive two-argument 
 | |
| ;;;   variant.
 | |
| ;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD, 
 | |
| ;;;   ANY, EVERY) into open-coded loops. The killer here is that these 
 | |
| ;;;   functions are n-ary. Handling the general case is quite inefficient,
 | |
| ;;;   requiring many intermediate data structures to be allocated and
 | |
| ;;;   discarded.
 | |
| ;;; - transform applications of procedures that take optional arguments
 | |
| ;;;   into calls to variants that do not take optional arguments. This
 | |
| ;;;   eliminates unnecessary consing and parsing of the rest parameter.
 | |
| ;;;
 | |
| ;;; These transforms would provide BIG speedups. In particular, the n-ary
 | |
| ;;; mapping functions are particularly slow and cons-intensive, and are good
 | |
| ;;; candidates for tuning. I have coded fast paths for the single-list cases,
 | |
| ;;; but what you really want to do is exploit the fact that the compiler
 | |
| ;;; usually knows how many arguments are being passed to a particular
 | |
| ;;; application of these functions -- they are usually explicitly called, not
 | |
| ;;; passed around as higher-order values. If you can arrange to have your
 | |
| ;;; compiler produce custom code or custom linkages based on the number of
 | |
| ;;; arguments in the call, you can speed these functions up a *lot*. But this
 | |
| ;;; kind of compiler technology no longer exists in the Scheme world as far as
 | |
| ;;; I can see.
 | |
| ;;;
 | |
| ;;; Note that this code is, of course, dependent upon standard bindings for
 | |
| ;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound
 | |
| ;;; to the procedure that takes the car of a list. If your Scheme 
 | |
| ;;; implementation allows user code to alter the bindings of these procedures
 | |
| ;;; in a manner that would be visible to these definitions, then there might
 | |
| ;;; be trouble. You could consider horrible kludgery along the lines of
 | |
| ;;;    (define fact 
 | |
| ;;;      (let ((= =) (- -) (* *))
 | |
| ;;;        (letrec ((real-fact (lambda (n) 
 | |
| ;;;                              (if (= n 0) 1 (* n (real-fact (- n 1)))))))
 | |
| ;;;          real-fact)))
 | |
| ;;; Or you could consider shifting to a reasonable Scheme system that, say,
 | |
| ;;; has a module system protecting code from this kind of lossage.
 | |
| ;;;
 | |
| ;;; This code does a fair amount of run-time argument checking. If your
 | |
| ;;; Scheme system has a sophisticated compiler that can eliminate redundant
 | |
| ;;; error checks, this is no problem. However, if not, these checks incur
 | |
| ;;; some performance overhead -- and, in a safe Scheme implementation, they
 | |
| ;;; are in some sense redundant: if we don't check to see that the PROC 
 | |
| ;;; parameter is a procedure, we'll find out anyway three lines later when
 | |
| ;;; we try to call the value. It's pretty easy to rip all this argument 
 | |
| ;;; checking code out if it's inappropriate for your implementation -- just
 | |
| ;;; nuke every call to CHECK-ARG.
 | |
| ;;;
 | |
| ;;; On the other hand, if you *do* have a sophisticated compiler that will
 | |
| ;;; actually perform soft-typing and eliminate redundant checks (Rice's systems
 | |
| ;;; being the only possible candidate of which I'm aware), leaving these checks 
 | |
| ;;; in can *help*, since their presence can be elided in redundant cases,
 | |
| ;;; and in cases where they are needed, performing the checks early, at
 | |
| ;;; procedure entry, can "lift" a check out of a loop. 
 | |
| ;;;
 | |
| ;;; Finally, I have only checked the properties that can portably be checked
 | |
| ;;; with R5RS Scheme -- and this is not complete. You may wish to alter
 | |
| ;;; the CHECK-ARG parameter checks to perform extra, implementation-specific
 | |
| ;;; checks, such as procedure arity for higher-order values.
 | |
| ;;;
 | |
| ;;; The code has only these non-R4RS dependencies:
 | |
| ;;;   A few calls to an ERROR procedure;
 | |
| ;;;   Uses of the R5RS multiple-value procedure VALUES and the m-v binding
 | |
| ;;;     RECEIVE macro (which isn't R5RS, but is a trivial macro).
 | |
| ;;;   Many calls to a parameter-checking procedure check-arg:
 | |
| ;;;    (define (check-arg pred val caller)
 | |
| ;;;      (let lp ((val val))
 | |
| ;;;        (if (pred val) val (lp (error "Bad argument" val pred caller)))))
 | |
| (define (check-arg pred val caller)
 | |
|   (let lp ((val val))
 | |
|     (if (pred val) 
 | |
|         val
 | |
|         (error caller "Bad argument ~s ~s" val pred))))
 | |
| 
 | |
| ;;;   A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing
 | |
| ;;;     optional arguments.
 | |
| 
 | |
| (define :optional ;;; is this right?
 | |
|   (lambda (x default)
 | |
|     (if (pair? x) (car x) default)))
 | |
| 
 | |
| 
 | |
| ;;;
 | |
| ;;; Most of these procedures use the NULL-LIST? test to trigger the
 | |
| ;;; base case in the inner loop or recursion. The NULL-LIST? function
 | |
| ;;; is defined to be a careful one -- it raises an error if passed a
 | |
| ;;; non-nil, non-pair value. The spec allows an implementation to use
 | |
| ;;; a less-careful implementation that simply defines NULL-LIST? to
 | |
| ;;; be NOT-PAIR?. This would speed up the inner loops of these procedures
 | |
| ;;; at the expense of having them silently accept dotted lists.
 | |
| 
 | |
| ;;; A note on dotted lists:
 | |
| ;;; I, personally, take the view that the only consistent view of lists
 | |
| ;;; in Scheme is the view that *everything* is a list -- values such as
 | |
| ;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the
 | |
| ;;; fact that Scheme actually has no true list type. It has a pair type,
 | |
| ;;; and there is an *interpretation* of the trees built using this type
 | |
| ;;; as lists.
 | |
| ;;;
 | |
| ;;; I lobbied to have these list-processing procedures hew to this
 | |
| ;;; view, and accept any value as a list argument. I was overwhelmingly
 | |
| ;;; overruled during the SRFI discussion phase. So I am inserting this
 | |
| ;;; text in the reference lib and the SRFI spec as a sort of "minority
 | |
| ;;; opinion" dissent.
 | |
| ;;;
 | |
| ;;; Many of the procedures in this library can be trivially redefined
 | |
| ;;; to handle dotted lists, just by changing the NULL-LIST? base-case
 | |
| ;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be
 | |
| ;;; an empty list. For most of these procedures, that's all that is
 | |
| ;;; required.
 | |
| ;;;
 | |
| ;;; However, we have to do a little more work for some procedures that
 | |
| ;;; *produce* lists from other lists.  Were we to extend these procedures to
 | |
| ;;; accept dotted lists, we would have to define how they terminate the lists
 | |
| ;;; produced as results when passed a dotted list. I designed a coherent set
 | |
| ;;; of termination rules for these cases; this was posted to the SRFI-1
 | |
| ;;; discussion list. I additionally wrote an earlier version of this library
 | |
| ;;; that implemented that spec. It has been discarded during later phases of
 | |
| ;;; the definition and implementation of this library.
 | |
| ;;;
 | |
| ;;; The argument *against* defining these procedures to work on dotted
 | |
| ;;; lists is that dotted lists are the rare, odd case, and that by 
 | |
| ;;; arranging for the procedures to handle them, we lose error checking
 | |
| ;;; in the cases where a dotted list is passed by accident -- e.g., when
 | |
| ;;; the programmer swaps a two arguments to a list-processing function,
 | |
| ;;; one being a scalar and one being a list. For example,
 | |
| ;;;     (member '(1 3 5 7 9) 7)
 | |
| ;;; This would quietly return #f if we extended MEMBER to accept dotted
 | |
| ;;; lists.
 | |
| ;;;
 | |
| ;;; The SRFI discussion record contains more discussion on this topic.
 | |
| 
 | |
| 
 | |
| ;;; Constructors
 | |
| ;;;;;;;;;;;;;;;;
 | |
| 
 | |
| ;;; Occasionally useful as a value to be passed to a fold or other
 | |
| ;;; higher-order procedure.
 | |
| (define (xcons d a) (cons a d))
 | |
| 
 | |
| ;;;; Recursively copy every cons.
 | |
| (define (tree-copy x)
 | |
|   (let recur ((x x))
 | |
|     (if (not (pair? x)) x
 | |
| 	(cons (recur (car x)) (recur (cdr x))))))
 | |
| 
 | |
| ;;; Make a list of length LEN.
 | |
| 
 | |
| ;;; already in ikarus.
 | |
| ;;; (define (make-list len . maybe-elt)
 | |
| ;;;   (check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list)
 | |
| ;;;   (let ((elt (cond ((null? maybe-elt) #f) ; Default value
 | |
| ;;; 		   ((null? (cdr maybe-elt)) (car maybe-elt))
 | |
| ;;; 		   (else (error "Too many arguments to MAKE-LIST"
 | |
| ;;; 				(cons len maybe-elt))))))
 | |
| ;;;     (do ((i len (- i 1))
 | |
| ;;; 	 (ans '() (cons elt ans)))
 | |
| ;;; 	((<= i 0) ans))))
 | |
| ;;; 
 | |
| 
 | |
| ;(define (list . ans) ans)	; R4RS
 | |
| 
 | |
| 
 | |
| ;;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
 | |
| 
 | |
| (define (list-tabulate len proc)
 | |
|   (check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate)
 | |
|   (check-arg procedure? proc list-tabulate)
 | |
|   (do ((i (- len 1) (- i 1))
 | |
|        (ans '() (cons (proc i) ans)))
 | |
|       ((< i 0) ans)))
 | |
| 
 | |
| ;;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
 | |
| ;;; (cons* a1) = a1	(cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
 | |
| ;;;
 | |
| ;;; (cons first (unfold not-pair? car cdr rest values))
 | |
| 
 | |
| (define (cons* first . rest)
 | |
|   (let recur ((x first) (rest rest))
 | |
|     (if (pair? rest)
 | |
| 	(cons x (recur (car rest) (cdr rest)))
 | |
| 	x)))
 | |
| 
 | |
| ;;; (unfold not-pair? car cdr lis values)
 | |
| 
 | |
| (define (list-copy lis)				
 | |
|   (let recur ((lis lis))			
 | |
|     (if (pair? lis)				
 | |
| 	(cons (car lis) (recur (cdr lis)))	
 | |
| 	lis)))					
 | |
| 
 | |
| ;;; IOTA count [start step]	(start start+step ... start+(count-1)*step)
 | |
| 
 | |
| ;;;(define (iota count . maybe-start+step)
 | |
| ;;;  (check-arg integer? count iota)
 | |
| ;;;  (if (< count 0) (error "Negative step count" iota count))
 | |
| ;;;  (let-optionals maybe-start+step ((start 0) (step 1))
 | |
| ;;;    (check-arg number? start iota)
 | |
| ;;;    (check-arg number? step iota)
 | |
| ;;;    (let ((last-val (+ start (* (- count 1) step))))
 | |
| ;;;      (do ((count count (- count 1))
 | |
| ;;;	   (val last-val (- val step))
 | |
| ;;;	   (ans '() (cons val ans)))
 | |
| ;;;	  ((<= count 0)  ans)))))
 | |
| 	  
 | |
| ;;; using case-lambda instead of let-optional
 | |
| (define iota
 | |
|   (case-lambda
 | |
|     [(count) (iota count 0 1)]
 | |
|     [(count start) (iota count start 1)]
 | |
|     [(count start step)
 | |
|      (check-arg integer? count iota)
 | |
|      (if (< count 0) (error "Negative step count" iota count))
 | |
|      (check-arg number? start iota)
 | |
|      (check-arg number? step iota)
 | |
|      (let ((last-val (+ start (* (- count 1) step))))
 | |
|        (do ((count count (- count 1))
 | |
|          (val last-val (- val step))
 | |
|          (ans '() (cons val ans)))
 | |
|         ((<= count 0)  ans)))]))
 | |
| 	
 | |
| 
 | |
| ;;; I thought these were lovely, but the public at large did not share my
 | |
| ;;; enthusiasm...
 | |
| ;;; :IOTA to		(0 ... to-1)
 | |
| ;;; :IOTA from to	(from ... to-1)
 | |
| ;;; :IOTA from to step  (from from+step ...)
 | |
| 
 | |
| ;;; IOTA: to		(1 ... to)
 | |
| ;;; IOTA: from to	(from+1 ... to)
 | |
| ;;; IOTA: from to step	(from+step from+2step ...)
 | |
| 
 | |
| ;(define (%parse-iota-args arg1 rest-args proc)
 | |
| ;  (let ((check (lambda (n) (check-arg integer? n proc))))
 | |
| ;    (check arg1)
 | |
| ;    (if (pair? rest-args)
 | |
| ;	(let ((arg2 (check (car rest-args)))
 | |
| ;	      (rest (cdr rest-args)))
 | |
| ;	  (if (pair? rest)
 | |
| ;	      (let ((arg3 (check (car rest)))
 | |
| ;		    (rest (cdr rest)))
 | |
| ;		(if (pair? rest) (error "Too many parameters" proc arg1 rest-args)
 | |
| ;		    (values arg1 arg2 arg3)))
 | |
| ;	      (values arg1 arg2 1)))
 | |
| ;	(values 0 arg1 1))))
 | |
| ;
 | |
| ;(define (iota: arg1 . rest-args)
 | |
| ;  (receive (from to step) (%parse-iota-args arg1 rest-args iota:)
 | |
| ;    (let* ((numsteps (floor (/ (- to from) step)))
 | |
| ;	   (last-val (+ from (* step numsteps))))
 | |
| ;      (if (< numsteps 0) (error "Negative step count" iota: from to step))
 | |
| ;      (do ((steps-left numsteps (- steps-left 1))
 | |
| ;	   (val last-val (- val step))
 | |
| ;	   (ans '() (cons val ans)))
 | |
| ;	  ((<= steps-left 0) ans)))))
 | |
| ;
 | |
| ;
 | |
| ;(define (:iota arg1 . rest-args)
 | |
| ;  (receive (from to step) (%parse-iota-args arg1 rest-args :iota)
 | |
| ;    (let* ((numsteps (ceiling (/ (- to from) step)))
 | |
| ;	   (last-val (+ from (* step (- numsteps 1)))))
 | |
| ;      (if (< numsteps 0) (error "Negative step count" :iota from to step))
 | |
| ;      (do ((steps-left numsteps (- steps-left 1))
 | |
| ;	   (val last-val (- val step))
 | |
| ;	   (ans '() (cons val ans)))
 | |
| ;	  ((<= steps-left 0) ans)))))
 | |
| 
 | |
| 
 | |
| 
 | |
| (define (circular-list val1 . vals)
 | |
|   (let ((ans (cons val1 vals)))
 | |
|     (set-cdr! (last-pair ans) ans)
 | |
|     ans))
 | |
| 
 | |
| ;;; <proper-list> ::= ()			; Empty proper list
 | |
| ;;;		  |   (cons <x> <proper-list>)	; Proper-list pair
 | |
| ;;; Note that this definition rules out circular lists -- and this
 | |
| ;;; function is required to detect this case and return false.
 | |
| 
 | |
| (define (proper-list? x)
 | |
|   (let lp ((x x) (lag x))
 | |
|     (if (pair? x)
 | |
| 	(let ((x (cdr x)))
 | |
| 	  (if (pair? x)
 | |
| 	      (let ((x   (cdr x))
 | |
| 		    (lag (cdr lag)))
 | |
| 		(and (not (eq? x lag)) (lp x lag)))
 | |
| 	      (null? x)))
 | |
| 	(null? x))))
 | |
| 
 | |
| 
 | |
| ;;; A dotted list is a finite list (possibly of length 0) terminated
 | |
| ;;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
 | |
| ;;; is a dotted list of length 0.
 | |
| ;;;
 | |
| ;;; <dotted-list> ::= <non-nil,non-pair>	; Empty dotted list
 | |
| ;;;               |   (cons <x> <dotted-list>)	; Proper-list pair
 | |
| 
 | |
| (define (dotted-list? x)
 | |
|   (let lp ((x x) (lag x))
 | |
|     (if (pair? x)
 | |
| 	(let ((x (cdr x)))
 | |
| 	  (if (pair? x)
 | |
| 	      (let ((x   (cdr x))
 | |
| 		    (lag (cdr lag)))
 | |
| 		(and (not (eq? x lag)) (lp x lag)))
 | |
| 	      (not (null? x))))
 | |
| 	(not (null? x)))))
 | |
| 
 | |
| (define (circular-list? x)
 | |
|   (let lp ((x x) (lag x))
 | |
|     (and (pair? x)
 | |
| 	 (let ((x (cdr x)))
 | |
| 	   (and (pair? x)
 | |
| 		(let ((x   (cdr x))
 | |
| 		      (lag (cdr lag)))
 | |
| 		  (or (eq? x lag) (lp x lag))))))))
 | |
| 
 | |
| (define (not-pair? x) (not (pair? x)))	; Inline me.
 | |
| 
 | |
| ;;; This is a legal definition which is fast and sloppy:
 | |
| ;;;     (define null-list? not-pair?)
 | |
| ;;; but we'll provide a more careful one:
 | |
| (define (null-list? l)
 | |
|   (cond ((pair? l) #f)
 | |
| 	((null? l) #t)
 | |
| 	(else (error "null-list?: argument out of domain" l))))
 | |
|            
 | |
| 
 | |
| (define (list= = . lists)
 | |
|   (or (null? lists) ; special case
 | |
| 
 | |
|       (let lp1 ((list-a (car lists)) (others (cdr lists)))
 | |
| 	(or (null? others)
 | |
| 	    (let ((list-b (car others))
 | |
| 		  (others (cdr others)))
 | |
| 	      (if (eq? list-a list-b)	; EQ? => LIST=
 | |
| 		  (lp1 list-b others)
 | |
| 		  (let lp2 ((list-a list-a) (list-b list-b))
 | |
| 		    (if (null-list? list-a)
 | |
| 			(and (null-list? list-b)
 | |
| 			     (lp1 list-b others))
 | |
| 			(and (not (null-list? list-b))
 | |
| 			     (= (car list-a) (car list-b))
 | |
| 			     (lp2 (cdr list-a) (cdr list-b)))))))))))
 | |
| 			
 | |
| 
 | |
| 
 | |
| ;;; R4RS, so commented out.
 | |
| ;(define (length x)			; LENGTH may diverge or
 | |
| ;  (let lp ((x x) (len 0))		; raise an error if X is
 | |
| ;    (if (pair? x)			; a circular list. This version
 | |
| ;        (lp (cdr x) (+ len 1))		; diverges.
 | |
| ;        len)))
 | |
| 
 | |
| (define (length+ x)			; Returns #f if X is circular.
 | |
|   (let lp ((x x) (lag x) (len 0))
 | |
|     (if (pair? x)
 | |
| 	(let ((x (cdr x))
 | |
| 	      (len (+ len 1)))
 | |
| 	  (if (pair? x)
 | |
| 	      (let ((x   (cdr x))
 | |
| 		    (lag (cdr lag))
 | |
| 		    (len (+ len 1)))
 | |
| 		(and (not (eq? x lag)) (lp x lag len)))
 | |
| 	      len))
 | |
| 	len)))
 | |
| 
 | |
| (define (zip list1 . more-lists) (apply map list list1 more-lists))
 | |
| 
 | |
| 
 | |
| ;;; Selectors
 | |
| ;;;;;;;;;;;;;
 | |
| 
 | |
| ;;; R4RS non-primitives:
 | |
| ;(define (caar   x) (car (car x)))
 | |
| ;(define (cadr   x) (car (cdr x)))
 | |
| ;(define (cdar   x) (cdr (car x)))
 | |
| ;(define (cddr   x) (cdr (cdr x)))
 | |
| ;
 | |
| ;(define (caaar  x) (caar (car x)))
 | |
| ;(define (caadr  x) (caar (cdr x)))
 | |
| ;(define (cadar  x) (cadr (car x)))
 | |
| ;(define (caddr  x) (cadr (cdr x)))
 | |
| ;(define (cdaar  x) (cdar (car x)))
 | |
| ;(define (cdadr  x) (cdar (cdr x)))
 | |
| ;(define (cddar  x) (cddr (car x)))
 | |
| ;(define (cdddr  x) (cddr (cdr x)))
 | |
| ;
 | |
| ;(define (caaaar x) (caaar (car x)))
 | |
| ;(define (caaadr x) (caaar (cdr x)))
 | |
| ;(define (caadar x) (caadr (car x)))
 | |
| ;(define (caaddr x) (caadr (cdr x)))
 | |
| ;(define (cadaar x) (cadar (car x)))
 | |
| ;(define (cadadr x) (cadar (cdr x)))
 | |
| ;(define (caddar x) (caddr (car x)))
 | |
| ;(define (cadddr x) (caddr (cdr x)))
 | |
| ;(define (cdaaar x) (cdaar (car x)))
 | |
| ;(define (cdaadr x) (cdaar (cdr x)))
 | |
| ;(define (cdadar x) (cdadr (car x)))
 | |
| ;(define (cdaddr x) (cdadr (cdr x)))
 | |
| ;(define (cddaar x) (cddar (car x)))
 | |
| ;(define (cddadr x) (cddar (cdr x)))
 | |
| ;(define (cdddar x) (cdddr (car x)))
 | |
| ;(define (cddddr x) (cdddr (cdr x)))
 | |
| 
 | |
| 
 | |
| (define first  car)
 | |
| (define second cadr)
 | |
| (define third  caddr)
 | |
| (define fourth cadddr)
 | |
| (define (fifth   x) (car    (cddddr x)))
 | |
| (define (sixth   x) (cadr   (cddddr x)))
 | |
| (define (seventh x) (caddr  (cddddr x)))
 | |
| (define (eighth  x) (cadddr (cddddr x)))
 | |
| (define (ninth   x) (car  (cddddr (cddddr x))))
 | |
| (define (tenth   x) (cadr (cddddr (cddddr x))))
 | |
| 
 | |
| (define (car+cdr pair) (values (car pair) (cdr pair)))
 | |
| 
 | |
| ;;; take & drop
 | |
| 
 | |
| (define (take lis k)
 | |
|   (check-arg integer? k take)
 | |
|   (let recur ((lis lis) (k k))
 | |
|     (if (zero? k) '()
 | |
| 	(cons (car lis)
 | |
| 	      (recur (cdr lis) (- k 1))))))
 | |
| 
 | |
| (define (drop lis k)
 | |
|   (check-arg integer? k drop)
 | |
|   (let iter ((lis lis) (k k))
 | |
|     (if (zero? k) lis (iter (cdr lis) (- k 1)))))
 | |
| 
 | |
| (define (take! lis k)
 | |
|   (check-arg integer? k take!)
 | |
|   (if (zero? k) '()
 | |
|       (begin (set-cdr! (drop lis (- k 1)) '())
 | |
| 	     lis)))
 | |
| 
 | |
| ;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list, 
 | |
| ;;; off by K, then chasing down the list until the lead pointer falls off
 | |
| ;;; the end.
 | |
| 
 | |
| (define (take-right lis k)
 | |
|   (check-arg integer? k take-right)
 | |
|   (let lp ((lag lis)  (lead (drop lis k)))
 | |
|     (if (pair? lead)
 | |
| 	(lp (cdr lag) (cdr lead))
 | |
| 	lag)))
 | |
| 
 | |
| (define (drop-right lis k)
 | |
|   (check-arg integer? k drop-right)
 | |
|   (let recur ((lag lis) (lead (drop lis k)))
 | |
|     (if (pair? lead)
 | |
| 	(cons (car lag) (recur (cdr lag) (cdr lead)))
 | |
| 	'())))
 | |
| 
 | |
| ;;; In this function, LEAD is actually K+1 ahead of LAG. This lets
 | |
| ;;; us stop LAG one step early, in time to smash its cdr to ().
 | |
| (define (drop-right! lis k)
 | |
|   (check-arg integer? k drop-right!)
 | |
|   (let ((lead (drop lis k)))
 | |
|     (if (pair? lead)
 | |
| 
 | |
| 	(let lp ((lag lis)  (lead (cdr lead)))	; Standard case
 | |
| 	  (if (pair? lead)
 | |
| 	      (lp (cdr lag) (cdr lead))
 | |
| 	      (begin (set-cdr! lag '())
 | |
| 		     lis)))
 | |
| 
 | |
| 	'())))	; Special case dropping everything -- no cons to side-effect.
 | |
| 
 | |
| ;(define (list-ref lis i) (car (drop lis i)))	; R4RS
 | |
| 
 | |
| ;;; These use the APL convention, whereby negative indices mean 
 | |
| ;;; "from the right." I liked them, but they didn't win over the
 | |
| ;;; SRFI reviewers.
 | |
| ;;; K >= 0: Take and drop  K elts from the front of the list.
 | |
| ;;; K <= 0: Take and drop -K elts from the end   of the list.
 | |
| 
 | |
| ;(define (take lis k)
 | |
| ;  (check-arg integer? k take)
 | |
| ;  (if (negative? k)
 | |
| ;      (list-tail lis (+ k (length lis)))
 | |
| ;      (let recur ((lis lis) (k k))
 | |
| ;	(if (zero? k) '()
 | |
| ;	    (cons (car lis)
 | |
| ;		  (recur (cdr lis) (- k 1)))))))
 | |
| ;
 | |
| ;(define (drop lis k)
 | |
| ;  (check-arg integer? k drop)
 | |
| ;  (if (negative? k)
 | |
| ;      (let recur ((lis lis) (nelts (+ k (length lis))))
 | |
| ;	(if (zero? nelts) '()
 | |
| ;	    (cons (car lis)
 | |
| ;		  (recur (cdr lis) (- nelts 1)))))
 | |
| ;      (list-tail lis k)))
 | |
| ;
 | |
| ;
 | |
| ;(define (take! lis k)
 | |
| ;  (check-arg integer? k take!)
 | |
| ;  (cond ((zero? k) '())
 | |
| ;	((positive? k)
 | |
| ;	 (set-cdr! (list-tail lis (- k 1)) '())
 | |
| ;	 lis)
 | |
| ;	(else (list-tail lis (+ k (length lis))))))
 | |
| ;
 | |
| ;(define (drop! lis k)
 | |
| ;  (check-arg integer? k drop!)
 | |
| ;  (if (negative? k)
 | |
| ;      (let ((nelts (+ k (length lis))))
 | |
| ;	(if (zero? nelts) '()
 | |
| ;	    (begin (set-cdr! (list-tail lis (- nelts 1)) '())
 | |
| ;		   lis)))
 | |
| ;      (list-tail lis k)))
 | |
| 
 | |
| (define-syntax receive
 | |
|   (syntax-rules ()
 | |
|     [(_ (id* ...) expr body body* ...)
 | |
|      (let-values ([(id* ...) expr]) body body* ...)]))
 | |
| 
 | |
| 
 | |
| (define (split-at x k)
 | |
|   (check-arg integer? k split-at)
 | |
|   (let recur ((lis x) (k k))
 | |
|     (if (zero? k) (values '() lis)
 | |
| 	(receive (prefix suffix) (recur (cdr lis) (- k 1))
 | |
| 	  (values (cons (car lis) prefix) suffix)))))
 | |
| 
 | |
| (define (split-at! x k)
 | |
|   (check-arg integer? k split-at!)
 | |
|   (if (zero? k) (values '() x)
 | |
|       (let* ((prev (drop x (- k 1)))
 | |
| 	     (suffix (cdr prev)))
 | |
| 	(set-cdr! prev '())
 | |
| 	(values x suffix))))
 | |
| 
 | |
| 
 | |
| (define (last lis) (car (last-pair lis)))
 | |
| 
 | |
| ;;; already in ikarus
 | |
| ;;;(define (last-pair lis)
 | |
| ;;;  (check-arg pair? lis last-pair)
 | |
| ;;;  (let lp ((lis lis))
 | |
| ;;;    (let ((tail (cdr lis)))
 | |
| ;;;      (if (pair? tail) (lp tail) lis))))
 | |
| 
 | |
| 
 | |
| ;;; Unzippers -- 1 through 5
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| 
 | |
| (define (unzip1 lis) (map car lis))
 | |
| 
 | |
| (define (unzip2 lis)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) (values lis lis)	; Use NOT-PAIR? to handle
 | |
| 	(let ((elt (car lis)))			; dotted lists.
 | |
| 	  (receive (a b) (recur (cdr lis))
 | |
| 	    (values (cons (car  elt) a)
 | |
| 		    (cons (cadr elt) b)))))))
 | |
| 
 | |
| (define (unzip3 lis)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) (values lis lis lis)
 | |
| 	(let ((elt (car lis)))
 | |
| 	  (receive (a b c) (recur (cdr lis))
 | |
| 	    (values (cons (car   elt) a)
 | |
| 		    (cons (cadr  elt) b)
 | |
| 		    (cons (caddr elt) c)))))))
 | |
| 
 | |
| (define (unzip4 lis)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) (values lis lis lis lis)
 | |
| 	(let ((elt (car lis)))
 | |
| 	  (receive (a b c d) (recur (cdr lis))
 | |
| 	    (values (cons (car    elt) a)
 | |
| 		    (cons (cadr   elt) b)
 | |
| 		    (cons (caddr  elt) c)
 | |
| 		    (cons (cadddr elt) d)))))))
 | |
| 
 | |
| (define (unzip5 lis)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) (values lis lis lis lis lis)
 | |
| 	(let ((elt (car lis)))
 | |
| 	  (receive (a b c d e) (recur (cdr lis))
 | |
| 	    (values (cons (car     elt) a)
 | |
| 		    (cons (cadr    elt) b)
 | |
| 		    (cons (caddr   elt) c)
 | |
| 		    (cons (cadddr  elt) d)
 | |
| 		    (cons (car (cddddr  elt)) e)))))))
 | |
| 
 | |
| 
 | |
| ;;; append! append-reverse append-reverse! concatenate concatenate!
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| 
 | |
| (define (append! . lists)
 | |
|   ;; First, scan through lists looking for a non-empty one.
 | |
|   (let lp ((lists lists) (prev '()))
 | |
|     (if (not (pair? lists)) prev
 | |
| 	(let ((first (car lists))
 | |
| 	      (rest (cdr lists)))
 | |
| 	  (if (not (pair? first)) (lp rest first)
 | |
| 
 | |
| 	      ;; Now, do the splicing.
 | |
| 	      (let lp2 ((tail-cons (last-pair first))
 | |
| 			(rest rest))
 | |
| 		(if (pair? rest)
 | |
| 		    (let ((next (car rest))
 | |
| 			  (rest (cdr rest)))
 | |
| 		      (set-cdr! tail-cons next)
 | |
| 		      (lp2 (if (pair? next) (last-pair next) tail-cons)
 | |
| 			   rest))
 | |
| 		    first)))))))
 | |
| 
 | |
| ;;; APPEND is R4RS.
 | |
| ;(define (append . lists)
 | |
| ;  (if (pair? lists)
 | |
| ;      (let recur ((list1 (car lists)) (lists (cdr lists)))
 | |
| ;        (if (pair? lists)
 | |
| ;            (let ((tail (recur (car lists) (cdr lists))))
 | |
| ;              (fold-right cons tail list1)) ; Append LIST1 & TAIL.
 | |
| ;            list1))
 | |
| ;      '()))
 | |
| 
 | |
| ;(define (append-reverse rev-head tail) (fold cons tail rev-head))
 | |
| 
 | |
| ;(define (append-reverse! rev-head tail)
 | |
| ;  (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
 | |
| ;             tail
 | |
| ;             rev-head))
 | |
| 
 | |
| ;;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
 | |
| 
 | |
| (define (append-reverse rev-head tail)
 | |
|   (let lp ((rev-head rev-head) (tail tail))
 | |
|     (if (null-list? rev-head) tail
 | |
| 	(lp (cdr rev-head) (cons (car rev-head) tail)))))
 | |
| 
 | |
| (define (append-reverse! rev-head tail)
 | |
|   (let lp ((rev-head rev-head) (tail tail))
 | |
|     (if (null-list? rev-head) tail
 | |
| 	(let ((next-rev (cdr rev-head)))
 | |
| 	  (set-cdr! rev-head tail)
 | |
| 	  (lp next-rev rev-head)))))
 | |
| 
 | |
| 
 | |
| (define (concatenate  lists) (reduce-right append  '() lists))
 | |
| (define (concatenate! lists) (reduce-right append! '() lists))
 | |
| 
 | |
| ;;; Fold/map internal utilities
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| ;;; These little internal utilities are used by the general
 | |
| ;;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
 | |
| ;;; One the other hand, the n-ary cases are painfully inefficient as it is.
 | |
| ;;; An aggressive implementation should simply re-write these functions 
 | |
| ;;; for raw efficiency; I have written them for as much clarity, portability,
 | |
| ;;; and simplicity as can be achieved.
 | |
| ;;;
 | |
| ;;; I use the dreaded call/cc to do local aborts. A good compiler could
 | |
| ;;; handle this with extreme efficiency. An implementation that provides
 | |
| ;;; a one-shot, non-persistent continuation grabber could help the compiler
 | |
| ;;; out by using that in place of the call/cc's in these routines.
 | |
| ;;;
 | |
| ;;; These functions have funky definitions that are precisely tuned to
 | |
| ;;; the needs of the fold/map procs -- for example, to minimize the number
 | |
| ;;; of times the argument lists need to be examined.
 | |
| 
 | |
| ;;; Return (map cdr lists). 
 | |
| ;;; However, if any element of LISTS is empty, just abort and return '().
 | |
| (define (%cdrs lists)
 | |
|   (call-with-current-continuation
 | |
|     (lambda (abort)
 | |
|       (let recur ((lists lists))
 | |
| 	(if (pair? lists)
 | |
| 	    (let ((lis (car lists)))
 | |
| 	      (if (null-list? lis) (abort '())
 | |
| 		  (cons (cdr lis) (recur (cdr lists)))))
 | |
| 	    '())))))
 | |
| 
 | |
| (define (%cars+ lists last-elt)	; (append! (map car lists) (list last-elt))
 | |
|   (let recur ((lists lists))
 | |
|     (if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
 | |
| 
 | |
| ;;; LISTS is a (not very long) non-empty list of lists.
 | |
| ;;; Return two lists: the cars & the cdrs of the lists.
 | |
| ;;; However, if any of the lists is empty, just abort and return [() ()].
 | |
| 
 | |
| (define (%cars+cdrs lists)
 | |
|   (call-with-current-continuation
 | |
|     (lambda (abort)
 | |
|       (let recur ((lists lists))
 | |
|         (if (pair? lists)
 | |
| 	    (receive (list other-lists) (car+cdr lists)
 | |
| 	      (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
 | |
| 		  (receive (a d) (car+cdr list)
 | |
| 		    (receive (cars cdrs) (recur other-lists)
 | |
| 		      (values (cons a cars) (cons d cdrs))))))
 | |
| 	    (values '() '()))))))
 | |
| 
 | |
| ;;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the
 | |
| ;;; cars list. What a hack.
 | |
| (define (%cars+cdrs+ lists cars-final)
 | |
|   (call-with-current-continuation
 | |
|     (lambda (abort)
 | |
|       (let recur ((lists lists))
 | |
|         (if (pair? lists)
 | |
| 	    (receive (list other-lists) (car+cdr lists)
 | |
| 	      (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
 | |
| 		  (receive (a d) (car+cdr list)
 | |
| 		    (receive (cars cdrs) (recur other-lists)
 | |
| 		      (values (cons a cars) (cons d cdrs))))))
 | |
| 	    (values (list cars-final) '()))))))
 | |
| 
 | |
| ;;; Like %CARS+CDRS, but blow up if any list is empty.
 | |
| (define (%cars+cdrs/no-test lists)
 | |
|   (let recur ((lists lists))
 | |
|     (if (pair? lists)
 | |
| 	(receive (list other-lists) (car+cdr lists)
 | |
| 	  (receive (a d) (car+cdr list)
 | |
| 	    (receive (cars cdrs) (recur other-lists)
 | |
| 	      (values (cons a cars) (cons d cdrs)))))
 | |
| 	(values '() '()))))
 | |
| 
 | |
| 
 | |
| ;;; count
 | |
| ;;;;;;;;;
 | |
| (define (count pred list1 . lists)
 | |
|   (check-arg procedure? pred count)
 | |
|   (if (pair? lists)
 | |
| 
 | |
|       ;; N-ary case
 | |
|       (let lp ((list1 list1) (lists lists) (i 0))
 | |
| 	(if (null-list? list1) i
 | |
| 	    (receive (as ds) (%cars+cdrs lists)
 | |
| 	      (if (null? as) i
 | |
| 		  (lp (cdr list1) ds
 | |
| 		      (if (apply pred (car list1) as) (+ i 1) i))))))
 | |
| 
 | |
|       ;; Fast path
 | |
|       (let lp ((lis list1) (i 0))
 | |
| 	(if (null-list? lis) i
 | |
| 	    (lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
 | |
| 
 | |
| 
 | |
| ;;; fold/unfold
 | |
| ;;;;;;;;;;;;;;;
 | |
| 
 | |
| (define (unfold-right p f g seed . maybe-tail)
 | |
|   (check-arg procedure? p unfold-right)
 | |
|   (check-arg procedure? f unfold-right)
 | |
|   (check-arg procedure? g unfold-right)
 | |
|   (let lp ((seed seed) (ans (:optional maybe-tail '())))
 | |
|     (if (p seed) ans
 | |
| 	(lp (g seed)
 | |
| 	    (cons (f seed) ans)))))
 | |
| 
 | |
| 
 | |
| (define (unfold p f g seed . maybe-tail-gen)
 | |
|   (check-arg procedure? p unfold)
 | |
|   (check-arg procedure? f unfold)
 | |
|   (check-arg procedure? g unfold)
 | |
|   (if (pair? maybe-tail-gen) ;;; so much for :optional (aghuloum)
 | |
| 
 | |
|       (let ((tail-gen (car maybe-tail-gen)))
 | |
| 	(if (pair? (cdr maybe-tail-gen))
 | |
| 	    (apply error "Too many arguments" unfold p f g seed maybe-tail-gen)
 | |
| 
 | |
| 	    (let recur ((seed seed))
 | |
| 	      (if (p seed) (tail-gen seed)
 | |
| 		  (cons (f seed) (recur (g seed)))))))
 | |
| 
 | |
|       (let recur ((seed seed))
 | |
| 	(if (p seed) '()
 | |
| 	    (cons (f seed) (recur (g seed)))))))
 | |
|       
 | |
| 
 | |
| (define (fold kons knil lis1 . lists)
 | |
|   (check-arg procedure? kons fold)
 | |
|   (if (pair? lists)
 | |
|       (let lp ((lists (cons lis1 lists)) (ans knil))	; N-ary case
 | |
| 	(receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
 | |
| 	  (if (null? cars+ans) ans ; Done.
 | |
| 	      (lp cdrs (apply kons cars+ans)))))
 | |
| 	    
 | |
|       (let lp ((lis lis1) (ans knil))			; Fast path
 | |
| 	(if (null-list? lis) ans
 | |
| 	    (lp (cdr lis) (kons (car lis) ans))))))
 | |
| 
 | |
| 
 | |
| (define (fold-right kons knil lis1 . lists)
 | |
|   (check-arg procedure? kons fold-right)
 | |
|   (if (pair? lists)
 | |
|       (let recur ((lists (cons lis1 lists)))		; N-ary case
 | |
| 	(let ((cdrs (%cdrs lists)))
 | |
| 	  (if (null? cdrs) knil
 | |
| 	      (apply kons (%cars+ lists (recur cdrs))))))
 | |
| 
 | |
|       (let recur ((lis lis1))				; Fast path
 | |
| 	(if (null-list? lis) knil
 | |
| 	    (let ((head (car lis)))
 | |
| 	      (kons head (recur (cdr lis))))))))
 | |
| 
 | |
| 
 | |
| (define (pair-fold-right f zero lis1 . lists)
 | |
|   (check-arg procedure? f pair-fold-right)
 | |
|   (if (pair? lists)
 | |
|       (let recur ((lists (cons lis1 lists)))		; N-ary case
 | |
| 	(let ((cdrs (%cdrs lists)))
 | |
| 	  (if (null? cdrs) zero
 | |
| 	      (apply f (append! lists (list (recur cdrs)))))))
 | |
| 
 | |
|       (let recur ((lis lis1))				; Fast path
 | |
| 	(if (null-list? lis) zero (f lis (recur (cdr lis)))))))
 | |
| 
 | |
| (define (pair-fold f zero lis1 . lists)
 | |
|   (check-arg procedure? f pair-fold)
 | |
|   (if (pair? lists)
 | |
|       (let lp ((lists (cons lis1 lists)) (ans zero))	; N-ary case
 | |
| 	(let ((tails (%cdrs lists)))
 | |
| 	  (if (null? tails) ans
 | |
| 	      (lp tails (apply f (append! lists (list ans)))))))
 | |
| 
 | |
|       (let lp ((lis lis1) (ans zero))
 | |
| 	(if (null-list? lis) ans
 | |
| 	    (let ((tail (cdr lis)))		; Grab the cdr now,
 | |
| 	      (lp tail (f lis ans)))))))	; in case F SET-CDR!s LIS.
 | |
|       
 | |
| 
 | |
| ;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
 | |
| ;;; These cannot meaningfully be n-ary.
 | |
| 
 | |
| (define (reduce f ridentity lis)
 | |
|   (check-arg procedure? f reduce)
 | |
|   (if (null-list? lis) ridentity
 | |
|       (fold f (car lis) (cdr lis))))
 | |
| 
 | |
| (define (reduce-right f ridentity lis)
 | |
|   (check-arg procedure? f reduce-right)
 | |
|   (if (null-list? lis) ridentity
 | |
|       (let recur ((head (car lis)) (lis (cdr lis)))
 | |
| 	(if (pair? lis)
 | |
| 	    (f head (recur (car lis) (cdr lis)))
 | |
| 	    head))))
 | |
| 
 | |
| 
 | |
| 
 | |
| ;;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| 
 | |
| (define (append-map f lis1 . lists)
 | |
|   (really-append-map append-map  append  f lis1 lists))
 | |
| (define (append-map! f lis1 . lists) 
 | |
|   (really-append-map append-map! append! f lis1 lists))
 | |
| 
 | |
| (define (really-append-map who appender f lis1 lists)
 | |
|   (check-arg procedure? f who)
 | |
|   (if (pair? lists)
 | |
|       (receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
 | |
| 	(if (null? cars) '()
 | |
| 	    (let recur ((cars cars) (cdrs cdrs))
 | |
| 	      (let ((vals (apply f cars)))
 | |
| 		(receive (cars2 cdrs2) (%cars+cdrs cdrs)
 | |
| 		  (if (null? cars2) vals
 | |
| 		      (appender vals (recur cars2 cdrs2))))))))
 | |
| 
 | |
|       ;; Fast path
 | |
|       (if (null-list? lis1) '()
 | |
| 	  (let recur ((elt (car lis1)) (rest (cdr lis1)))
 | |
| 	    (let ((vals (f elt)))
 | |
| 	      (if (null-list? rest) vals
 | |
| 		  (appender vals (recur (car rest) (cdr rest)))))))))
 | |
| 
 | |
| 
 | |
| (define (pair-for-each proc lis1 . lists)
 | |
|   (check-arg procedure? proc pair-for-each)
 | |
|   (if (pair? lists)
 | |
| 
 | |
|       (let lp ((lists (cons lis1 lists)))
 | |
| 	(let ((tails (%cdrs lists)))
 | |
| 	  (if (pair? tails)
 | |
| 	      (begin (apply proc lists)
 | |
| 		     (lp tails)))))
 | |
| 
 | |
|       ;; Fast path.
 | |
|       (let lp ((lis lis1))
 | |
| 	(if (not (null-list? lis))
 | |
| 	    (let ((tail (cdr lis)))	; Grab the cdr now,
 | |
| 	      (proc lis)		; in case PROC SET-CDR!s LIS.
 | |
| 	      (lp tail))))))
 | |
| 
 | |
| ;;; We stop when LIS1 runs out, not when any list runs out.
 | |
| (define (map! f lis1 . lists)
 | |
|   (check-arg procedure? f map!)
 | |
|   (if (pair? lists)
 | |
|       (let lp ((lis1 lis1) (lists lists))
 | |
| 	(if (not (null-list? lis1))
 | |
| 	    (receive (heads tails) (%cars+cdrs/no-test lists)
 | |
| 	      (set-car! lis1 (apply f (car lis1) heads))
 | |
| 	      (lp (cdr lis1) tails))))
 | |
| 
 | |
|       ;; Fast path.
 | |
|       (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
 | |
|   lis1)
 | |
| 
 | |
| 
 | |
| ;;; Map F across L, and save up all the non-false results.
 | |
| (define (filter-map f lis1 . lists)
 | |
|   (check-arg procedure? f filter-map)
 | |
|   (if (pair? lists)
 | |
|       (let recur ((lists (cons lis1 lists)))
 | |
| 	(receive (cars cdrs) (%cars+cdrs lists)
 | |
| 	  (if (pair? cars)
 | |
| 	      (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
 | |
| 		    (else (recur cdrs))) ; Tail call in this arm.
 | |
| 	      '())))
 | |
| 	    
 | |
|       ;; Fast path.
 | |
|       (let recur ((lis lis1))
 | |
| 	(if (null-list? lis) lis
 | |
| 	    (let ((tail (recur (cdr lis))))
 | |
| 	      (cond ((f (car lis)) => (lambda (x) (cons x tail)))
 | |
| 		    (else tail)))))))
 | |
| 
 | |
| 
 | |
| ;;; Map F across lists, guaranteeing to go left-to-right.
 | |
| ;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
 | |
| ;;; in which case this procedure may simply be defined as a synonym for MAP.
 | |
| 
 | |
| (define (map-in-order f lis1 . lists)
 | |
|   (check-arg procedure? f map-in-order)
 | |
|   (if (pair? lists)
 | |
|       (let recur ((lists (cons lis1 lists)))
 | |
| 	(receive (cars cdrs) (%cars+cdrs lists)
 | |
| 	  (if (pair? cars)
 | |
| 	      (let ((x (apply f cars)))		; Do head first,
 | |
| 		(cons x (recur cdrs)))		; then tail.
 | |
| 	      '())))
 | |
| 	    
 | |
|       ;; Fast path.
 | |
|       (let recur ((lis lis1))
 | |
| 	(if (null-list? lis) lis
 | |
| 	    (let ((tail (cdr lis))
 | |
| 		  (x (f (car lis))))		; Do head first,
 | |
| 	      (cons x (recur tail)))))))	; then tail.
 | |
| 
 | |
| 
 | |
| ;;; We extend MAP to handle arguments of unequal length.
 | |
| (define map map-in-order)	
 | |
| 
 | |
| 
 | |
| ;;; filter, remove, partition
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| ;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
 | |
| ;;; disorder the elements of their argument.
 | |
| 
 | |
| ;; This FILTER shares the longest tail of L that has no deleted elements.
 | |
| ;; If Scheme had multi-continuation calls, they could be made more efficient.
 | |
| 
 | |
| (define (filter pred lis)			; Sleazing with EQ? makes this
 | |
|   (check-arg procedure? pred filter)		; one faster.
 | |
|   (let recur ((lis lis))		
 | |
|     (if (null-list? lis) lis			; Use NOT-PAIR? to handle dotted lists.
 | |
| 	(let ((head (car lis))
 | |
| 	      (tail (cdr lis)))
 | |
| 	  (if (pred head)
 | |
| 	      (let ((new-tail (recur tail)))	; Replicate the RECUR call so
 | |
| 		(if (eq? tail new-tail) lis
 | |
| 		    (cons head new-tail)))
 | |
| 	      (recur tail))))))			; this one can be a tail call.
 | |
| 
 | |
| 
 | |
| ;;; Another version that shares longest tail.
 | |
| ;(define (filter pred lis)
 | |
| ;  (receive (ans no-del?)
 | |
| ;      ;; (recur l) returns L with (pred x) values filtered.
 | |
| ;      ;; It also returns a flag NO-DEL? if the returned value
 | |
| ;      ;; is EQ? to L, i.e. if it didn't have to delete anything.
 | |
| ;      (let recur ((l l))
 | |
| ;	(if (null-list? l) (values l #t)
 | |
| ;	    (let ((x  (car l))
 | |
| ;		  (tl (cdr l)))
 | |
| ;	      (if (pred x)
 | |
| ;		  (receive (ans no-del?) (recur tl)
 | |
| ;		    (if no-del?
 | |
| ;			(values l #t)
 | |
| ;			(values (cons x ans) #f)))
 | |
| ;		  (receive (ans no-del?) (recur tl) ; Delete X.
 | |
| ;		    (values ans #f))))))
 | |
| ;    ans))
 | |
| 
 | |
| 
 | |
| 
 | |
| ;(define (filter! pred lis)			; Things are much simpler
 | |
| ;  (let recur ((lis lis))			; if you are willing to
 | |
| ;    (if (pair? lis)				; push N stack frames & do N
 | |
| ;        (cond ((pred (car lis))		; SET-CDR! writes, where N is
 | |
| ;               (set-cdr! lis (recur (cdr lis))); the length of the answer.
 | |
| ;               lis)				
 | |
| ;              (else (recur (cdr lis))))
 | |
| ;        lis)))
 | |
| 
 | |
| 
 | |
| ;;; This implementation of FILTER!
 | |
| ;;; - doesn't cons, and uses no stack;
 | |
| ;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are 
 | |
| ;;;   usually expensive on modern machines, and can be extremely expensive on 
 | |
| ;;;   modern Schemes (e.g., ones that have generational GC's).
 | |
| ;;; It just zips down contiguous runs of in and out elts in LIS doing the 
 | |
| ;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the 
 | |
| ;;; beginning of the next.
 | |
| 
 | |
| (define (filter! pred lis)
 | |
|   (check-arg procedure? pred filter!)
 | |
|   (let lp ((ans lis))
 | |
|     (cond ((null-list? ans)       ans)			; Scan looking for
 | |
| 	  ((not (pred (car ans))) (lp (cdr ans)))	; first cons of result.
 | |
| 
 | |
| 	  ;; ANS is the eventual answer.
 | |
| 	  ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
 | |
| 	  ;;          Scan over a contiguous segment of the list that
 | |
| 	  ;;          satisfies PRED.
 | |
| 	  ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
 | |
| 	  ;;           segment of the list that *doesn't* satisfy PRED.
 | |
| 	  ;;           When the segment ends, patch in a link from PREV
 | |
| 	  ;;           to the start of the next good segment, and jump to
 | |
| 	  ;;           SCAN-IN.
 | |
| 	  (else (letrec ((scan-in (lambda (prev lis)
 | |
| 				    (if (pair? lis)
 | |
| 					(if (pred (car lis))
 | |
| 					    (scan-in lis (cdr lis))
 | |
| 					    (scan-out prev (cdr lis))))))
 | |
| 			 (scan-out (lambda (prev lis)
 | |
| 				     (let lp ((lis lis))
 | |
| 				       (if (pair? lis)
 | |
| 					   (if (pred (car lis))
 | |
| 					       (begin (set-cdr! prev lis)
 | |
| 						      (scan-in lis (cdr lis)))
 | |
| 					       (lp (cdr lis)))
 | |
| 					   (set-cdr! prev lis))))))
 | |
| 		  (scan-in ans (cdr ans))
 | |
| 		  ans)))))
 | |
| 
 | |
| 
 | |
| 
 | |
| ;;; Answers share common tail with LIS where possible; 
 | |
| ;;; the technique is slightly subtle.
 | |
| 
 | |
| (define (partition pred lis)
 | |
|   (check-arg procedure? pred partition)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) (values lis lis)	; Use NOT-PAIR? to handle dotted lists.
 | |
| 	(let ((elt (car lis))
 | |
| 	      (tail (cdr lis)))
 | |
| 	  (receive (in out) (recur tail)
 | |
| 	    (if (pred elt)
 | |
| 		(values (if (pair? out) (cons elt in) lis) out)
 | |
| 		(values in (if (pair? in) (cons elt out) lis))))))))
 | |
| 
 | |
| 
 | |
| 
 | |
| ;(define (partition! pred lis)			; Things are much simpler
 | |
| ;  (let recur ((lis lis))			; if you are willing to
 | |
| ;    (if (null-list? lis) (values lis lis)	; push N stack frames & do N
 | |
| ;        (let ((elt (car lis)))			; SET-CDR! writes, where N is
 | |
| ;          (receive (in out) (recur (cdr lis))	; the length of LIS.
 | |
| ;            (cond ((pred elt)
 | |
| ;                   (set-cdr! lis in)
 | |
| ;                   (values lis out))
 | |
| ;                  (else (set-cdr! lis out)
 | |
| ;                        (values in lis))))))))
 | |
| 
 | |
| 
 | |
| ;;; This implementation of PARTITION!
 | |
| ;;; - doesn't cons, and uses no stack;
 | |
| ;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
 | |
| ;;;   usually expensive on modern machines, and can be extremely expensive on 
 | |
| ;;;   modern Schemes (e.g., ones that have generational GC's).
 | |
| ;;; It just zips down contiguous runs of in and out elts in LIS doing the
 | |
| ;;; minimal number of SET-CDR!s to splice these runs together into the result 
 | |
| ;;; lists.
 | |
| 
 | |
| (define (partition! pred lis)
 | |
|   (check-arg procedure? pred partition!)
 | |
|   (if (null-list? lis) (values lis lis)
 | |
| 
 | |
|       ;; This pair of loops zips down contiguous in & out runs of the
 | |
|       ;; list, splicing the runs together. The invariants are
 | |
|       ;;   SCAN-IN:  (cdr in-prev)  = LIS.
 | |
|       ;;   SCAN-OUT: (cdr out-prev) = LIS.
 | |
|       (letrec ((scan-in (lambda (in-prev out-prev lis)
 | |
| 			  (let lp ((in-prev in-prev) (lis lis))
 | |
| 			    (if (pair? lis)
 | |
| 				(if (pred (car lis))
 | |
| 				    (lp lis (cdr lis))
 | |
| 				    (begin (set-cdr! out-prev lis)
 | |
| 					   (scan-out in-prev lis (cdr lis))))
 | |
| 				(set-cdr! out-prev lis))))) ; Done.
 | |
| 
 | |
| 	       (scan-out (lambda (in-prev out-prev lis)
 | |
| 			   (let lp ((out-prev out-prev) (lis lis))
 | |
| 			     (if (pair? lis)
 | |
| 				 (if (pred (car lis))
 | |
| 				     (begin (set-cdr! in-prev lis)
 | |
| 					    (scan-in lis out-prev (cdr lis)))
 | |
| 				     (lp lis (cdr lis)))
 | |
| 				 (set-cdr! in-prev lis)))))) ; Done.
 | |
| 
 | |
| 	;; Crank up the scan&splice loops.
 | |
| 	(if (pred (car lis))
 | |
| 	    ;; LIS begins in-list. Search for out-list's first pair.
 | |
| 	    (let lp ((prev-l lis) (l (cdr lis)))
 | |
| 	      (cond ((not (pair? l)) (values lis l))
 | |
| 		    ((pred (car l)) (lp l (cdr l)))
 | |
| 		    (else (scan-out prev-l l (cdr l))
 | |
| 			  (values lis l))))	; Done.
 | |
| 
 | |
| 	    ;; LIS begins out-list. Search for in-list's first pair.
 | |
| 	    (let lp ((prev-l lis) (l (cdr lis)))
 | |
| 	      (cond ((not (pair? l)) (values l lis))
 | |
| 		    ((pred (car l))
 | |
| 		     (scan-in l prev-l (cdr l))
 | |
| 		     (values l lis))		; Done.
 | |
| 		    (else (lp l (cdr l)))))))))
 | |
| 
 | |
| 
 | |
| ;;; Inline us, please.
 | |
| (define (remove  pred l) (filter  (lambda (x) (not (pred x))) l))
 | |
| (define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
 | |
| 
 | |
| 
 | |
| 
 | |
| ;;; Here's the taxonomy for the DELETE/ASSOC/MEMBER functions.
 | |
| ;;; (I don't actually think these are the world's most important
 | |
| ;;; functions -- the procedural FILTER/REMOVE/FIND/FIND-TAIL variants
 | |
| ;;; are far more general.)
 | |
| ;;;
 | |
| ;;; Function			Action
 | |
| ;;; ---------------------------------------------------------------------------
 | |
| ;;; remove pred lis		Delete by general predicate
 | |
| ;;; delete x lis [=]		Delete by element comparison
 | |
| ;;;					     
 | |
| ;;; find pred lis		Search by general predicate
 | |
| ;;; find-tail pred lis		Search by general predicate
 | |
| ;;; member x lis [=]		Search by element comparison
 | |
| ;;;
 | |
| ;;; assoc key lis [=]		Search alist by key comparison
 | |
| ;;; alist-delete key alist [=]	Alist-delete by key comparison
 | |
| 
 | |
| (define (delete x lis . maybe-=) 
 | |
|   (let ((= (:optional maybe-= equal?)))
 | |
|     (filter (lambda (y) (not (= x y))) lis)))
 | |
| 
 | |
| (define (delete! x lis . maybe-=)
 | |
|   (let ((= (:optional maybe-= equal?)))
 | |
|     (filter! (lambda (y) (not (= x y))) lis)))
 | |
| 
 | |
| ;;; Extended from R4RS to take an optional comparison argument.
 | |
| (define (member x lis . maybe-=)
 | |
|   (let ((= (:optional maybe-= equal?)))
 | |
|     (find-tail (lambda (y) (= x y)) lis)))
 | |
| 
 | |
| ;;; R4RS, hence we don't bother to define.
 | |
| ;;; The MEMBER and then FIND-TAIL call should definitely
 | |
| ;;; be inlined for MEMQ & MEMV.
 | |
| ;(define (memq    x lis) (member x lis eq?))
 | |
| ;(define (memv    x lis) (member x lis eqv?))
 | |
| 
 | |
| 
 | |
| ;;; right-duplicate deletion
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| ;;; delete-duplicates delete-duplicates!
 | |
| ;;;
 | |
| ;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
 | |
| ;;; in long lists, sort the list to bring duplicates together, then use a 
 | |
| ;;; linear-time algorithm to kill the dups. Or use an algorithm based on
 | |
| ;;; element-marking. The former gives you O(n lg n), the latter is linear.
 | |
| 
 | |
| (define (delete-duplicates lis . maybe-=)
 | |
|   (let ((elt= (:optional maybe-= equal?)))
 | |
|     (check-arg procedure? elt= delete-duplicates)
 | |
|     (let recur ((lis lis))
 | |
|       (if (null-list? lis) lis
 | |
| 	  (let* ((x (car lis))
 | |
| 		 (tail (cdr lis))
 | |
| 		 (new-tail (recur (delete x tail elt=))))
 | |
| 	    (if (eq? tail new-tail) lis (cons x new-tail)))))))
 | |
| 
 | |
| (define (delete-duplicates! lis maybe-=)
 | |
|   (let ((elt= (:optional maybe-= equal?)))
 | |
|     (check-arg procedure? elt= delete-duplicates!)
 | |
|     (let recur ((lis lis))
 | |
|       (if (null-list? lis) lis
 | |
| 	  (let* ((x (car lis))
 | |
| 		 (tail (cdr lis))
 | |
| 		 (new-tail (recur (delete! x tail elt=))))
 | |
| 	    (if (eq? tail new-tail) lis (cons x new-tail)))))))
 | |
| 
 | |
| 
 | |
| ;;; alist stuff
 | |
| ;;;;;;;;;;;;;;;
 | |
| 
 | |
| ;;; Extended from R4RS to take an optional comparison argument.
 | |
| (define (assoc x lis . maybe-=)
 | |
|   (let ((= (:optional maybe-= equal?)))
 | |
|     (find (lambda (entry) (= x (car entry))) lis)))
 | |
| 
 | |
| (define (alist-cons key datum alist) (cons (cons key datum) alist))
 | |
| 
 | |
| (define (alist-copy alist)
 | |
|   (map (lambda (elt) (cons (car elt) (cdr elt)))
 | |
|        alist))
 | |
| 
 | |
| (define (alist-delete key alist . maybe-=)
 | |
|   (let ((= (:optional maybe-= equal?)))
 | |
|     (filter (lambda (elt) (not (= key (car elt)))) alist)))
 | |
| 
 | |
| (define (alist-delete! key alist . maybe-=)
 | |
|   (let ((= (:optional maybe-= equal?)))
 | |
|     (filter! (lambda (elt) (not (= key (car elt)))) alist)))
 | |
| 
 | |
| 
 | |
| ;;; find find-tail take-while drop-while span break any every list-index
 | |
| ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | |
| 
 | |
| (define (find pred list)
 | |
|   (cond ((find-tail pred list) => car)
 | |
| 	(else #f)))
 | |
| 
 | |
| (define (find-tail pred list)
 | |
|   (check-arg procedure? pred find-tail)
 | |
|   (let lp ((list list))
 | |
|     (and (not (null-list? list))
 | |
| 	 (if (pred (car list)) list
 | |
| 	     (lp (cdr list))))))
 | |
| 
 | |
| (define (take-while pred lis)
 | |
|   (check-arg procedure? pred take-while)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) '()
 | |
| 	(let ((x (car lis)))
 | |
| 	  (if (pred x)
 | |
| 	      (cons x (recur (cdr lis)))
 | |
| 	      '())))))
 | |
| 
 | |
| (define (drop-while pred lis)
 | |
|   (check-arg procedure? pred drop-while)
 | |
|   (let lp ((lis lis))
 | |
|     (if (null-list? lis) '()
 | |
| 	(if (pred (car lis))
 | |
| 	    (lp (cdr lis))
 | |
| 	    lis))))
 | |
| 
 | |
| (define (take-while! pred lis)
 | |
|   (check-arg procedure? pred take-while!)
 | |
|   (if (or (null-list? lis) (not (pred (car lis)))) '()
 | |
|       (begin (let lp ((prev lis) (rest (cdr lis)))
 | |
| 	       (if (pair? rest)
 | |
| 		   (let ((x (car rest)))
 | |
| 		     (if (pred x) (lp rest (cdr rest))
 | |
| 			 (set-cdr! prev '())))))
 | |
| 	     lis)))
 | |
| 
 | |
| (define (span pred lis)
 | |
|   (check-arg procedure? pred span)
 | |
|   (let recur ((lis lis))
 | |
|     (if (null-list? lis) (values '() '())
 | |
| 	(let ((x (car lis)))
 | |
| 	  (if (pred x)
 | |
| 	      (receive (prefix suffix) (recur (cdr lis))
 | |
| 		(values (cons x prefix) suffix))
 | |
| 	      (values '() lis))))))
 | |
| 
 | |
| (define (span! pred lis)
 | |
|   (check-arg procedure? pred span!)
 | |
|   (if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
 | |
|       (let ((suffix (let lp ((prev lis) (rest (cdr lis)))
 | |
| 		      (if (null-list? rest) rest
 | |
| 			  (let ((x (car rest)))
 | |
| 			    (if (pred x) (lp rest (cdr rest))
 | |
| 				(begin (set-cdr! prev '())
 | |
| 				       rest)))))))
 | |
| 	(values lis suffix))))
 | |
|   
 | |
| 
 | |
| (define (break  pred lis) (span  (lambda (x) (not (pred x))) lis))
 | |
| (define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
 | |
| 
 | |
| (define (any pred lis1 . lists)
 | |
|   (check-arg procedure? pred any)
 | |
|   (if (pair? lists)
 | |
| 
 | |
|       ;; N-ary case
 | |
|       (receive (heads tails) (%cars+cdrs (cons lis1 lists))
 | |
| 	(and (pair? heads)
 | |
| 	     (let lp ((heads heads) (tails tails))
 | |
| 	       (receive (next-heads next-tails) (%cars+cdrs tails)
 | |
| 		 (if (pair? next-heads)
 | |
| 		     (or (apply pred heads) (lp next-heads next-tails))
 | |
| 		     (apply pred heads)))))) ; Last PRED app is tail call.
 | |
| 
 | |
|       ;; Fast path
 | |
|       (and (not (null-list? lis1))
 | |
| 	   (let lp ((head (car lis1)) (tail (cdr lis1)))
 | |
| 	     (if (null-list? tail)
 | |
| 		 (pred head)		; Last PRED app is tail call.
 | |
| 		 (or (pred head) (lp (car tail) (cdr tail))))))))
 | |
| 
 | |
| 
 | |
| ;(define (every pred list)              ; Simple definition.
 | |
| ;  (let lp ((list list))                ; Doesn't return the last PRED value.
 | |
| ;    (or (not (pair? list))
 | |
| ;        (and (pred (car list))
 | |
| ;             (lp (cdr list))))))
 | |
| 
 | |
| (define (every pred lis1 . lists)
 | |
|   (check-arg procedure? pred every)
 | |
|   (if (pair? lists)
 | |
| 
 | |
|       ;; N-ary case
 | |
|       (receive (heads tails) (%cars+cdrs (cons lis1 lists))
 | |
| 	(or (not (pair? heads))
 | |
| 	    (let lp ((heads heads) (tails tails))
 | |
| 	      (receive (next-heads next-tails) (%cars+cdrs tails)
 | |
| 		(if (pair? next-heads)
 | |
| 		    (and (apply pred heads) (lp next-heads next-tails))
 | |
| 		    (apply pred heads)))))) ; Last PRED app is tail call.
 | |
| 
 | |
|       ;; Fast path
 | |
|       (or (null-list? lis1)
 | |
| 	  (let lp ((head (car lis1))  (tail (cdr lis1)))
 | |
| 	    (if (null-list? tail)
 | |
| 		(pred head)	; Last PRED app is tail call.
 | |
| 		(and (pred head) (lp (car tail) (cdr tail))))))))
 | |
| 
 | |
| (define (list-index pred lis1 . lists)
 | |
|   (check-arg procedure? pred list-index)
 | |
|   (if (pair? lists)
 | |
| 
 | |
|       ;; N-ary case
 | |
|       (let lp ((lists (cons lis1 lists)) (n 0))
 | |
| 	(receive (heads tails) (%cars+cdrs lists)
 | |
| 	  (and (pair? heads)
 | |
| 	       (if (apply pred heads) n
 | |
| 		   (lp tails (+ n 1))))))
 | |
| 
 | |
|       ;; Fast path
 | |
|       (let lp ((lis lis1) (n 0))
 | |
| 	(and (not (null-list? lis))
 | |
| 	     (if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
 | |
| 
 | |
| ;;; Reverse
 | |
| ;;;;;;;;;;;
 | |
| 
 | |
| ;R4RS, so not defined here.
 | |
| ;(define (reverse lis) (fold cons '() lis))
 | |
| 				      
 | |
| ;(define (reverse! lis)
 | |
| ;  (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) '() lis))
 | |
| 
 | |
| (define (reverse! lis)
 | |
|   (let lp ((lis lis) (ans '()))
 | |
|     (if (null-list? lis) ans
 | |
|         (let ((tail (cdr lis)))
 | |
|           (set-cdr! lis ans)
 | |
|           (lp tail lis)))))
 | |
| 
 | |
| ;;; Lists-as-sets
 | |
| ;;;;;;;;;;;;;;;;;
 | |
| 
 | |
| ;;; This is carefully tuned code; do not modify casually.
 | |
| ;;; - It is careful to share storage when possible;
 | |
| ;;; - Side-effecting code tries not to perform redundant writes.
 | |
| ;;; - It tries to avoid linear-time scans in special cases where constant-time
 | |
| ;;;   computations can be performed.
 | |
| ;;; - It relies on similar properties from the other list-lib procs it calls.
 | |
| ;;;   For example, it uses the fact that the implementations of MEMBER and
 | |
| ;;;   FILTER in this source code share longest common tails between args
 | |
| ;;;   and results to get structure sharing in the lset procedures.
 | |
| 
 | |
| (define (%lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1))
 | |
| 
 | |
| (define (lset<= = . lists)
 | |
|   (check-arg procedure? = lset<=)
 | |
|   (or (not (pair? lists)) ; 0-ary case
 | |
|       (let lp ((s1 (car lists)) (rest (cdr lists)))
 | |
| 	(or (not (pair? rest))
 | |
| 	    (let ((s2 (car rest))  (rest (cdr rest)))
 | |
| 	      (and (or (eq? s2 s1)	; Fast path
 | |
| 		       (%lset2<= = s1 s2)) ; Real test
 | |
| 		   (lp s2 rest)))))))
 | |
| 
 | |
| (define (lset= = . lists)
 | |
|   (check-arg procedure? = lset=)
 | |
|   (or (not (pair? lists)) ; 0-ary case
 | |
|       (let lp ((s1 (car lists)) (rest (cdr lists)))
 | |
| 	(or (not (pair? rest))
 | |
| 	    (let ((s2   (car rest))
 | |
| 		  (rest (cdr rest)))
 | |
| 	      (and (or (eq? s1 s2)	; Fast path
 | |
| 		       (and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
 | |
| 		   (lp s2 rest)))))))
 | |
| 
 | |
| 
 | |
| (define (lset-adjoin = lis . elts)
 | |
|   (check-arg procedure? = lset-adjoin)
 | |
|   (fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans)))
 | |
| 	lis elts))
 | |
| 
 | |
| 
 | |
| (define (lset-union = . lists)
 | |
|   (check-arg procedure? = lset-union)
 | |
|   (reduce (lambda (lis ans)		; Compute ANS + LIS.
 | |
| 	    (cond ((null? lis) ans)	; Don't copy any lists
 | |
| 		  ((null? ans) lis) 	; if we don't have to.
 | |
| 		  ((eq? lis ans) ans)
 | |
| 		  (else
 | |
| 		   (fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
 | |
| 					       ans
 | |
| 					       (cons elt ans)))
 | |
| 			 ans lis))))
 | |
| 	  '() lists))
 | |
| 
 | |
| (define (lset-union! = . lists)
 | |
|   (check-arg procedure? = lset-union!)
 | |
|   (reduce (lambda (lis ans)		; Splice new elts of LIS onto the front of ANS.
 | |
| 	    (cond ((null? lis) ans)	; Don't copy any lists
 | |
| 		  ((null? ans) lis) 	; if we don't have to.
 | |
| 		  ((eq? lis ans) ans)
 | |
| 		  (else
 | |
| 		   (pair-fold (lambda (pair ans)
 | |
| 				(let ((elt (car pair)))
 | |
| 				  (if (any (lambda (x) (= x elt)) ans)
 | |
| 				      ans
 | |
| 				      (begin (set-cdr! pair ans) pair))))
 | |
| 			      ans lis))))
 | |
| 	  '() lists))
 | |
| 
 | |
| 
 | |
| (define (lset-intersection = lis1 . lists)
 | |
|   (check-arg procedure? = lset-intersection)
 | |
|   (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
 | |
|     (cond ((any null-list? lists) '())		; Short cut
 | |
| 	  ((null? lists)          lis1)		; Short cut
 | |
| 	  (else (filter (lambda (x)
 | |
| 			  (every (lambda (lis) (member x lis =)) lists))
 | |
| 			lis1)))))
 | |
| 
 | |
| (define (lset-intersection! = lis1 . lists)
 | |
|   (check-arg procedure? = lset-intersection!)
 | |
|   (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
 | |
|     (cond ((any null-list? lists) '())		; Short cut
 | |
| 	  ((null? lists)          lis1)		; Short cut
 | |
| 	  (else (filter! (lambda (x)
 | |
| 			   (every (lambda (lis) (member x lis =)) lists))
 | |
| 			 lis1)))))
 | |
| 
 | |
| 
 | |
| (define (lset-difference = lis1 . lists)
 | |
|   (check-arg procedure? = lset-difference)
 | |
|   (let ((lists (filter pair? lists)))	; Throw out empty lists.
 | |
|     (cond ((null? lists)     lis1)	; Short cut
 | |
| 	  ((memq lis1 lists) '())	; Short cut
 | |
| 	  (else (filter (lambda (x)
 | |
| 			  (every (lambda (lis) (not (member x lis =)))
 | |
| 				 lists))
 | |
| 			lis1)))))
 | |
| 
 | |
| (define (lset-difference! = lis1 . lists)
 | |
|   (check-arg procedure? = lset-difference!)
 | |
|   (let ((lists (filter pair? lists)))	; Throw out empty lists.
 | |
|     (cond ((null? lists)     lis1)	; Short cut
 | |
| 	  ((memq lis1 lists) '())	; Short cut
 | |
| 	  (else (filter! (lambda (x)
 | |
| 			   (every (lambda (lis) (not (member x lis =)))
 | |
| 				  lists))
 | |
| 			 lis1)))))
 | |
| 
 | |
| 
 | |
| (define (lset-xor = . lists)
 | |
|   (check-arg procedure? = lset-xor)
 | |
|   (reduce (lambda (b a)			; Compute A xor B:
 | |
| 	    ;; Note that this code relies on the constant-time
 | |
| 	    ;; short-cuts provided by LSET-DIFF+INTERSECTION,
 | |
| 	    ;; LSET-DIFFERENCE & APPEND to provide constant-time short
 | |
| 	    ;; cuts for the cases A = (), B = (), and A eq? B. It takes
 | |
| 	    ;; a careful case analysis to see it, but it's carefully
 | |
| 	    ;; built in.
 | |
| 
 | |
| 	    ;; Compute a-b and a^b, then compute b-(a^b) and
 | |
| 	    ;; cons it onto the front of a-b.
 | |
| 	    (receive (a-b a-int-b)   (lset-diff+intersection = a b)
 | |
| 	      (cond ((null? a-b)     (lset-difference b a =))
 | |
| 		    ((null? a-int-b) (append b a))
 | |
| 		    (else (fold (lambda (xb ans)
 | |
| 				  (if (member xb a-int-b =) ans (cons xb ans)))
 | |
| 				a-b
 | |
| 				b)))))
 | |
| 	  '() lists))
 | |
| 
 | |
| 
 | |
| (define (lset-xor! = . lists)
 | |
|   (check-arg procedure? = lset-xor!)
 | |
|   (reduce (lambda (b a)			; Compute A xor B:
 | |
| 	    ;; Note that this code relies on the constant-time
 | |
| 	    ;; short-cuts provided by LSET-DIFF+INTERSECTION,
 | |
| 	    ;; LSET-DIFFERENCE & APPEND to provide constant-time short
 | |
| 	    ;; cuts for the cases A = (), B = (), and A eq? B. It takes
 | |
| 	    ;; a careful case analysis to see it, but it's carefully
 | |
| 	    ;; built in.
 | |
| 
 | |
| 	    ;; Compute a-b and a^b, then compute b-(a^b) and
 | |
| 	    ;; cons it onto the front of a-b.
 | |
| 	    (receive (a-b a-int-b)   (lset-diff+intersection! = a b)
 | |
| 	      (cond ((null? a-b)     (lset-difference! b a =))
 | |
| 		    ((null? a-int-b) (append! b a))
 | |
| 		    (else (pair-fold (lambda (b-pair ans)
 | |
| 				       (if (member (car b-pair) a-int-b =) ans
 | |
| 					   (begin (set-cdr! b-pair ans) b-pair)))
 | |
| 				     a-b
 | |
| 				     b)))))
 | |
| 	  '() lists))
 | |
| 
 | |
| 
 | |
| (define (lset-diff+intersection = lis1 . lists)
 | |
|   (check-arg procedure? = lset-diff+intersection)
 | |
|   (cond ((every null-list? lists) (values lis1 '()))	; Short cut
 | |
| 	((memq lis1 lists)        (values '() lis1))	; Short cut
 | |
| 	(else (partition (lambda (elt)
 | |
| 			   (not (any (lambda (lis) (member elt lis =))
 | |
| 				     lists)))
 | |
| 			 lis1))))
 | |
| 
 | |
| (define (lset-diff+intersection! = lis1 . lists)
 | |
|   (check-arg procedure? = lset-diff+intersection!)
 | |
|   (cond ((every null-list? lists) (values lis1 '()))	; Short cut
 | |
| 	((memq lis1 lists)        (values '() lis1))	; Short cut
 | |
| 	(else (partition! (lambda (elt)
 | |
| 			    (not (any (lambda (lis) (member elt lis =))
 | |
| 				      lists)))
 | |
| 			  lis1))))
 | |
| ;;; end of library
 | |
| ) 
 |