640 lines
24 KiB
Scheme
640 lines
24 KiB
Scheme
;;; PEVAL -- A simple partial evaluator for Scheme, written by Marc Feeley.
|
|
|
|
;------------------------------------------------------------------------------
|
|
|
|
; Utilities
|
|
|
|
(define (every? pred? l)
|
|
(let loop ((l l))
|
|
(or (null? l) (and (pred? (car l)) (loop (cdr l))))))
|
|
|
|
(define (some? pred? l)
|
|
(let loop ((l l))
|
|
(if (null? l) #f (or (pred? (car l)) (loop (cdr l))))))
|
|
|
|
(define (map2 f l1 l2)
|
|
(let loop ((l1 l1) (l2 l2))
|
|
(if (pair? l1)
|
|
(cons (f (car l1) (car l2)) (loop (cdr l1) (cdr l2)))
|
|
'())))
|
|
|
|
(define (get-last-pair l)
|
|
(let loop ((l l))
|
|
(let ((x (cdr l))) (if (pair? x) (loop x) l))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
;
|
|
; The partial evaluator.
|
|
|
|
(define (partial-evaluate proc args)
|
|
(peval (alphatize proc '()) args))
|
|
|
|
(define (alphatize exp env) ; return a copy of 'exp' where each bound var has
|
|
(define (alpha exp) ; been renamed (to prevent aliasing problems)
|
|
(cond ((const-expr? exp)
|
|
(quot (const-value exp)))
|
|
((symbol? exp)
|
|
(let ((x (assq exp env))) (if x (cdr x) exp)))
|
|
((or (eq? (car exp) 'if) (eq? (car exp) 'begin))
|
|
(cons (car exp) (map alpha (cdr exp))))
|
|
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
|
(let ((new-env (new-variables (map car (cadr exp)) env)))
|
|
(list (car exp)
|
|
(map (lambda (x)
|
|
(list (cdr (assq (car x) new-env))
|
|
(if (eq? (car exp) 'let)
|
|
(alpha (cadr x))
|
|
(alphatize (cadr x) new-env))))
|
|
(cadr exp))
|
|
(alphatize (caddr exp) new-env))))
|
|
((eq? (car exp) 'lambda)
|
|
(let ((new-env (new-variables (cadr exp) env)))
|
|
(list 'lambda
|
|
(map (lambda (x) (cdr (assq x new-env))) (cadr exp))
|
|
(alphatize (caddr exp) new-env))))
|
|
(else
|
|
(map alpha exp))))
|
|
(alpha exp))
|
|
|
|
(define (const-expr? expr) ; is 'expr' a constant expression?
|
|
(and (not (symbol? expr))
|
|
(or (not (pair? expr))
|
|
(eq? (car expr) 'quote))))
|
|
|
|
(define (const-value expr) ; return the value of a constant expression
|
|
(if (pair? expr) ; then it must be a quoted constant
|
|
(cadr expr)
|
|
expr))
|
|
|
|
(define (quot val) ; make a quoted constant whose value is 'val'
|
|
(list 'quote val))
|
|
|
|
(define (new-variables parms env)
|
|
(append (map (lambda (x) (cons x (new-variable x))) parms) env))
|
|
|
|
(define *current-num* 0)
|
|
|
|
(define (new-variable name)
|
|
(set! *current-num* (+ *current-num* 1))
|
|
(string->symbol
|
|
(string-append (symbol->string name)
|
|
"_"
|
|
(number->string *current-num*))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
;
|
|
; (peval proc args) will transform a procedure that is known to be called
|
|
; with constants as some of its arguments into a specialized procedure that
|
|
; is 'equivalent' but accepts only the non-constant parameters. 'proc' is the
|
|
; list representation of a lambda-expression and 'args' is a list of values,
|
|
; one for each parameter of the lambda-expression. A special value (i.e.
|
|
; 'not-constant') is used to indicate an argument that is not a constant.
|
|
; The returned procedure is one that has as parameters the parameters of the
|
|
; original procedure which are NOT passed constants. Constants will have been
|
|
; substituted for the constant parameters that are referenced in the body
|
|
; of the procedure.
|
|
;
|
|
; For example:
|
|
;
|
|
; (peval
|
|
; '(lambda (x y z) (f z x y)) ; the procedure
|
|
; (list 1 not-constant #t)) ; the knowledge about x, y and z
|
|
;
|
|
; will return: (lambda (y) (f '#t '1 y))
|
|
|
|
(define (peval proc args)
|
|
(simplify!
|
|
(let ((parms (cadr proc)) ; get the parameter list
|
|
(body (caddr proc))) ; get the body of the procedure
|
|
(list 'lambda
|
|
(remove-constant parms args) ; remove the constant parameters
|
|
(beta-subst ; in the body, replace variable refs to the constant
|
|
body ; parameters by the corresponding constant
|
|
(map2 (lambda (x y) (if (not-constant? y) '(()) (cons x (quot y))))
|
|
parms
|
|
args))))))
|
|
|
|
(define not-constant (list '?)) ; special value indicating non-constant parms.
|
|
|
|
(define (not-constant? x) (eq? x not-constant))
|
|
|
|
(define (remove-constant l a) ; remove from list 'l' all elements whose
|
|
(cond ((null? l) ; corresponding element in 'a' is a constant
|
|
'())
|
|
((not-constant? (car a))
|
|
(cons (car l) (remove-constant (cdr l) (cdr a))))
|
|
(else
|
|
(remove-constant (cdr l) (cdr a)))))
|
|
|
|
(define (extract-constant l a) ; extract from list 'l' all elements whose
|
|
(cond ((null? l) ; corresponding element in 'a' is a constant
|
|
'())
|
|
((not-constant? (car a))
|
|
(extract-constant (cdr l) (cdr a)))
|
|
(else
|
|
(cons (car l) (extract-constant (cdr l) (cdr a))))))
|
|
|
|
(define (beta-subst exp env) ; return a modified 'exp' where each var named in
|
|
(define (bs exp) ; 'env' is replaced by the corresponding expr (it
|
|
(cond ((const-expr? exp) ; is assumed that the code has been alphatized)
|
|
(quot (const-value exp)))
|
|
((symbol? exp)
|
|
(let ((x (assq exp env)))
|
|
(if x (cdr x) exp)))
|
|
((or (eq? (car exp) 'if) (eq? (car exp) 'begin))
|
|
(cons (car exp) (map bs (cdr exp))))
|
|
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
|
(list (car exp)
|
|
(map (lambda (x) (list (car x) (bs (cadr x)))) (cadr exp))
|
|
(bs (caddr exp))))
|
|
((eq? (car exp) 'lambda)
|
|
(list 'lambda
|
|
(cadr exp)
|
|
(bs (caddr exp))))
|
|
(else
|
|
(map bs exp))))
|
|
(bs exp))
|
|
|
|
;------------------------------------------------------------------------------
|
|
;
|
|
; The expression simplifier.
|
|
|
|
(define (simplify! exp) ; simplify the expression 'exp' destructively (it
|
|
; is assumed that the code has been alphatized)
|
|
(define (simp! where env)
|
|
|
|
(define (s! where)
|
|
(let ((exp (car where)))
|
|
|
|
(cond ((const-expr? exp)) ; leave constants the way they are
|
|
|
|
((symbol? exp)) ; leave variable references the way they are
|
|
|
|
((eq? (car exp) 'if) ; dead code removal for conditionals
|
|
(s! (cdr exp)) ; simplify the predicate
|
|
(if (const-expr? (cadr exp)) ; is the predicate a constant?
|
|
(begin
|
|
(set-car! where
|
|
(if (memq (const-value (cadr exp)) '(#f ())) ; false?
|
|
(if (= (length exp) 3) ''() (cadddr exp))
|
|
(caddr exp)))
|
|
(s! where))
|
|
(for-each! s! (cddr exp)))) ; simplify consequent and alt.
|
|
|
|
((eq? (car exp) 'begin)
|
|
(for-each! s! (cdr exp))
|
|
(let loop ((exps exp)) ; remove all useless expressions
|
|
(if (not (null? (cddr exps))) ; not last expression?
|
|
(let ((x (cadr exps)))
|
|
(loop (if (or (const-expr? x)
|
|
(symbol? x)
|
|
(and (pair? x) (eq? (car x) 'lambda)))
|
|
(begin (set-cdr! exps (cddr exps)) exps)
|
|
(cdr exps))))))
|
|
(if (null? (cddr exp)) ; only one expression in the begin?
|
|
(set-car! where (cadr exp))))
|
|
|
|
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
|
(let ((new-env (cons exp env)))
|
|
(define (keep i)
|
|
(if (>= i (length (cadar where)))
|
|
'()
|
|
(let* ((var (car (list-ref (cadar where) i)))
|
|
(val (cadr (assq var (cadar where))))
|
|
(refs (ref-count (car where) var))
|
|
(self-refs (ref-count val var))
|
|
(total-refs (- (car refs) (car self-refs)))
|
|
(oper-refs (- (cadr refs) (cadr self-refs))))
|
|
(cond ((= total-refs 0)
|
|
(keep (+ i 1)))
|
|
((or (const-expr? val)
|
|
(symbol? val)
|
|
(and (pair? val)
|
|
(eq? (car val) 'lambda)
|
|
(= total-refs 1)
|
|
(= oper-refs 1)
|
|
(= (car self-refs) 0))
|
|
(and (caddr refs)
|
|
(= total-refs 1)))
|
|
(set-car! where
|
|
(beta-subst (car where)
|
|
(list (cons var val))))
|
|
(keep (+ i 1)))
|
|
(else
|
|
(cons var (keep (+ i 1))))))))
|
|
(simp! (cddr exp) new-env)
|
|
(for-each! (lambda (x) (simp! (cdar x) new-env)) (cadr exp))
|
|
(let ((to-keep (keep 0)))
|
|
(if (< (length to-keep) (length (cadar where)))
|
|
(begin
|
|
(if (null? to-keep)
|
|
(set-car! where (caddar where))
|
|
(set-car! (cdar where)
|
|
(map (lambda (v) (assq v (cadar where))) to-keep)))
|
|
(s! where))
|
|
(if (null? to-keep)
|
|
(set-car! where (caddar where)))))))
|
|
|
|
((eq? (car exp) 'lambda)
|
|
(simp! (cddr exp) (cons exp env)))
|
|
|
|
(else
|
|
(for-each! s! exp)
|
|
(cond ((symbol? (car exp)) ; is the operator position a var ref?
|
|
(let ((frame (binding-frame (car exp) env)))
|
|
(if frame ; is it a bound variable?
|
|
(let ((proc (bound-expr (car exp) frame)))
|
|
(if (and (pair? proc)
|
|
(eq? (car proc) 'lambda)
|
|
(some? const-expr? (cdr exp)))
|
|
(let* ((args (arg-pattern (cdr exp)))
|
|
(new-proc (peval proc args))
|
|
(new-args (remove-constant (cdr exp) args)))
|
|
(set-car! where
|
|
(cons (add-binding new-proc frame (car exp))
|
|
new-args)))))
|
|
(set-car! where
|
|
(constant-fold-global (car exp) (cdr exp))))))
|
|
((not (pair? (car exp))))
|
|
((eq? (caar exp) 'lambda)
|
|
(set-car! where
|
|
(list 'let
|
|
(map2 list (cadar exp) (cdr exp))
|
|
(caddar exp)))
|
|
(s! where)))))))
|
|
|
|
(s! where))
|
|
|
|
(define (remove-empty-calls! where env)
|
|
|
|
(define (rec! where)
|
|
(let ((exp (car where)))
|
|
|
|
(cond ((const-expr? exp))
|
|
((symbol? exp))
|
|
((eq? (car exp) 'if)
|
|
(rec! (cdr exp))
|
|
(rec! (cddr exp))
|
|
(rec! (cdddr exp)))
|
|
((eq? (car exp) 'begin)
|
|
(for-each! rec! (cdr exp)))
|
|
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
|
(let ((new-env (cons exp env)))
|
|
(remove-empty-calls! (cddr exp) new-env)
|
|
(for-each! (lambda (x) (remove-empty-calls! (cdar x) new-env))
|
|
(cadr exp))))
|
|
((eq? (car exp) 'lambda)
|
|
(rec! (cddr exp)))
|
|
(else
|
|
(for-each! rec! (cdr exp))
|
|
(if (and (null? (cdr exp)) (symbol? (car exp)))
|
|
(let ((frame (binding-frame (car exp) env)))
|
|
(if frame ; is it a bound variable?
|
|
(let ((proc (bound-expr (car exp) frame)))
|
|
(if (and (pair? proc)
|
|
(eq? (car proc) 'lambda))
|
|
(begin
|
|
(set! changed? #t)
|
|
(set-car! where (caddr proc))))))))))))
|
|
|
|
(rec! where))
|
|
|
|
(define changed? #f)
|
|
|
|
(let ((x (list exp)))
|
|
(let loop ()
|
|
(set! changed? #f)
|
|
(simp! x '())
|
|
(remove-empty-calls! x '())
|
|
(if changed? (loop) (car x)))))
|
|
|
|
(define (ref-count exp var) ; compute how many references to variable 'var'
|
|
(let ((total 0) ; are contained in 'exp'
|
|
(oper 0)
|
|
(always-evaled #t))
|
|
(define (rc exp ae)
|
|
(cond ((const-expr? exp))
|
|
((symbol? exp)
|
|
(if (eq? exp var)
|
|
(begin
|
|
(set! total (+ total 1))
|
|
(set! always-evaled (and ae always-evaled)))))
|
|
((eq? (car exp) 'if)
|
|
(rc (cadr exp) ae)
|
|
(for-each (lambda (x) (rc x #f)) (cddr exp)))
|
|
((eq? (car exp) 'begin)
|
|
(for-each (lambda (x) (rc x ae)) (cdr exp)))
|
|
((or (eq? (car exp) 'let) (eq? (car exp) 'letrec))
|
|
(for-each (lambda (x) (rc (cadr x) ae)) (cadr exp))
|
|
(rc (caddr exp) ae))
|
|
((eq? (car exp) 'lambda)
|
|
(rc (caddr exp) #f))
|
|
(else
|
|
(for-each (lambda (x) (rc x ae)) exp)
|
|
(if (symbol? (car exp))
|
|
(if (eq? (car exp) var) (set! oper (+ oper 1)))))))
|
|
(rc exp #t)
|
|
(list total oper always-evaled)))
|
|
|
|
(define (binding-frame var env)
|
|
(cond ((null? env) #f)
|
|
((or (eq? (caar env) 'let) (eq? (caar env) 'letrec))
|
|
(if (assq var (cadar env)) (car env) (binding-frame var (cdr env))))
|
|
((eq? (caar env) 'lambda)
|
|
(if (memq var (cadar env)) (car env) (binding-frame var (cdr env))))
|
|
(else
|
|
(fatal-error "ill-formed environment"))))
|
|
|
|
(define (bound-expr var frame)
|
|
(cond ((or (eq? (car frame) 'let) (eq? (car frame) 'letrec))
|
|
(cadr (assq var (cadr frame))))
|
|
((eq? (car frame) 'lambda)
|
|
not-constant)
|
|
(else
|
|
(fatal-error "ill-formed frame"))))
|
|
|
|
(define (add-binding val frame name)
|
|
(define (find-val val bindings)
|
|
(cond ((null? bindings) #f)
|
|
((equal? val (cadar bindings)) ; *kludge* equal? is not exactly what
|
|
(caar bindings)) ; we want...
|
|
(else
|
|
(find-val val (cdr bindings)))))
|
|
(or (find-val val (cadr frame))
|
|
(let ((var (new-variable name)))
|
|
(set-cdr! (get-last-pair (cadr frame)) (list (list var val)))
|
|
var)))
|
|
|
|
(define (for-each! proc! l) ; call proc! on each CONS CELL in the list 'l'
|
|
(if (not (null? l))
|
|
(begin (proc! l) (for-each! proc! (cdr l)))))
|
|
|
|
(define (arg-pattern exps) ; return the argument pattern (i.e. the list of
|
|
(if (null? exps) ; constants in 'exps' but with the not-constant
|
|
'() ; value wherever the corresponding expression in
|
|
(cons (if (const-expr? (car exps)) ; 'exps' is not a constant)
|
|
(const-value (car exps))
|
|
not-constant)
|
|
(arg-pattern (cdr exps)))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
;
|
|
; Knowledge about primitive procedures.
|
|
|
|
(define *primitives*
|
|
(list
|
|
(cons 'car (lambda (args)
|
|
(and (= (length args) 1)
|
|
(pair? (car args))
|
|
(quot (car (car args))))))
|
|
(cons 'cdr (lambda (args)
|
|
(and (= (length args) 1)
|
|
(pair? (car args))
|
|
(quot (cdr (car args))))))
|
|
(cons '+ (lambda (args)
|
|
(and (every? number? args)
|
|
(quot (sum args 0)))))
|
|
(cons '* (lambda (args)
|
|
(and (every? number? args)
|
|
(quot (product args 1)))))
|
|
(cons '- (lambda (args)
|
|
(and (> (length args) 0)
|
|
(every? number? args)
|
|
(quot (if (null? (cdr args))
|
|
(- (car args))
|
|
(- (car args) (sum (cdr args) 0)))))))
|
|
(cons '/ (lambda (args)
|
|
(and (> (length args) 1)
|
|
(every? number? args)
|
|
(quot (if (null? (cdr args))
|
|
(/ (car args))
|
|
(/ (car args) (product (cdr args) 1)))))))
|
|
(cons '< (lambda (args)
|
|
(and (= (length args) 2)
|
|
(every? number? args)
|
|
(quot (< (car args) (cadr args))))))
|
|
(cons '= (lambda (args)
|
|
(and (= (length args) 2)
|
|
(every? number? args)
|
|
(quot (= (car args) (cadr args))))))
|
|
(cons '> (lambda (args)
|
|
(and (= (length args) 2)
|
|
(every? number? args)
|
|
(quot (> (car args) (cadr args))))))
|
|
(cons 'eq? (lambda (args)
|
|
(and (= (length args) 2)
|
|
(quot (eq? (car args) (cadr args))))))
|
|
(cons 'not (lambda (args)
|
|
(and (= (length args) 1)
|
|
(quot (not (car args))))))
|
|
(cons 'null? (lambda (args)
|
|
(and (= (length args) 1)
|
|
(quot (null? (car args))))))
|
|
(cons 'pair? (lambda (args)
|
|
(and (= (length args) 1)
|
|
(quot (pair? (car args))))))
|
|
(cons 'symbol? (lambda (args)
|
|
(and (= (length args) 1)
|
|
(quot (symbol? (car args))))))
|
|
)
|
|
)
|
|
|
|
(define (sum lst n)
|
|
(if (null? lst)
|
|
n
|
|
(sum (cdr lst) (+ n (car lst)))))
|
|
|
|
(define (product lst n)
|
|
(if (null? lst)
|
|
n
|
|
(product (cdr lst) (* n (car lst)))))
|
|
|
|
(define (reduce-global name args)
|
|
(let ((x (assq name *primitives*)))
|
|
(and x ((cdr x) args))))
|
|
|
|
(define (constant-fold-global name exprs)
|
|
|
|
(define (flatten args op)
|
|
(cond ((null? args)
|
|
'())
|
|
((and (pair? (car args)) (eq? (caar args) op))
|
|
(append (flatten (cdar args) op) (flatten (cdr args) op)))
|
|
(else
|
|
(cons (car args) (flatten (cdr args) op)))))
|
|
|
|
(let ((args (if (or (eq? name '+) (eq? name '*)) ; associative ops
|
|
(flatten exprs name)
|
|
exprs)))
|
|
(or (and (every? const-expr? args)
|
|
(reduce-global name (map const-value args)))
|
|
(let ((pattern (arg-pattern args)))
|
|
(let ((non-const (remove-constant args pattern))
|
|
(const (map const-value (extract-constant args pattern))))
|
|
(cond ((eq? name '+) ; + is commutative
|
|
(let ((x (reduce-global '+ const)))
|
|
(if x
|
|
(let ((y (const-value x)))
|
|
(cons '+
|
|
(if (= y 0) non-const (cons x non-const))))
|
|
(cons name args))))
|
|
((eq? name '*) ; * is commutative
|
|
(let ((x (reduce-global '* const)))
|
|
(if x
|
|
(let ((y (const-value x)))
|
|
(cons '*
|
|
(if (= y 1) non-const (cons x non-const))))
|
|
(cons name args))))
|
|
((eq? name 'cons)
|
|
(cond ((and (const-expr? (cadr args))
|
|
(null? (const-value (cadr args))))
|
|
(list 'list (car args)))
|
|
((and (pair? (cadr args))
|
|
(eq? (car (cadr args)) 'list))
|
|
(cons 'list (cons (car args) (cdr (cadr args)))))
|
|
(else
|
|
(cons name args))))
|
|
(else
|
|
(cons name args))))))))
|
|
|
|
;------------------------------------------------------------------------------
|
|
;
|
|
; Examples:
|
|
|
|
(define (try-peval proc args)
|
|
(partial-evaluate proc args))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example1
|
|
'(lambda (a b c)
|
|
(if (null? a) b (+ (car a) c))))
|
|
|
|
;(try-peval example1 (list '(10 11) not-constant '1))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example2
|
|
'(lambda (x y)
|
|
(let ((q (lambda (a b) (if (< a 0) b (- 10 b)))))
|
|
(if (< x 0) (q (- y) (- x)) (q y x)))))
|
|
|
|
;(try-peval example2 (list not-constant '1))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example3
|
|
'(lambda (l n)
|
|
(letrec ((add-list
|
|
(lambda (l n)
|
|
(if (null? l)
|
|
'()
|
|
(cons (+ (car l) n) (add-list (cdr l) n))))))
|
|
(add-list l n))))
|
|
|
|
;(try-peval example3 (list not-constant '1))
|
|
|
|
;(try-peval example3 (list '(1 2 3) not-constant))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example4
|
|
'(lambda (exp env)
|
|
(letrec ((eval
|
|
(lambda (exp env)
|
|
(letrec ((eval-list
|
|
(lambda (l env)
|
|
(if (null? l)
|
|
'()
|
|
(cons (eval (car l) env)
|
|
(eval-list (cdr l) env))))))
|
|
(if (symbol? exp) (lookup exp env)
|
|
(if (not (pair? exp)) exp
|
|
(if (eq? (car exp) 'quote) (car (cdr exp))
|
|
(apply (eval (car exp) env)
|
|
(eval-list (cdr exp) env)))))))))
|
|
(eval exp env))))
|
|
|
|
;(try-peval example4 (list 'x not-constant))
|
|
|
|
;(try-peval example4 (list '(f 1 2 3) not-constant))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example5
|
|
'(lambda (a b)
|
|
(letrec ((funct
|
|
(lambda (x)
|
|
(+ x b (if (< x 1) 0 (funct (- x 1)))))))
|
|
(funct a))))
|
|
|
|
;(try-peval example5 (list '5 not-constant))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example6
|
|
'(lambda ()
|
|
(letrec ((fib
|
|
(lambda (x)
|
|
(if (< x 2) x (+ (fib (- x 1)) (fib (- x 2)))))))
|
|
(fib 10))))
|
|
|
|
;(try-peval example6 '())
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example7
|
|
'(lambda (input)
|
|
(letrec ((copy (lambda (in)
|
|
(if (pair? in)
|
|
(cons (copy (car in))
|
|
(copy (cdr in)))
|
|
in))))
|
|
(copy input))))
|
|
|
|
;(try-peval example7 (list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define example8
|
|
'(lambda (input)
|
|
(letrec ((reverse (lambda (in result)
|
|
(if (pair? in)
|
|
(reverse (cdr in) (cons (car in) result))
|
|
result))))
|
|
(reverse input '()))))
|
|
|
|
;(try-peval example8 (list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))
|
|
|
|
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|
|
|
|
(define (test)
|
|
(set! *current-num* 0)
|
|
(list (try-peval example1 (list '(10 11) not-constant '1))
|
|
(try-peval example2 (list not-constant '1))
|
|
(try-peval example3 (list not-constant '1))
|
|
(try-peval example3 (list '(1 2 3) not-constant))
|
|
(try-peval example4 (list 'x not-constant))
|
|
(try-peval example4 (list '(f 1 2 3) not-constant))
|
|
(try-peval example5 (list '5 not-constant))
|
|
(try-peval example6 '())
|
|
(try-peval
|
|
example7
|
|
(list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))
|
|
(try-peval
|
|
example8
|
|
(list '(a b c d e f g h i j k l m n o p q r s t u v w x y z)))))
|
|
|
|
(define (main . args)
|
|
(run-benchmark
|
|
"peval"
|
|
peval-iters
|
|
(lambda (result)
|
|
(and (list? result)
|
|
(= (length result) 10)
|
|
(equal? (list-ref result 9)
|
|
'(lambda ()
|
|
(list 'z 'y 'x 'w 'v 'u 't 's 'r 'q 'p 'o 'n
|
|
'm 'l 'k 'j 'i 'h 'g 'f 'e 'd 'c 'b 'a)))))
|
|
(lambda () (lambda () (test)))))
|