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Chapter 1

Getting Started

1.1 Introduction

Ikarus Scheme is an implementation of the Scheme programming language. The
preliminary release of Ikarus implements the majority of the features found in the
current standard, the Revised6 report on the algorithmic language Scheme[6] in-
cluding full R6RS library and script syntax, syntax-case, unicode strings, bytevec-
tors, user-deɹned record types, exception handling, conditions, and enumerations.
More than 94% of the R6RS procedures and keywords are currently implemented
and subsequent releases will proceed towards brining Ikarus to full R6RS confor-
mance.

The main purpose behind releasing Ikarus early is to give Scheme programmers
the opportunity to experiment with the various new features that were newly in-
troduced in R6RS. The most important of such features is the ability to structure
large programs into libraries; where each library extends the language through pro-
cedural and syntactic abstractions. Many useful libraries can be written using the
currently supported set of R6RS features including text processing tools, symbolic
logic systems, interpreters and compilers, and many mathematical and scientiɹc
packages. It is my hope that this release will encourage the Scheme community to
write and to share their most useful R6RS libraries.

1
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1.2 Technology overview

Ikarus Scheme provides the programmer with many advantages:

Optimizing code generator: The compiler’s backend employs state of the art tech-
nologies in code generation that produce fast eɽcient machine code. When devel-
oping computationally intensive programs, one is not constrained by using a slow
interpreter.

Fast incremental compilation: Every library and script is quickly compiled to
native machine code. When developing large software, one is not constrained by
how slow the batch compiler runs.

Robust and ɹne-tuned standard libraries: The standard libraries are written such
that they perform as much error checking as required to provide a safe and fast
runtime environment.

Multi-generational garbage collector: The BiBOP[3] based garbage collector
used in Ikarus allows the runtime system to expand its memory footprint as needed.
The entire 32-bit virtual address space could be used and unneeded memory is re-
leased back to the operating system.

Supports many operating systems: Ikarus runs on the most popular and widely
used operating systems for servers and personal computers. The supported systems
include Mac OS X, GNU/Linux, FreeBSD, NetBSD, and Microsoft Windows.

1.3 System requirements

1.3.1 Hardware

Ikarus Scheme runs on the IA-32 (x86) architecture supporting SSE2 extensions.
This includes the Athlon 64, Sempron 64, and Turion 64 processors from AMD and
the Pentium 4, Xeon, Celeron, Pentium M, Core, and Core2 processors from Intel.
The system does not run on Intel Pentium III or earlier processors.

The Ikarus compiler generates SSE2 instructions to handle Scheme’s IEEE ɻoating



1.3. SYSTEM REQUIREMENTS 3

point representation (ɻonums) for inexact numbers.

1.3.2 Operating systems

Ikarus is tested under the following operating systems:

• Mac OS X version 10.4 and 10.5.

• Linux 2.6.18 (Debian, Fedora, Gentoo, and Ubuntu).

• FreeBSD version 6.2.

• NetBSD version 3.1.

• Microsoft Windows XP (using Cygwin 1.5.24).

1.3.3 Additional software
• GMP: Ikarus uses the GNU Multiple Precision Arithmetic Library (GMP) for
some bignum arithmetic operations. To build Ikarus from scratch, GMP ver-
sion 4.2 or better must be installed along with the required header ɹles.
Pre-built GMP packages are available for most operating systems. Alterna-
tively, GMP can be downloaded from
http://gmplib.org/.

Note: Ikarus runs in 32-bit mode only. To run it in 64-bit environ-
ments, you will have to obtain the 32-bit version of GMP, or compile
it yourself after adding ABI=32 to its conɹguration options.

• GCC: The GNU C Compiler is required to build the Ikarus executable (e.g.
the garbage collector, loader, and OS-related runtime). GCC versions 4.1 and
4.2 were successfully used to build Ikarus.

• Autoconf and Automake: The GNU Autoconf (version 2.61) and GNU Au-
tomake (version 1.10) tools are required if one wishes to modify the Ikarus
source base. They are not required to build the oɽcial release of Ikarus.

http://gmplib.org/
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• XƎLATEX: The XƎLATEX typesetting system is required for building the docu-
mentation. XƎLATEX (and XƎTEX) is an implementation of the LATEX (and TEX)
typesetting system. XƎLATEX can be obtained from http://scripts.sil.org/

xetex and is included with TEX-Live1 and and Mac-TEX2 distributions.

1.4 Installation

If you are familiar with installing Unix software on your system, then all you need
to know is that Ikarus uses the standard installation method found in most other
Unix software. Simply run the following commands from the shell:

$ tar -zxf ikarus-n.n.n.tar.gz

$ cd ikarus-n.n.n

$ ./configure [--prefix=path] [CFLAGS=-I/dir] [LDFLAGS=-L/dir]

$ make

$ make install

$

The rest of this section describes the build process in more details. It is targeted to
users who are unfamiliar with steps mentioned above.

1.4.1 Installation details
1. Download the Ikarus source distribution. The source is distributed as a gzip-

compressed tar ɹle (ikarus-n.n.n.tar.gz where n.n.n is a 3-digit number
indicating the current revision). The latest revision can be downloaded from
the following URL:
http://www.cs.indiana.edu/~aghuloum/ikarus/

2. Unpack the source distribution package. From your shell command, type:

$ tar -zxf ikarus-n.n.n.tar.gz

$

1http://tug.org/texlive/
2http://tug.org/mactex/

http://scripts.sil.org/xetex
http://scripts.sil.org/xetex
http://www.cs.indiana.edu/~aghuloum/ikarus/
http://tug.org/texlive/
http://tug.org/mactex/
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This creates the base directory ikarus-n.n.n.

3. Conɹgure the build system by running the configure script located in the
base directory. To do this, type the following commands:

$ cd ikarus-n.n.n

$ ./configure

checking build system type... i386-apple-darwin8.10.1

checking host system type... i386-apple-darwin8.10.1

...

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating scheme/Makefile

config.status: creating doc/Makefile

config.status: executing depfiles commands

$

This conɹgures the system to be built then installed in the system-wide loca-
tion (binaries are installed in /usr/local/bin) . If you wish to install it in
another location (e.g. in your home directory), you can supply a --prefix

location to the configure script as follows:

$ ./configure --prefix=/path/to/installation/location

The configure script will fail if it cannot locate the location where GMP
is installed. If running configure fails to locate GMP, you should supply
the location in which the GMP header ɹle, gmp.h, and the GMP library ɹle,
libgmp.so, are installed. This is done by supplying the two paths in the
CFLAGS and LDFLAGS arguments:

$ ./configure CFLAGS=-I/path/to/include LDFLAGS=-L/path/to/lib

4. Build the system by running:

$ make
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This performs two tasks. First, it builds the ikarus executable from the C
ɹles located in the src directory. It then uses the ikarus executable and the
pre-built ikarus.boot.orig boot ɹle to rebuild the Scheme boot image ɹle
ikarus.boot from the Scheme sources located in the scheme directory.

5. Install Ikarus by typing:

$ make install

If you are installing Ikarus in a system-wide location, you might need to have
administrator privileges (use the sudo or su commands).

6. Test that Ikarus runs from the command line.

$ ikarus

Ikarus Scheme version 0.0.3

Copyright (c) 2006-2008 Abdulaziz Ghuloum

>

If you get the prompt, then Ikarus was successfully installed on your system.
You may need to update the PATH variable in your environment to contain
the directory in which the ikarus executable was installed.
Do not delete the ikarus-n.n.n directory from which you conɹgured, built,
and installed Ikarus. It will be needed if you decide at a later time to uninstall
Ikarus.

1.4.2 Uninstalling Ikarus

To uninstall Ikarus, use the following steps:

$ cd path/to/ikarus-n.n.n

$ make uninstall

$
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1.5 Command-line switches

The ikarus executable recognizes a few command-line switches that inɻuence how
Ikarus starts.

• ikarus -h

The presence of the -h ɻag causes ikarus to display a help message then
exits. The help message summarizes the command-line switches. No further
action is performed.

• ikarus -b path/to/boot/file.boot

The -b ɻag (which requires an extra argument) directs ikarus to use the
speciɹed boot ɹle as the initial system boot ɹle. The boot ɹle is a binary
ɹle that contains all the code and data of the Scheme system. In the absence
of -b ɻag, the executable will use the default boot ɹle. Running ikarus -h

shows the location where the default boot ɹle was installed.
The rest of the command-line arguments are recognized by the standard
Scheme run time system. They are processed after the boot ɹle is loaded.

• ikarus --r6rs-script script-file-name [arguments ...]

The --r6rs-script argument instructs Ikarus that the supplied ɹle is an
R6RS script. See Section 2.1 for a short introduction to writing R6RS scripts.
The script ɹle name and any additional optional arguments can be obtained
by calling the command-line procedure.

$ cat test.ss

(import (rnrs))

(write (command-line))

(newline)

$ ikarus --r6rs-script test.ss hi there

("test.ss" "hi" "there")

$

• ikarus files ... [-- arguments ...]
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The lack of an --r6rs-script argument causes Ikarus to start in interac-
tive mode. Each of the files is ɹrst loaded, in the interaction environ-
ment. The interaction environment initially contains all the bindings ex-
ported from the (ikarus) library (see Chapter 3). The optional arguments
following the -- marker can be obtained by calling the command-line pro-
cedure. In interactive mode, the ɹrst element of the returned list will be the
string "*interactive*", corresponding to the script name in R6RS-script
mode.

Note: The interactive mode is intended for quickly experimenting with
the built-in features. It is intended neither for developing applications
nor for writing any substantial pieces of code. The main reason for this
is that the interaction between R6RS libraries and the interactive envi-
ronment is not well understood. We hope to achieve better interaction
between the two subsystems in the future.

1.6 Using scheme-script

Scheme scripts can be executed using the ikarus --r6rs-script script-name

command as described in the previous section. For convenience, Ikarus follows
the R6RS recommendations and installs a wrapper program called scheme-script.
Typically, a script you write would start with a #! line that directs your operating
system to the interpreter used to evaluate the script ɹle. The following example
shows a very simple script that uses the scheme-script command.

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World\n")

If the above script was placed in a ɹle called hello-world, then one can make it
executable using the chmod Unix command.
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$ cat hello-world

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World\n")

$ chmod 755 hello-world

$ ./hello-world

Hello World

$

Under Mac OS X, if a script name ends with the .command exten-
sion, then it can be executed from the Finder by double-clicking on
it. This brings up a terminal window in which the script is executed.
The .command extension can be hidden from the Get Info item from the
Finder’s File menu.
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1.7 Mapping library names to ɹle names

The name of an R6RS library consists of a non-empty list of identiɹers (symbols),
followed by an optional version number. All of the standard R6RS libraries are
built into Ikarus, thus importing any one of them does not require any special
action other than listing the library name in the import part of a library or a script.
The same holds for the (ikarus) library (chapter 3, page 25).

When writing a new library to a ɹle, Ikarus uses a simple mechanism to map library
names to ɹle names. A library name is converted to a ɹle path by joining the library
identiɹers with a path separator, e.g. "/".

Library Name ⇒ File name
(foo) ⇒ foo

(foo bar) ⇒ foo/bar

(foo bar baz) ⇒ foo/bar/baz

Having mapped a library name to a ɹle path, Ikarus attempts to locate that ɹle
in one of several locations. The locations attempted depend on two settings: the
search path and the ɹle preɹx set (e.g., .sls, .ss, .scm, etc.). First, Ikarus at-
tempts to locate the ɹle in the current working directory from which Ikarus was
invoked. In the current working directory, Ikarus enumerates all ɹle preɹxes ɹrst
before searching other locations. If the ɹle is not found in the current directory,
Ikarus tries to ɹnd it in the Ikarus library directory. The Ikarus library directory
is determined when Ikarus is installed (based on the --prefix argument that was
passed to the configure script). If Ikarus failes to locate the library ɹle, it raises
an exception and exits. See Chapter 5 for more details about the library locations.

Tip: Use simple library names for the libraries that you deɹne. Library
names that contain non-printable characters, complex punctuations,
or unicode may pose a challenge for some operating systems. If Ikarus
cannot ɹnd a library, it will raise an error listing the locations in which
it looked, helping you move the library ɹle to a place where Ikarus can
ɹnd it.
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1.8 Writing cross-implementation libraries

When searching for a library, Ikarus appends a preɹx (e.g., .ss) to the appropri-
ate ɹle name (e.g., foo/bar). The initial set of ɹle extensions are: .ikarus.sls,
.ikarus.ss, .ikarus.scm, .sls, .ss, and .scm.

The list of ɹle extensions are searched sequentially. As a consequence, ɹles end-
ing with the .ikarus.* preɹxes are given precedence over ɹles that have generic
Scheme extensions. The rationale for this behavior is to facilitate writing cross-
implementation libraries: ones that take advantage of implementation-speciɹc fea-
tures, while at the same time provide a fail-safe alternative for other R6RS imple-
mentations.

Consider for example a program which would like to use the pretty-print pro-
cedure to format some code, and suppose furthr that pretty printing is just a nice
add-on (e.g., using write suɽces, but pretty-printing is just prettier) Ikarus exports a
good pretty-printing facility in its (ikarus) library. However, since pretty-print
is not a standard procedure, a program that uses it would be rendered unportable
to other R6RS Scheme implementations.

The programmer can put the .ikarus.* extensions to use in this situation. First,
the programmer writes two versions of a (pretty-printing) library: one for use
by Ikarus, and one portable for other implementations.

(library (pretty-printing) ;;; this is pretty-printing.ikarus.ss

(export pretty-print) ;;; can only be used by Ikarus

(import (only (ikarus) pretty-print)))

(library (pretty-printing) ;;; this is pretty-printing.sls

(export pretty-print) ;;; *portable* though not very pretty.

(import (rnrs)) ;;; for any other implementation

(define (pretty-print x port)

(write x port)

(newline port)))
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Chapter 2

R6RS Crash Course

The major diʃerence between R5RS and R6RS is the way in which programs are
loaded and evaluated.

In R5RS, Scheme implementations typically start as an interactive session (often
referred to as the REPL, or read-eval-print-loop). Inside the interactive session, the
user enters deɹnitions and expressions one at a time using the keyboard. Files,
which also contain deɹnitions and expressions, can be loaded and reloaded by
calling the load procedure. The environment in which the interactive session starts
often contains implementation-speciɹc bindings that are not found R5RS and users
may redeɹne any of the initial bindings. The semantics of loading a ɹle depends
on the state of the environment at the time the ɹle contents are evaluated.

R6RS diʃers from R5RS in that it speciɹes how whole programs, or scripts, are com-
piled and evaluated. An R6RS script is closed in the sense that all the identiɹers
found in the body of the script must either be deɹned in the script or imported
from a library. R6RS also speciɹes how libraries can be deɹned and used. While
ɹles in R5RS are typically loaded imperatively into the top-level environments, R6RS
libraries are imported declaratively in scripts and in other R6RS libraries.

13
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2.1 Writing a simple script

An R6RS script is a set of deɹnitions and expressions preceded by an import form.
The import form speciɹes the language (i.e. the variable and keyword bindings)
in which the library body is written. A very simple example of an R6RS script is
listed below.

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World!\n")

The ɹrst line imports the (rnrs) library. All the bindings exported from the (rnrs)
library are made available to be used within the body of the script. The exports
of the (rnrs) library include variables (e.g. cons, car, display, etc.) and key-
words (e.g. define, lambda, quote, etc.). The second line displays the string Hello
World! followed by a new line character.

In addition to expressions, such as the call to display in the previous example, a
script may deɹne some variables. The script below deɹnes the variable greeting

and calls the procedure bound to it.

#!/usr/bin/env scheme-script

(import (rnrs))

(define greeting

(lambda ()

(display "Hello World!\n")))

(greeting)

Additional keywords may be deɹned within a script. In the example below, we
deɹne the (do-times n exprs ...) macro that evaluates the expressions exprs
n times. Running the script displays Hello World 3 times.
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#!/usr/bin/env scheme-script

(import (rnrs))

(define greeting

(lambda ()

(display "Hello World!\n")))

(define-syntax do-times

(syntax-rules ()

[(_ n exprs ...)

(let f ([i n])

(unless (zero? i)

exprs ...

(f (- i 1))))]))

(do-times 3 (greeting))

2.2 Writing simple libraries

A script is intended to be a small piece of the program—useful abstractions belong
to libraries. The do-times macro that was deɹned in the previous section may be
useful in places other than printing greeting messages. So, we can create a small
library, (iterations) that contains common iteration forms.

An R6RS library form is made of four essential parts: (1) the library name, (2) the
set of identiɹers that the library exports, (3) the set of libraries that the library
imports, and (4) the body of the library.

The library name can be any non-empty list of identiɹers. R6RS-deɹned libraries
includes (rnrs), (rnrs unicode), (rnrs bytevectors), and so on.

The library exports are a set of identiɹers that are made available to importing
libraries. Every exported identiɹer must be bound: it may either be deɹned in
the library or imported using the import form. Library exports include variables,
keywords, record names, and condition names.
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Library imports are similar to script imports: they specify the set of libraries whose
exports are made visible within the body of the library.

The body of a library contains deɹnitions (variable, keyword, record, condition,
etc.) followed by an optional set of expressions. The expressions are evaluated for
side eʃect when needed.

The (iteration) library may be written as follows:

(library (iteration)

(export do-times)

(import (rnrs))

(define-syntax do-times

(syntax-rules ()

[(_ n exprs ...)

(let f ([i n])

(unless (zero? i)

exprs ...

(f (- i 1))))])))

To use the (iteration) library in our script, we add the name of the library to
the script’s import form. This makes all of (iteration)’s exported identiɹers, e.g.
do-times, visible in the body of the script.

#!/usr/bin/env scheme-script

(import (rnrs) (iteration))

(define greeting

(lambda ()

(display "Hello World!\n")))

(do-times 3 (greeting))
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2.3 R6RS record types

R6RS provides ways for users to deɹne new types, called record types. A record is
a ɹxed-size data structure with a unique type (called a record type). A record may
have any ɹnite number of ɹelds that hold arbitrary values. This section brieɻy
describes what we expect to be the most commonly used features of the record
system. Full details are in the R6RS Standard Libraries document[7].

2.3.1 Deɹning new record types

To deɹne a new record type, use the define-record-type form. For example,
suppose we want to deɹne a new record type for describing points, where a point
is a data structure that has two ɹelds to hold the point’s x and y coordinates. The
following deɹnition achieves just that:

(define-record-type point

(fields x y))

The above use of define-record-type deɹnes the following procedures automat-
ically for you:

• The constructor make-point that takes two arguments, x and y and returns
a new record whose type is point.

• The predicate point? that takes an arbitrary value and returns #t if that
value is a point, #f otherwise.

• The accessors point-x and point-y that, given a record of type point, return
the value stored in the x and y ɹelds.

Both the x and y ɹelds of the point record type are immutable, meaning that once
a record is created with speciɹc x and y values, they cannot be changed later. If
you want the ɹelds to be mutable, then you need to specify that explicitly as in the
following example.



18 CHAPTER 2. R6RS CRASH COURSE

(define-record-type point

(fields (mutable x) (mutable y)))

This deɹnition gives us, in addition to the constructor, predicate, and accessors,
two additional procedures:

• The mutators point-x-set! and point-y-set! that, given a record of type
point, and a new value, sets the value stored in the x ɹeld or y ɹeld to the
new value.

Note: Records in Ikarus have a printable representation in order to
enable debugging programs that use records. Records are printed in
the #[type-name field-values ...] notation. For example, (write
(make-point 1 2)) produces #[point 1 2].

2.3.2 Extending existing record types

A record type may be extended by deɹning new variants of a record with additional
ɹelds. In our running example, suppose we want to deɹne a colored-point record
type that, in addition to being a point, it has an additional ɹeld: a color. A simple
way of achieving that is by using the following record deɹnition:

(define-record-type cpoint

(parent point)

(fields color))

Here, the deɹnition of cpoint gives us:

• A constructor make-cpoint that takes three arguments (x, y, and color in
that order) and returns a cpoint record.
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• A predicate cpoint? that takes a single argument and determines whether
the argument is a cpoint record.

• An accessor cpoint-color that returns the value of the color ɹeld of a
cpoint object.

All procedures that are applicable to records of type point (point?, point-x,
point-y) are also applicable to records of type cpoint since a cpoint is also a
point.

2.3.3 Specifying custom constructors

The record type deɹnitions explained so far use the default constructor that takes
as many arguments as there are ɹelds and returns a new record type with the val-
ues of the ɹelds initialized to the arguments’ values. It is sometimes necessary or
convenient to provide a constructor that performs more than the default construc-
tor. For example, we can modify the deɹnition of our point record so that the
constructor takes either no arguments, in which case it would return a point lo-
cated at the origin, or two arguments specifying the x and y coordinates. We use
the protocol keyword for specifying such constructor as in the following example:

(define-record-type point

(fields x y)

(protocol

(lambda (new)

(case-lambda

[(x y) (new x y)]

[() (new 0 0)]))))

The protocol here is a procedure that takes a constructor procedure new (new takes
as many arguments as there are ɹelds.) and returns the desired custom constructor
that we want (The actual constructor will be the value of the case-lambda expres-
sion in the example above). Now the constructor make-point would either take
two arguments which constructs a point record as before, or no arguments, in
which case (new 0 0) is called to construct a point at the origin.
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Another reason why one might want to use custom constructors is to precompute
the initial values of some ɹelds based on the values of other ɹelds. An example
of this case is adding a distance ɹeld to the record type which is computed as
d =
√
x2 + y2. The protocol in this case may be deɹned as:

(define-record-type point

(fields x y distance)

(protocol

(lambda (new)

(lambda (x y)

(new x y (sqrt (+ (expt x 2) (expt y 2))))))))

Note that derived record types need not be modiɹed when additional ɹelds are
added to the parent record type. For example, our cpoint record type still works
unmodiɹed even after we added the new distance ɹeld to the parent. Calling
(point-distance (make-cpoint 3 4 #xFF0000)) returns 5.0 as expected.

2.3.4 Custom constructors for derived record types

Just like how base record types (e.g. point in the running example) may have a
custom constructor, derived record types can also have custom constructors that do
other actions. Suppose that you want to construct cpoint records using an optional
color that, if not supplied, defaults to the value 0. To do so, we supply a protocol

argument to define-record-type. The only diʃerence here is that the procedure
new is a curried constructor. It ɹrst takes as many arguments as the constructor of
the parent record type, and returns a procedure that takes the initial values of the
new ɹelds.

In our example, the constructor for the point record type takes two arguments.
cpoint extends point with one new ɹeld. Therefore, new in the deɹnition below
ɹrst takes the arguments for point’s constructor, then takes the initial color value.
The deɹnition below shows how the custom constructor may be deɹned.
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(define-record-type cpoint

(parent point)

(fields color)

(protocol

(lambda (new)

(case-lambda

[(x y c) ((new x y) c)]

[(x y) ((new x y) 0)]))))

2.4 Exception handling

The procedure with-exception-handler allows the programmer to specify how
to handle exceptional situations. It takes two procedures as arguments:

• An exception handler which is a procedure that takes a single argument, the
object that was raised.

• A body thunk which is a procedure with no arguments whose body is evalu-
ated with the exception handler installed.

In addition to installing exception handlers, R6RS provides two ways of raising
exceptions: raise and raise-continuable. We describe the raise-continuable

procedure ɹrst since it’s the simpler of the two. For the code below, assume that
print is deɹned as:

(define (print who obj)

(display who)

(display ": ")

(display obj)

(newline))

The ɹrst example, below, shows how a simple exception handler is installed. Here,
the exception handler prints the object it receives and returns the symbol there.



22 CHAPTER 2. R6RS CRASH COURSE

The call to raise-continuable calls the exception handler, passing it the symbol
here. When the handler returns, the returned value becomes the value of the call
to raise-continuable.

(with-exception-handler

(lambda (obj) ;;; prints

(print "handling" obj) ;;; handling: here

'there) ;;; returned: there

(lambda ()

(print "returned" (raise-continuable 'here))))

Exceptional handlers may nest, and in that case, if an exception is raised while
evaluating an inner handler, the outer handler is called as the following example
illustrates:

(with-exception-handler

(lambda (obj) ;;; prints

(print "outer" obj) ;;; inner: here

'outer) ;;; outer: there

(lambda () ;;; returned: outer

(with-exception-handler

(lambda (obj)

(print "inner" obj)

(raise-continuable 'there))

(lambda ()

(print "returned" (raise-continuable 'here))))))

In short, with-exception-handler binds an exception handler within the dynamic
context of evaluating the thunk, and raise-continuable calls it.

The procedure raise is similar to raise-continuable except that if the handler
returns, a new exception is raised, calling the next handler in sequence until the
list of handlers is exhausted.
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(call/cc ;;; prints

(lambda (escape) ;;; inner: here

(with-exception-handler ;;; outer: #[condition ---]

(lambda (obj) ;;; returns

(print "outer" obj) ;;; 12

(escape 12))

(lambda ()

(with-exception-handler

(lambda (obj)

(print "inner" obj)

'there)

(lambda ()

(print "returned" (raise 'here))))))))

Here, the call to raise calls the inner exception handler, which returns, causing
raise to re-raise a non-continuable exception to the outer exception handler. The
outer exception handler then calls the escape continuation.

The following procedure provides a useful example of using the exception handling
mechanism. Consider a simple deɹnition of the procedure configuration-option
which returns the value associated with a key where the key/value pairs are stored
in an association list in a conɹguration ɹle.

(define (configuration-option filename key)

(cdr (assq key (call-with-input-file filename read))))

Possible things may go wrong with calling configuration-option including errors
opening the ɹle, errors reading from the ɹle (ɹle may be corrupt), error in assq

since what’s read may not be an association list, and error in cdr since the key may
not be in the association list. Handling all error possibilities is tedious and error
prone. Exceptions provide a clean way of solving the problem. Instead of guarding
against all possible errors, we install a handler that suppresses all errors and returns
a default value if things go wrong. Error handling for configuration-option may
be added as follows:
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(define (configuration-option filename key default)

(define (getopt)

(cdr (assq key (call-with-input-file filename read))))

(call/cc

(lambda (k)

(with-exception-handler

(lambda (_) (k default))

getopt))))



Chapter 3

The (ikarus) library

In addition to the libraries listed in the R6RS standard, Ikarus contains the (ikarus)
library which provides additional useful features. The (ikarus) library is a com-
posite library—it exports a superset of all the supported bindings of R6RS. While
not all of the exports of (ikarus) are documented at this time, this chapter at-
tempts to describe a few of these useful extensions. Extansions to Scheme’s lexical
syntax are also documented.

#!ikarus reader syntax

Ikarus extends Scheme’s lexical syntax (R6RS Chapter 4) in a variety of ways in-
cluding:
• end-of-ɹle marker, #!eof (page 27)
• gensym syntax, #{gensym} (page 35)
• graph syntax, #nn= #nn# (page 40)

The syntax extensions are made available by default on all input ports, until the
#!r6rs token is read. Thus, reading the #!r6rs token disables all extensions to the
lexical syntax on the speciɹc port, and the #!ikarus enables them again.

If you are writing code that is intended to be portable across diʃerent Scheme
implementations, we recommend adding the #!r6rs token to the top of every script

25
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and library that you write. This allows Ikarus to alert you when using non-portable
features. If you’re writing code that’s intended to be Ikarus-speciɹc, we recommend
adding the #!ikarus token in order to get an immediate error when your code is
run under other implementations.

port-mode procedure
(port-mode ip)

The port-mode procedure accepts an input port as an argument and returns one
of r6rs-mode or ikarus-mode as a result. All input ports initially start in the
ikarus-mode and thus accept Ikarus-speciɹc reader extensions. When the #!r6rs

token is read from a port, its mode changes to ikarus-mode.

> (port-mode (current-input-port))

ikarus-mode

> #!r6rs (port-mode (current-input-port))

r6rs-mode

> #!ikarus (port-mode (current-input-port))

ikarus-mode

set-port-mode! procedure
(set-port-mode! ip mode)

The set-port-mode! proceduremodiɹes the lexical syntax accepted by subsequent
calls to read on the input port. The mode is a symbol which should be one of
r6rs-mode or ikarus-mode. The eʃect of setting the port mode is similar to that
of reading the #!r6rs or #ikarus from that port.

> (set-port-mode! (current-input-port) 'r6rs-mode)

> (port-mode (current-input-port))

r6rs-mode
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#!eof reader syntax

The end-of-ɹle marker, #!eof, is an extension to the R6RS syntax. The primary
utility of the #!eof marker is to stop the reader (e.g. read and get-datum) from
reading the rest of the ɹle.

#!/usr/bin/env scheme-script

(import (ikarus))

<some code>

(display "goodbye\n")

#!eof

<some junk>

The #!eof marker also serves as a datum in Ikarus, much like #t and #f, when it
is found inside other expressions.

> (eof-object)

#!eof

> (read (open-input-string ""))

#!eof

> (read (open-input-string "#!eof"))

#!eof

> (quote #!eof)

#!eof

> (eof-object? '#!eof)

#t

> #!r6rs #!eof

Unhandled exception

Condition components:

1. &error

2. &who: tokenize

3. &message: "invalid syntax: #!e"

> #!ikarus #!eof

$
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3.1 Parameters

Parameters in Ikarus1 are intended for customizing the behavior of a procedure
during the dynamic execution of some piece of code. Parameters are ɹrst class
entities (represented as procedures) that hold the parameter value. A parameter
procedure accepts either zero or one argument. If given no arguments, it returns
the current value of the parameter. If given a single argument, it must set the state
to the value of the argument. Parameters replace the older concept of using starred
*global* customization variables. For example, instead of writing:

(define *screen-width* 72)

and then mutating the variable *screen-width* with set!, we could wrap the
variable *screen-width* with a screen-width parameter as follows:

(define *screen-width* 72)

(define screen-width

(case-lambda

[() *screen-width*]

[(x) (set! *screen-width* x)]))

The value of screen-width can now be passed as argument, returned as a value,
and exported from libraries.

make-parameter procedure
(make-parameter x)

(make-parameter x f)

As parameters are common in Ikarus, the procedure make-parameter is deɹned to
model the common usage pattern of parameter construction.

(make-parameter x) constructs a parameter with x as the initial value. For ex-
ample, the code above could be written succinctly as:

1Parameters are found in many Scheme implementations such as Chez Scheme and MzScheme.
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(define screen-width (make-parameter 72))

(make-parameter x f) constructs a parameter which ɹlters the assigned values
through the procedure f. The initial value of the parameter is the result of calling
(f x). Typical uses of the ɹlter procedure include checking some constraints on
the passed argument or converting it to a diʃerent data type. The screen-width

parameter may be constructed more robustly as:

(define screen-width

(make-parameter 72

(lambda (w)

(assert (and (integer? w) (exact? w)))

(max w 1))))

This deɹnition ensures, through assert, that the argument passed is an exact in-
teger. It also ensures, through max that the assigned value is always positive.

parameterize syntax
(parameterize ([lhs* rhs*] ...) body body* ...)

Parameters can be assigned to by simply calling the parameter procedure with a
single argument. The parameterize syntax is used to set the value of a parameter
within the dynamic extent of the body body* ... expressions.

The lhs* ... are expressions, each of which must evaluate to a parameter. Such
parameters are not necessarily constructed by make-parameter—any procedure
that follows the parameters protocol works.

The advantage of using parameterize over explicitly assigning to parameters (same
argument applies to global variables) is that you’re guaranteed that whenever con-
trol exits the body of a parameterize expression, the value of the parameter is
reset back to what it was before the body expressions were entered. This is true
even in the presence of call/cc, errors, and exceptions.

The following example shows how to set the text property of a terminal window.
The parameter terminal-property sends an ANSI escape sequence to the terminal
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whenever the parameter value is changed. The use of terminal-property within
parameterize changes the property before (display "RED!") is called and resets
it back to normal when the body returns.

(define terminal-property

(make-parameter "0"

(lambda (x)

(display "\x1b;[")

(display x)

(display "m")

x)))

(display "Normal and ")

(parameterize ([terminal-property "41;37"])

(display "RED!"))

(newline)
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3.2 Local library imports

import syntax
(import import-spec* ...)

The import keyword which is exported from the (ikarus) library can be used
anywhere deɹnitions can occur: at a script body, library’s top-level, or in internal
deɹnitions context. The syntax of the local import form is similar to the import

that appears at the top of a library or a script form, and carries with it the same
restrictions: no identiɹer name may be imported twice unless it denotes the same
identiɹer; no identiɹer may be both imported and deɹned; and imported identiɹers
are immutable.

Local import forms are useful for two reasons: (1) they minimize the namespace
clutter that usually occurs when many libraries are imported at the top level, and
(2) they limit the scope of the import and thus help modularize a library’s depen-
dencies.

Suppose you are constructing a large library and at some point you realize that
one of your procedures needs to make use of some other library for performing a
speciɹc task. Importing that library at top level makes it available for the entire
library. Consequently, even if that library is no longer used anywhere in the code
(say when the code that uses it is deleted), it becomes very hard to delete the
import without ɹrst examiniming the entire library body for potential usage leaks.
By locally importing a library into the appropriate scope, we gain the ability to
delete the import form when the procedure that was using it is deleted.
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3.3 Local modules

This section is not documented yet. Please refer to Section 10.5 of Chez Scheme
User’s Guide [2], Chapter 3 of Oscar Waddel’s Ph.D Thesis [8], and its POPL99
paper [9] for details on using the module and import keywords. Ikarus’s internal
module system is similar in spirit to that of Chez Scheme.

module syntax
(module M definitions ... expressions ...)

(module definitions ... expressions ...)

import syntax
(import M)
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3.4 Gensyms

Gensym stands for a generated symbol—a fresh symbol that is generated at run time
and is guaranteed to be not eq? to any other symbol present in the system. Gensyms
are useful in many applications including expanders, compilers, and interpreters
when generating an arbitrary number of unique names is needed.

Ikarus is similar to Chez Scheme in that the readers (including the read procedure)
and writers (including write and pretty-print) maintain the read/write invari-
ance on gensyms. When a gensym is written to an output port, the system auto-
matically generates a random unique identiɹer for the gensym. When the gensym
is read back though the #{gensym} read syntax, a new gensym is not regenerated,
but instead, it is looked up in the global symbol table.

A gensym’s name is composed of two parts: a pretty string and a unique string. The
Scheme procedure symbol->string returns the pretty string of the gensym and not
its unique string. Gensyms are printed by default as
#{pretty-string unique-string}.

gensym procedure
(gensym)

(gensym string)

(gensym symbol)

The procedure gensym constructs a new gensym. If passed no arguments, it con-
structs a gensym with no pretty name. The pretty name is constructed when
and if the pretty name of the resulting gensym is needed. If gensym is passed a
string, that string is used as the pretty name. If gensym is passed a symbol, the
pretty name of the symbol is used as the pretty name of the returned gensym. See
gensym-prefix (page 42) and gensym-count (page 43) for details.

> (gensym)

#{g0 |y0zf>GlFvcTJE0xw|}

> (gensym)

#{g1 |U%X&sF6kX!YC8LW=|}

> (eq? (gensym) (gensym))

#f
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(gensym string) constructs a new gensym with string as its pretty name. Simi-
larly, (gensym symbol) constructs a new gensym with the pretty name of symbol,
if it has one, as its pretty name.

> (gensym "foo")

#{foo |>VgOllCM&$dSvRN=|}

> (gensym 'foo)

#{foo |!TqQLmtw2hoEYfU>|}

> (gensym (gensym 'foo))

#{foo |N2C>5O0>C?OROUBU|}

gensym? procedure
(gensym? x)

The gensym? predicate returns #t if its argument is a gensym, and returns #f oth-
erwise.

> (gensym? (gensym))

#t

> (gensym? 'foo)

#f

> (gensym? 12)

#f

gensym->unique-string procedure
(gensym->unique-string gensym)

The gensym->unique-string procedure returns the unique name associated with
the gensym argument.

> (gensym->unique-string (gensym))

"YukrolLMgP?%ElcR"
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#{gensym} reader syntax
#{unique-name}

#{pretty-name unique-name}

#:pretty-name

Ikarus’s read and write procedures extend the lexical syntax of Scheme by the
ability to read and write gensyms using one of the three forms listed above.

#{unique-name} constructs, at read time, a gensym whose unique name is the one
speciɹed. If a gensym with the same unique name already exists in the system’s
symbol table, that gensym is returned.

> '#{some-long-name}

#{g0 |some-long-name|}

> (gensym? '#{some-long-unique-name})

#t

> (eq? '#{another-unique-name} '#{another-unique-name})

#t

The two-part #{pretty-name unique-name} gensym syntax is similar to the syn-
tax shown above with the exception that if a new gensym is constructed (that is,
if the gensym did not already exist in the symbol table), the pretty name of the
constructed gensym is set to pretty-name.

> '#{foo unique-identifier}

#{foo |unique-identifier|}

> '#{unique-identifier}

#{foo |unique-identifier|}

> '#{bar unique-identifier}

#{foo |unique-identifier|}

The #:pretty-name form constructs, at read time, a gensym whose pretty name
is pretty-name and whose unique name is fresh. This form guarantees that the
resulting gensym is not eq? to any other symbol in the system.

> '#:foo
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#{foo |j=qTGlEwS/Zlp2Dj|}

> (eq? '#:foo '#:foo)

#f

generate-temporaries example

The (rnrs syntax-case) library provides a generate-temporaries procedure,
which takes a syntax object (representing a list of things) and returns a list of fresh
identiɹers. Using gensym, that procedure can be deɹned as follows:

(define (generate-temporaries* stx)

(syntax-case stx ()

[(x* ...)

(map (lambda (x)

(datum->syntax #'unimportant

(gensym

(if (identifier? x)

(syntax->datum x)

't))))

#'(x* ...))]))

The above deɹnition works by taking the input stx and destructuring it into the
list of syntax objects x* .... The inner procedure maps each x into a new syntax
object (constructed with datum->syntax). The datum is a gensym, whose name is
the same name as x if x is an identiɹer, or the symbol t if x is not an identiɹer. The
output of generate-temporaries* generates names similar to their input counter-
part:

> (print-gensym #f)

> (generate-temporaries* #'(x y z 1 2))

(#<syntax x> #<syntax y> #<syntax z> #<syntax t> #<syntax t>)
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3.5 Printing

pretty-print procedure
(pretty-print datum)

(pretty-print datum output-port)

The procedure pretty-print is intended for printing Scheme data, typically Scheme
programs, in a format close to how a Scheme programmer would write it. Unlike
write, which writes its input all in one line, pretty-print inserts spaces and new
lines in order to produce more pleasant output.

(define fact-code

'(letrec ([fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))])

(fact 5)))

> (pretty-print fact-code)

(letrec ((fact

(lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))

(fact 5))

The second argument to pretty-print, if supplied, must be an output port. If not
supplied, the current-output-port is used.

Limitations: As shown in the output above, the current implemen-
tation of pretty-print does not handle printing of square brackets
properly.

pretty-width parameter
(pretty-width)

(pretty-width n)

The parameter pretty-width controls the number of characters after which the
pretty-print starts breaking long lines into multiple lines. The initial value of
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pretty-width is set to 60 characters, which is suitable for most terminals and
printed material.

> (parameterize ([pretty-width 40])

(pretty-print fact-code))

(letrec ((fact

(lambda (n)

(if (zero? n)

1

(* n (fact (- n 1)))))))

(fact 5))

Note that pretty-width does not guarantee that the output will not extend be-
yond the speciɹed number. Very long symbols, for examples, cannot be split into
multiple lines and may force the printer to go beyond the value of pretty-width.

format procedure
(format fmt-string args ...)

The procedure format produces a string formatted according to fmt-string and
the supplied arguments. The format string contains markers in which the string
representation of each argument is placed. The markers include:

"~s" instructs the formatter to place the next argument as if the procedure write

has printed it. If the argument contains a string, the string will be quoted and
all quotes and backslashes in the string will be escaped. Similarly, characters
will be printed using the #\x notation.

"~a" instructs the formatter to place the next argument as if the procedure display
has printed it. Strings and characters are placed as they are in the output.

"~b" instructs the formatter to convert the next argument to its binary (base 2)
representation. The argument must be an exact number. Note that the #b

numeric preɹx is not produced in the output.

"~o" is similar to "~b" except that the number is printed in octal (base 8).

"~x" is similar to "~b" except that the number is printed in hexadecimal (base 16).
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"~d" outputs the next argument, which can be an exact or inexact number, in its
decimal (base 10) representation.

"~~" instructs the formatter to place a tilde character, ~, in the output without
consuming an argument.

Note that the #b, #o, and #x numeric preɹxes are not added to the output when ~b,
~o, and ~x are used.

> (format "message: ~s, ~s, and ~s" 'symbol "string" #\c)

"message: symbol, \"string\", and #\\c"

> (format "message: ~a, ~a, and ~a" 'symbol "string" #\c)

"message: symbol, string, and c"

printf procedure
(printf fmt-string args ...)

The procedure printf is similar to format except that the output is sent to the
current-output-port instead of being collected in a string.

> (let ([n (+ (expt 2 32) #b11001)])

(printf "~d = #b~b = #x~x\n" n n n))

4294967321 = #b100000000000000000000000000011001 = #x100000019

fprintf procedure
(fprintf output-port fmt-string args ...)

The procedure fprintf is similar to printf except that the output port to which
the output is sent is speciɹed as the ɹrst argument.

print-graph parameter
(print-graph)
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(print-graph #t)

(print-graph #f)

The graph notation is a way of marking and referencing parts of a data structure
and, consequently, creating shared and cyclic data structures at read time instead
of resorting to explicit mutation at run time. The #n= marks the following data
structure with mark n, where n is a nonnegative integer. The #n# references the
data structure marked n. Marks can be assigned and referenced in any order but
each mark must be assigned to exactly once in an expression.

> (let ([x '#0=(1 2 3)])

(eq? x '#0#))

#t

> (let ([x '#0#] [y '#0=(1 2 3)])

(eq? x y))

#t

> (eq? (cdr '(12 . #1#)) '#1=(1 2 3))

#t

> (let ([x '#1=(#1# . #1#)])

(and (eq? x (car x))

(eq? x (cdr x))))

#t

The print-graph parameter controls how the writers (e.g. pretty-print and
write) handle shared and cyclic data structures. In Ikarus, all writers detect cyclic
data structures and they all terminate on all input, cyclic or otherwise.

If the value of print-graph is set to #f (the default), then the writers does not
attempt to detect shared data structures. Any part of the input that is shared is
printed as if no sharing is present. If the value of print-graph is set to #t, all
sharing of data structures is marked using the #n= and #n# notation.

> (parameterize ([print-graph #f])

(let ([x (list 1 2 3 4)])

(pretty-print (list x x x))))

((1 2 3 4) (1 2 3 4) (1 2 3 4))
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> (parameterize ([print-graph #t])

(let ([x (list 1 2 3 4)])

(pretty-print (list x x x))))

(#0=(1 2 3 4) #0# #0#)

> (parameterize ([print-graph #f])

(let ([x (list 1 2)])

(let ([y (list x x x x)])

(set-car! (last-pair y) y)

(pretty-print (list y y)))))

(#0=((1 2) (1 2) (1 2) #0#) #0#)

> (parameterize ([print-graph #t])

(let ([x (list 1 2)])

(let ([y (list x x x x)])

(set-car! (last-pair y) y)

(pretty-print (list y y)))))

(#0=(#1=(1 2) #1# #1# #0#) #0#)

print-gensym parameter
(print-gensym)

(print-gensym #t)

(print-gensym #f)

(print-gensym 'pretty)

The parameter print-gensym controls how gensyms are printed by the various
writers.

If the value of print-gensym is #f, then gensym syntax is suppressed by the writers
and only the gensyms’ pretty names are printed. If the value of print-gensym is
#t, then the full #{pretty unique} syntax is printed. Finally, if the value of
print-gensym is the symbol pretty, then gensyms are printed using the #:pretty
notation.

> (parameterize ([print-gensym #f])

(pretty-print (list (gensym) (gensym))))
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(g0 g1)

> (parameterize ([print-gensym #t])

(pretty-print (list (gensym) (gensym))))

(#{g2 |KR1M2&CTt1<B0n/m|} #{g3 |FBAb&7NC6&=c82!O|})

> (parameterize ([print-gensym 'pretty])

(pretty-print (list (gensym) (gensym))))

(#:g4 #:g5)

The initial value of print-gensym is #t.

gensym-prefix parameter
(gensym-prefix)

(gensym-prefix string)

The parameter gensym-prefix speciɹes the string to be used as the preɹx to gen-
erated pretty names. The default value of gensym-prefix is the string "g", which
causes generated strings to have pretty names in the sequence g0, g1, g2, etc.

> (parameterize ([gensym-prefix "var"]

[print-gensym #f])

(pretty-print (list (gensym) (gensym) (gensym))))

(var0 var1 var2)

Beware that the gensym-prefix controls how pretty names are generated, and has
nothing to do with how gensym constructs a new gensym. In particular, notice the
diʃerence between the output in the ɹrst example with the output of the examples
below:

> (pretty-print

(parameterize ([gensym-prefix "var"] [print-gensym #f])

(list (gensym) (gensym) (gensym))))

(g3 g4 g5)
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> (let ([ls (list (gensym) (gensym) (gensym))])

(parameterize ([gensym-prefix "var"] [print-gensym #f])

(pretty-print ls)))

(var5 var6 var7)

gensym-count parameter
(gensym-count)

(gensym-count n)

The parameter gensym-count determines the number which is attached to the
gensym-prefix when gensyms’ pretty names are generated. The initial value of
gensym-count is 0 and is incremented every time a pretty name is generated. It
might be set to any non-negative integer value.

> (let ([x (gensym)])

(parameterize ([gensym-count 100] [print-gensym #f])

(pretty-print (list (gensym) x (gensym)))))

(g100 g101 g102)

Notice from all the examples so far that pretty names are generated in the order at
which the gensyms are printed, not in the order in which gensyms were created.
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3.6 Tracing

trace-define syntax
(trace-define (name . args) body body* ...)

(trace-define name expression)

The trace-define syntax is similar to define except that the bound value, which
must be a procedure, becomes a traced procedure. A traced procedure prints its
arguments when it is called and prints its values when it returns.

> (trace-define (fact n)

(if (zero? n) 1 (* n (fact (- n 1)))))

> (fact 5)

|(fact 5)

| (fact 4)

| |(fact 3)

| | (fact 2)

| | |(fact 1)

| | | (fact 0)

| | | 1

| | |1

| | 2

| |6

| 24

|120

120

The tracing facility in Ikarus preserves and shows tail recursion and distinguishes
it from non-tail recursion by showing tail calls starting at the same line in which
their parent was called.

> (trace-define (fact n)

(trace-define (fact-aux n m)

(if (zero? n) m (fact-aux (- n 1) (* n m))))

(fact-aux n 1))
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> (fact 5)

|(fact 5)

|(fact-aux 5 1)

|(fact-aux 4 5)

|(fact-aux 3 20)

|(fact-aux 2 60)

|(fact-aux 1 120)

|(fact-aux 0 120)

|120

120

Moreover, the tracing facility interacts well with continuations and exceptions.

> (call/cc

(lambda (k)

(trace-define (loop n)

(if (zero? n)

(k 'done)

(+ (loop (- n 1)) 1)))

(loop 5)))

|(loop 5)

| (loop 4)

| |(loop 3)

| | (loop 2)

| | |(loop 1)

| | | (loop 0)

done

trace-lambda syntax
(trace-lambda name args body body* ...)

The trace-lambda macro is similar to lambda except that the resulting procedure
is traced: it prints the arguments it receives and the results it returns.
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make-traced-procedure procedure
(make-traced-procedure name proc)

The procedure make-traced-procedure takes a name (typically a symbol) and a
procedure. It returns a procedure similar to proc except that it traces its arguments
and values.

> (define (fact n)

(if (zero? n)

(lambda (k) (k 1))

(lambda (k)

((fact (- n 1))

(make-traced-procedure `(k ,n)

(lambda (v)

(k (* v n))))))))

> (call/cc

(lambda (k)

((fact 5) (make-traced-procedure 'K k))))

|((k 1) 1)

|((k 2) 1)

|((k 3) 2)

|((k 4) 6)

|((k 5) 24)

|(K 120)

120
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3.7 Timing

This section describes some of Ikarus’s timing facilities which may be useful for
benchmarking and performance tuning.

time syntax
(time expression)

The time macro performs the following: it evaluates expression, then prints a
summary of the run time statistics, then returns the values returned by expression.
The run-time summary includes the number of bytes allocated, the number of
garbage collection runs, and the time spent in both the mutator and the collec-
tor.

> (let () ;;; 10 million

(define ls (time (vector->list (make-vector 10000000))))

(time (append ls ls))

(values))

running stats for (vector->list (make-vector 10000000)):

3 collections

672 ms elapsed cpu time, including 547 ms collecting

674 ms elapsed real time, including 549 ms collecting

120012328 bytes allocated

running stats for (append ls ls):

4 collections

1536 ms elapsed cpu time, including 1336 ms collecting

1538 ms elapsed real time, including 1337 ms collecting

160000040 bytes allocated

Note: The output listed above is just a sample that was taken at some point on some
machine. The output on your machine at the time you read this may vary.
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time-it procedure
(time-it who thunk)

The procedure time-it takes a datum denoting the name of the computation and
a thunk (i.e. a procedure with no arguments), invokes the thunk, prints the stats,
and returns the values obtained from invoking the thunk. If the value of who is
non-false, who is used when displaying the run-time statistics. If the value of who
is #f, then no name for the computation is displayed.

> (time-it "a very fast computation"

(lambda () (values 1 2 3)))

running stats for a very fast computation:

no collections

0 ms elapsed cpu time, including 0 ms collecting

0 ms elapsed real time, including 0 ms collecting

24 bytes allocated

1

2

3

> (time-it #f (lambda () 12))

running stats:

no collections

0 ms elapsed cpu time, including 0 ms collecting

0 ms elapsed real time, including 0 ms collecting

0 bytes allocated

12



Chapter 4

The (ikarus foreign) Library

This chapter describes the facilities through which Ikarus interfaces with the host
operating system and other external libraries. The facilities of the (ikarus foreign)

library give the Scheme program unrestricted access to the computer memory, al-
lowing one to allocate, access, modify, and free memory as needed. The facilities
also allow the Scheme program to call out to system procedures as well as allow
the native procedures to call back into Scheme.

This chapter is organized as follows: Section 4.1 gives an overview of the basic
concepts such as shared libraries, external symbols, foreign data types, pointers,
and procedures. Section 4.3 describes the primitives that (ikarus foreign) pro-
vides for direct manipulation of memory. Section ?? deals with loading external
libraries and calling out to native library procedures and calling back into Scheme.
To demonstrate the usefulness of the foreign facilities, Ikarus ships with two li-
braries that also serve as extended examples for using the system. Section ?? de-
scribes The OpenGL library (ikarus opengl) which allows the programmer to
produce 2D and 3D computer graphics. Section ?? describes the (ikarus objc)

which allows the programmer to access libraries and frameworks written in the
Objective-C programming language and thus provides full access to the Mac OS X
system (e.g., making graphical user interfaces with Cocoa and drawing graphics
with Quartz all from Scheme).

Ikarus version 0.0.4 is the ɹrst version of Ikarus to support the described foreign
interfaces.

49



50 CHAPTER 4. THE (IKARUS FOREIGN) LIBRARY

4.1 Overview

In order to make full use of the computer, it is important for a programming en-
vironment (e.g., Ikarus Scheme) to facilitate access to the underlying architecture
on which it runs. The underlying architecture includes the API provided by the
host operating system kernel (e.g., Linux), the system libraries (e.g., libc), and
other site-installed libraries (e.g., sqlite3). Providing direct access to such API
from within Scheme allows the programmer to write Scheme libraries that have
few or no dependencies on external programs (such as C development toolchain).
When dealing with system libraries, the programmer must have a thorough under-
standing of many aspects of the targetted system. This section attempts to provide
answers to many questions that are frequently encountered when interfacing to
external libraries.

4.2 Memory management

Ikarus Scheme is a managed environment. Like in many programming environ-
ments, Ikarus manages its own memory. Scheme objects are allocated in a spe-
cial memory region (the Scheme heap) and have type-speciɹc object layout that
allows the run time system to distinguish object types and allows the garbage col-
lector to locate all potentially live objects and reclaim the memory of dead objects.
Scheme objects are also opaque in the sense that the data structures used to repre-
sent Scheme objects (e.g., pairs) are not exposed to the programmer, who can only
interact with objects through an interface (e.g., car, cdr).

Unmanaged environments, such as the operating system on which Ikarus runs,
require that the programmer manages the allocation and deallocation of system
resources herself. Memory regions, ɹle handles, external devices, the screen, etc.,
are all examples of resources whose management must be coordinated among the
diʃerent parts of the system, and this becomes the responsibility of the programmer
who is wiring the diʃerent subsystems together.

Memory, from a system’s point of view, is transparent. A pointer is an integer denot-
ing an address of memory. This memory address may contain a value that requires
interpretation. At the lowest-level, each byte of memory contains eight bits, each
of which may be toggled on or oʃ. A level higher, contiguous sequences of bytes
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are grouped together and are interpreted as integers, ɻoating point numbers, or
pointers to other memory addresses. These are the basic data types that are of-
ten interpreted atomically. Yet a level higher, groups of basic types form data
structures such as arrays, linked lists, trees, and so on. Objects, as found in object-
oriented programming languages, are at an even higher level of abstraction since
they are treated as opaque references that retain state and know how to respond
to messages.

The procedures in the (ikarus foreign) library are meant to provide a way to
interface with the low level memory operations such as setting and getting bytes
from speciɹc locations in memory. Although they do not provide high-level oper-
ations, the basic procdures make implementing high-level operations (such as the
Objective-C system presented in Chapter ??) possible. Programmers are encour-
aged to deɹne their own abstractions that are most suitable for the speciɹc target
library rather than using the low-level operations directly. This results in writing
more robust and more easily maintainable libraries. To put it more boldly: Do not
sprinkle your code with low-level memory operations.

4.3 Memory operations

malloc procedure
(malloc n)

The malloc procedure allocates n bytes of memory and returns a pointer to the
allocated memory. The malloc Scheme procedure is implemented using the host-
provided malloc system procedure (often found in libc). The number of bytes, n,
must be a positive exact integer.

> (malloc 10)

#<pointer #x00300320>

> (malloc 10000)

#<pointer #x01800400>
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free procedure
(free p)

The free procedure takes a pointer and frees the memory region at the given ad-
dress. The memory region must be allocated with malloc, calloc, or a similar sys-
tem procedure. Once freed, memory operations on the given address are invalid
and may cause the system to crash at unpredictable times. Ikarus cannot check
for such errors since the memory may be freed by procedures that are external to
Ikarus.

pointer->integer procedure
(pointer->integer p)

The procedure pointer->integer converts the value of the pointer p to an exact
integer value. The result may be a ɹxnum or a bignum depending on the pointer.

integer->pointer procedure
(integer->pointer n)

The procedure integer->pointer converts the exact integer n to a pointer value.
The lower 32 bits (or 64 bits on 64-bit systems) of the value of n are signiɹ-
cant in computing the pointer value. It is guaranteed that (integer->pointer
(pointer->integer p)) points to the same address as p.

pointer? procedure
(pointer? x)

The predicate pointer? returns #t if the value of x is a pointer, and returns #f
otherwise.

Note: The result of calling the procedures eq?, eqv? and equal? on
pointer values is unspeciɹed.
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pointer-set-c-char! procedure
(pointer-set-c-char! p i n)

The procedure pointer-set-c-char! sets a single byte of memory located at oʃset
i from the pointer p to the value of n. The pointer p must be a valid pointer. The
index imust be an exact integer. The value of nmust be an exact integer. Only the
8 lowermost bits of n are used in the operation and the remaining bits are ignored.

pointer-set-c-short! procedure
(pointer-set-c-short! p i n)

The procedure pointer-set-c-char!! sets two bytes located at oʃset i and (+

i 1) to the 16 lowermost bits of the exact integer n. Note that the oʃset i is a
byte oʃset; pointer-set-c-short! does not perform any pointer arithmetic such
as scaling the oʃset by the size of the memory location.

pointer-set-c-int! procedure
(pointer-set-c-int! p i n)

The procedure pointer-set-c-int! sets four bytes located at oʃset i to (+ i

3) to the 32 lowermost bits of the exact integer n. Like pointer-set-c-short!,
pointer-set-c-int! does not scale the oʃset i.

pointer-set-c-long! procedure
(pointer-set-c-long! p i n)

On 64-bit systems, the procedure pointer-set-c-long! sets eight bytes located
at oʃset i to (+ i 7) to the 64 lowermost bits of the exact integer n. Like the
previous procedures, pointer-set-c-long! does not scale the oʃset i. On 32-bit
systems, pointer-set-c-long! performs the same task as pointer-set-c-int!.

pointer-set-c-float! procedure
(pointer-set-c-float! p i fl)
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The procedure pointer-set-c-float! converts the Scheme ɻoating point number
fl (represented in Ikarus as an IEEE-754 double precision ɻoating point number)
to a ɻoat (an IEEE-754 single precision ɻoating point number) and stores the result
in the four bytes at oʃset i of the pointer p.

pointer-set-c-double! procedure
(pointer-set-c-double! p i fl)

The procedure pointer-set-c-double! stores the double precision IEEE-754 ɻoat-
ing point value of the Scheme ɻonum fl in the eight bytes at oʃset i of the pointer
p.

pointer-set-c-pointer! procedure
(pointer-set-c-pointer! p i pv)

On 64-bit systems, the procedure pointer-set-c-pointer! sets eight bytes lo-
cated at oʃset i to (+ i 7) to the 64-bit pointer value of pv. On 32-bit sys-
tems, the procedure pointer-set-c-pointer! sets four bytes located at oʃset
i to (+ i 3) to the 32-bit pointer value of pv. Like the previous procedures,
pointer-set-c-pointer! does not scale the oʃset i.

pointer-ref-c-signed-char procedure
(pointer-ref-c-signed-char p i)

The procedure pointer-ref-c-signed-char loads a single byte located at oʃset
i from the pointer p and returns an exact integer representing the sign-extended
integer value of that byte. The resulting value is in the range of [−128, 127] inclu-
sive.

pointer-ref-c-unsigned-char procedure
(pointer-ref-c-unsigned-char p i)

The procedure pointer-ref-c-unsigned-char loads a single byte located at oʃset
i from the pointer p and returns an exact integer representing the unsigned integer
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value of that byte. The resulting value is in the range [0, 255] inclusive.

The following example shows the diʃerence between pointer-ref-c-signed-char
and pointer-ref-c-unsigned-char.

> (let ([p (malloc 3)])

(pointer-set-c-char! p 0 #b01111111)

(pointer-set-c-char! p 1 #b10000000)

(pointer-set-c-char! p 2 #b11111111)

(let ([result

(list (pointer-ref-c-signed-char p 0)

(pointer-ref-c-signed-char p 1)

(pointer-ref-c-signed-char p 2)

(pointer-ref-c-unsigned-char p 0)

(pointer-ref-c-unsigned-char p 1)

(pointer-ref-c-unsigned-char p 2))])

(free p)

result))

(127 -128 -1 127 128 255)

pointer-ref-c-signed-short procedure
(pointer-ref-c-signed-short p i)

The procedure pointer-ref-c-signed-short loads two bytes located at oʃsets
i and (+ i 1) from the pointer p and returns an exact integer representing the
sign-extended integer value of the sequence. The resulting value is in the range
[−32768, 32767] inclusive.

pointer-ref-c-unsigned-short procedure
(pointer-ref-c-unsigned-short p i)

The procedure pointer-ref-c-unsigned-short loads two bytes located at oʃsets
i and (+ i 1) from the pointer p and returns an exact integer representing the un-
signed integer value of the sequence. The resulting value is in the range [0, 65535]
inclusive.
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pointer-ref-c-signed-int procedure
(pointer-ref-c-signed-int p i)

The procedure pointer-ref-c-signed-int loads four bytes starting at oʃset i of
pointer p and returns an exact integer in the range of [−231, 231 − 1] inclusive.

pointer-ref-c-unsigned-int procedure
(pointer-ref-c-unsigned-int p i)

The procedure pointer-ref-c-unsigned-int loads four bytes starting at oʃset i
of pointer p and returns an exact integer in the range of [0, 232 − 1] inclusive.

pointer-ref-c-signed-long procedure
(pointer-ref-c-signed-long p i)

On 64-bit systems, the procedure pointer-ref-c-signed-long loads eight bytes
starting at oʃset i of pointer p and returns an integer in the range of [−263, 263−1]
inclusive. On 32-bit systems, the procedure pointer-ref-c-signed-long per-
forms the same task as pointer-ref-c-signed-int.

pointer-ref-c-unsigned-long procedure
(pointer-ref-c-unsigned-long p i)

On 64-bit systems, the procedure pointer-ref-c-unsigned-long loads eight bytes
starting at oʃset i of pointer p and returns an integer in the range of [0, 264 −
1] inclusive. On 32-bit systems, the procedure pointer-ref-c-unsigned-long

performs the same task as pointer-ref-c-unsigned-int.

pointer-ref-c-float procedure
(pointer-ref-c-float p i)

The procedure pointer-ref-c-float returns the four-byte ɻoat (represented as
IEEE-754 single precision ɻoating point number) stored at oʃset i of the pointer p.
The value is extended to an IEEE-754 double precision ɻoating point number that
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Ikarus uses to represent inexact numbers.

pointer-ref-c-double procedure
(pointer-ref-c-double p i)

The procedure pointer-ref-c-double returns the eight-byte ɻoat (represented as
IEEE-754 double precision ɻoating point number) stored at oʃset i of the pointer
p.

pointer-ref-c-pointer procedure
(pointer-ref-c-pointer p i)

The procedure pointer-ref-c-pointer returns the pointer stored at oʃset i from
the pointer p. The size of the pointer (also the number of bytes loaded) depends
on the architecture: it is 4 bytes on 32-bit systems and 8 bytes on 64-bit systems.

4.4 Accessing foreign objects from Scheme

dlopen procedure
(dlopen)

(dlopen library-name)

(dlopen library-name lazy? global?)

The procedure dlopen takes a string library-name represented a system library
and calls the system procedure dlopen which dynamically loads the given library
into the running process. The name of the library is system-dependent and must
include the appropriate suɽx (e.g., *.so on Linux, *.dylib on Darwin and *.dll

on Cygwin). The library-name may include a full path which identiɹes the loca-
tion of the library, or may be just the name of the library in which case the system
will lookup the library name using the LD_LIBRARY_PATH environment variable.

The argument lazy? speciɹes how library dependencies are loaded. If true, dlopen
delays the resolution and loading of dependent libraries until they are actually used.
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If false, all library dependencies are loaded before the call to dlopen returns.

The argument global? speciɹes how the scope of the symbols exported from the
loaded library. If true, all exported symbols become part of the running image, and
subsequent dlsym calls may not need to specify the library from which the symbol
is loaded. If false, the exported symbols are not global and the library pointer needs
to be speciɹed for dlsym.

Calling (dlopen library-name) is equivalent to (dlopen library-name #f #f).
Calling (dlopen) without arguments returns a pointer to the current process.

If succesful, dlopen returns a pointer to the external library which can be used
subsequently by dlsym and dlclose. If the library cannot be loaded, dlopen returns
#f and the procedure dlerror can be used to obtain the cause of the failure.

Consult the dlopen(3) page in your system manual for further details.

dlclose procedure
(dlclose library-pointer)

The procedure dlclose is a wrapped around the system procedure with the same
name. It receives a library pointer (e.g., one obtained from dlopen) and releases
the resources loaded from that library. Closing a library renders all symbols and
static data structures that the library exports invalid and the program may crash
or corrupt its memory if such symbols are used after a library is closed.

Most system implementations of dynamic loading employ reference counting for
dlopen and dlclose in that library resources are not freed until the number of calls
to dlclose matches the number of calls to dlopen.

The procedure dlclose returns a boolean value indicating whether the success
status of the operation. If dlclose returns #f, the procedure dlerror can be used
to obtain the cause of the error.

Consult the dlclose(3) page in your system manual for further details.

dlerror procedure
(dlerror)
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If any of the dynamic loading operations (i.e., dlopen, dlclose, dlsym) fails, the
cause of the error can be obtained by calling dlerror which returns a string de-
scribing the error. The procedure dlerror returns #f if there was no dynamic
loading error.

Consult the dlerror(3) page in your system manual for further details.

dlsym procedure
(dlsym library-pointer string)

The procedure dlsym takes a library pointer (e.g., one obtained by a call to dlopen)
and a string representing the name of a symbol that the library exports and returns
a pointer to the location of that symbol in memory. If dlsym fails, it returns #f and
the cause of the error can be obtained using the procedure dlerror.

Consult the dlsym(3) page in your system manual for further details.

4.5 Calling out to foreign procedures

Ikarus provides the means to call out from Scheme to foreign procedures. This
allows the programmers to extend Ikarus to access system-speciɹc facilities that is
available on the host machine.

In order to call out to a foreign procedure, one must provide two pieces of infor-
mation: the signature of the foreign procedure (e.g., its type declaration if it is
a C procedure) and the address of the procedure in memory. The address of the
procedure can be easily obtained using dlsym if the name of the procedure and its
exporting library are known. The signature of the procedure cannot, in general, be
obtained dynamically, and therefore must be hard coded into the program.

The signature of the foreign procedure is required for proper linkeage between the
Scheme system and the foreign system. Using the signature, Ikarus determines how
Scheme values are converted into native values, and where (e.g., in which registers
and stack slots) to put these arguments. The signature also determines where the
returned values are placed and how they are converted from the system data types
to the corresponding Scheme data types.
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A procedure’s signature is composed of two parts: the return type and the param-
eter types. The return type is a symbol that can be any one of the type speciɹers
listed in Figure 4.1, page 61. The parameter types is a list of type speciɹer symbols.
The symbol void can appear as a return type but cannot appear as a parameter type.

make-c-callout procedure
((make-c-callout return-type parameter-types) native-pointer)

The procedure make-c-callout is the primary facility for making foreign proce-
dures callable from Scheme. It works as follows. First, make-c-callout receives
two arguments denoting the signature of the procedure to be called. It prepares
a bridge that converts from Scheme’s calling conventions and data structures to
their foreign counterparts. It returns a procedure p1. Second, the procedure p1
accepts a pointer to a foreign procedure (e.g., one obtained from dlsym) and re-
turns a Scheme procedure p2 that encapsulates the foreign procedure. The ɹnal
procedure p2 can be called with as many arguments as the ones speciɹed in the
parameter-types. The parameters supplies to p2 must match the types supplied
as the parameter-types according to the “Valid Scheme types” column in the ta-
ble in Figure 4.1. The procedure p2 converts the parameters from Scheme types to
native types, calls the foreign procedure, obtains the result, and converts it to the
appropriate Scheme value (depending on the return-type).

The interface of make-c-callout is broken down into three stages in order to ac-
comodate common usage patterns. Often types, a function signature can be used
by many foreign procedures and therefore, make-c-callout can be called once
per signature and each signature can be used multiple times. Similarly, separating
the foreign procedure preparation from parameter passing allows for preparing the
foreign procedure once and calling it many times.

The types listed in Figure 4.1 are restricted to basic types and provide no automatic
conversion from composite Scheme data structures (such as strings, symbols, vec-
tors, and lists) to native types. The restriction is intentional in order for Ikarus to
avoid making invalid assumptions about the memory management of the targeted
library. For example, while Ikarus can convert a Scheme string to a native byte
array (e.g., using string->bytevector to decode the string, then using malloc to
allocate a temporary buʃer, and copying the bytes from the bytevector to the allo-
cated memory), it cannot decide when this allocated byte array is no longer needed
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and should be freed. This knowledge is library-dependent and is often procedure-
dependent. Therefore, Ikarus leaves it to the programmer to manage all memory
related issues.

Outgoing parameters to foreign procedures are checked against the declared types.
For example, if a callback is prepared to expect a parameter of type signed-int,
only exact integers are allowed to be passed out. For integer types, only a ɹxed
number of bits is used and the remaining bits are ignored. For ɻoating point types,
the argument is checked to be a Scheme ɻonum. No implicit conversion between
exact and inexact numbers is performed.

The following example illustrates the use of the make-c-callout procedure in com-
bination with dlopen and dlsym. The session was run on a 32-bit Ikarus running
under Mac OS X 10.4. First, the libc.dylib foreign library is loaded and is bound
to the variable libc. Next, we obtain a pointer to the atan foreign procedure that is
deɹned in libc. The native procedure atan takes a double as an argument and re-

Type speciɹer Size Valid Scheme types Corresponding C types
signed-char 1 byte exact integer char

unsigned-char 1 byte exact integer unsigned char

signed-short 2 bytes exact integer short

unsigned-short 2 bytes exact integer unsigned short

signed-int 4 bytes exact integer int

unsigned-int 4 bytes exact integer unsigned int

signed-long 4/8 bytes exact integer long

unsigned-long 4/8 bytes exact integer unsigned long

float 4 bytes ɻonum float

double 8 bytes ɻonum double

pointer 4/8 bytes pointer void*, char*, int*, int**,
int(*)(int,int,int), etc.

void – – void

Figure 4.1: The above table lists valid type speciɹers that can be used in callout
and callback signatures. Speciɹers with “4/8 bytes” have size that depends on the
system: it is 4 bytes on 32-bit systems and 8 bytes on 64-bit systems. The void

speciɹer can only be used as a return value speciɹer to mean “no useful value is
returned”.



62 CHAPTER 4. THE (IKARUS FOREIGN) LIBRARY

turns a double and that’s the signature that we use for make-c-callout. Finally, we
call the foreign procedure interface with one argument, 1.0, which is a ɻonum and
thus matches the required parameter type. The native procedure returns a double

value which is converted to the Scheme ɻonum with value 0.7853981633974483.

> (import (ikarus foreign))

> (define libc (dlopen "libc.dylib"))

> libc

#<pointer #x00100770>

> (define libc-atan-ptr (dlsym libc "atan"))

> libc-atan-ptr

#<pointer #x9006CB1F>

> (define libc-atan

((make-c-callout 'double '(double)) libc-atan-ptr))

> libc-atan

#<procedure>

> (libc-atan 1.0)

0.7853981633974483

> (libc-atan 1)

Unhandled exception

Condition components:

1. &assertion

2. &who: callout-procedure

3. &message: "argument does not match type double"

4. &irritants: (1)

4.6 Calling back to Scheme

In order to provide full interoperability with native procedures, Ikarus allows native
procedures to call back into Scheme just as it allows Scheme to call out to native
procedures. This is important for many system libraries that provide graphical user
interfaces with event handling (e.g., Cocoa, GTK+, GLUT, etc.), database engines
(e.g., libsqlite, libmysql, etc.), among others.

The native calling site for the call back is compiled with a speciɹc callback signa-
ture encoding the expected parameter types and return type. Therefore, a Scheme
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procedure used for a call back must be wrapped with a proper adapter that converts
the incoming parameters from native format to Scheme values as well as convert
the value that the Scheme procedure returns back to native format. The signature
format is similar to the one used for call outs (see Figure 4.1 on page 61 for details).

make-c-callback procedure
((make-c-callback return-type parameter-types) scheme-procedure)

The procedure make-c-callback is similar to the procedure make-c-callout ex-
cept that it provides a bridge from native procedures back into Scheme. While
the procedure make-c-callout takes a native pointer and returns a Scheme pro-
cedure, make-c-callback takes a Scheme procedure and returns a native pointer.
The native pointer can be called by foreign procedures. The native parameters are
converted to Scheme data (according to parameter-types), the Scheme procedure
is called with these parameters, and the returned value is converted back into na-
tive format (according to return-type) before control returns to the native call
site.

Note that the native procedure pointer obtained from make-c-callback is indis-
tinguishable from other native procedures that are obtained using dlsym or similar
means. In particular, such native pointers can be passed to make-c-callout re-
sulting in a Scheme procedure that calls out to the native procedure that in turn
calls back into Scheme. The following segment illustrates a very ineɽcient way of
extracting the lowermost 32 bits from an exact integer.

> (format "~x"

(((make-c-callout 'unsigned-int '(unsigned-int))

((make-c-callback 'unsigned-int '(unsigned-int))

values))

#xfedcba09876543210fedcba09876543210))

"76543210"

Caveat emptor: Preparing each call out and call back procedure leaks
a small amount of memory. This is because the system cannot track
such pointers that go into native code (which may retain such pointers
indeɹnitely). Use judiciously.
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Chapter 5

Contributed Libraries

We try to keep Ikarus Scheme small and its complexity manageable. Libraries that
are not an essential part of Ikarus are not included in the Ikarus proper, instead,
they are distributed with Ikarus in source form. Such libraries may be written
speciɹcally for Ikarus, or they may be portable libraries that can be used in Ikarus.
SRFIs or other libraries contributed by members of the Scheme community belong
to this section.

Using contributed libraries is no diʃerent from using any of the built-in libraries—all
one has to do is add the library name to the import clause and the rest is done by
the system.

If you have written a useful R6RS library and wish for it to be available for a wider
audience, contact us and we would be delighted to include information about it in
the next release of Ikarus.

Note: Contributed libraries may have bugs on their own or may exhibit
bugs in Ikarus itself. If you have a problem using any of these libraries,
please try to resolve the issue by contacting the library author ɹrst. Do
not hesitate to ɹle a bug on Ikarus if you believe that Ikarus is at fault.
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Library ɹles

The contributed libraries are installed in your system when Ikarus was installed.
By default, running the configure script installs the contributed libraries into the
/usr/local/lib/ikarus directory. If a --prefix DIR argument was supplied to
configure, then the libraries are installed in the DIR/ikarus/lib directory.

You may install additional libraries into the Ikarus library directory. Doing so
makes them available for import into other libraries and script regardless of where
the importing code is located or the current directory in which it is executed.

Deɹning IKARUS_LIBRARY_PATH

There may be situations in which you may wish to install your own libraries into a
diʃerent location. For example, you may not have suɽcient administrative privi-
leges to write to the system directory, or you may wish to keep your own libraries
separate from the standard libraries. Whatever the reason is, your can store your
library ɹles in any location you want and set up the IKARUS_LIBRARY_PATH envi-
ronment variable to point to these locations. The value of IKARUS_LIBRARY_PATH
is a colon-separated list of directories in which Ikarus will search.

For example, suppose your script imports the (streams derived) library. First,
Ikarus will map the library name to the ɹle path streams/derived.ss. Suppose
that Ikarus was installed using the --prefix /usr/local conɹguration option,
and suppose further that the value of IKARUS_LIBRARY_PATH is set by the user to
be /home/john/ikarus-libraries:/home/john/srfis. Ikarus will search in the
following locations in sequence until it ɹnds the ɹle it is looking for.

./streams/derived.ss

/home/john/ikarus-libraries/streams/derived.ss

/home/john/srfis/streams/derived.ss

/usr/local/lib/ikarus/streams/derived.ss
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Warning: The current behavior of Ikarus regarding the
IKARUS_LIBRARY_PATH is preliminary and is likely to change in
future releases.

The method in which the value of IKARUS_LIBRARY_PATH is deɹned is typically
shell dependant. If you use GNU Bash, you typically set the values of environment
variables in the ~/.bash_profile or ~/.bashrc ɹle by adding the following lines:

IKARUS_LIBRARY_PATH=/path/to/some/directory:/and/another

export IKARUS_LIBRARY_PATH



68 CHAPTER 5. CONTRIBUTED LIBRARIES

5.1 (gl) and (glut)

FIXME
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5.2 (srfi *)

Ported by: Derick Eddington

Scheme Requests For Implementation (SRFIs) for R6RS/Ikarus can be found at:
https://code.launchpad.net/~ikarus-srfi-team/ikarus-libraries/srfi

Currently provided:

• SRFI-0: (srfi feature-expand)

• SRFI-1: (srfi lists)

• SRFI-2: (srfi and-let)

• SRFI-6: (srfi string-ports)

• SRFI-8: (srfi receive)

• SRFI-9: (srfi records)

• SRFI-11: (srfi let-values)

• SRFI-13: (srfi strings)

• SRFI-14: (srfi char-set)

• SRFI-16: (srfi case-lambda)

• SRFI-19: (srfi time)

• SRFI-23: (srfi error-reporting)

• SRFI-26: (srfi specialize-procedures)

• SRFI-27: (srfi random)

• SRFI-31: (srfi rec)

• SRFI-37: (srfi args-fold)

• SRFI-39: (srfi parameters)

https://code.launchpad.net/~ikarus-srfi-team/ikarus-libraries/srfi
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• SRFI-41: (srfi streams) by Phil Bewig

• SRFI-42: (srfi eager-comprehensions)

• SRFI-43: (srfi vectors)

• SRFI-67: (srfi compare)

• SRFI-78: (srfi lightweight-testing)

To install (you’ll need a new version of the Bazaar revision control system):

$ bzr checkout --lightweight http://bazaar.launchpad.net/

~ikarus-srfi-team/ikarus-libraries/srfi

After you do the above, you’ll get a new srfi/ directory in the directory you ran
the checkout command, and that parent directory of the new srɹ/ directory needs
to be in your IKARUS_LIBRARY_PATH, so that attempts to import (srfi ---) will
look in the directory containing the srfi/ directory.

You can stay up-to-date by changing directory into your srfi/ and doing:

$ bzr update
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5.3 (math number-theory)

Provided by: Jens Axel Søgaard

URL: https://code.launchpad.net/~soegaard/ikarus-libraries/soegaard

This library contains number theory code that I have written over a long period.
The code began as an experiment. I grabbed a book on number theory from the
shelve (“Elementary Number Theory” by Gareth A. Jones and J. Mary Jones) and
began illustrating each deɹnition and each theorem with Scheme code. The ɹrst
half of the surce code is thus a well commented mix of deɹnitions, theorems and
code.

The second half contains more sophisticated algorithms mostly of from the ex-
cellent book “Modern Computer Algebra” by Joachim von zur Gathen and Jürgen
Gerhard. The algorithms for factorizing large integers come from this book.

Finally there are some deɹnitions of special functions, mostly inspired by the prob-
lems of the Euler Project.

https://code.launchpad.net/~soegaard/ikarus-libraries/soegaard
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5.4 (r6rs-clos)

Provided by: Christian Sloma

URL: https://launchpad.net/r6rs-clos

R6RS-clos is a port of tiny-clos to the latest (6th) revision of the language stan-
dard for scheme. It uses the library system that is new in R6RS to structure the
code based on functionality (bootstrap of core classes and generic functions, actual
implementation of the standard protocols, class layout and slot access …).

The homepage for now is https://launchpad.net/r6rs-clos, where my current
development branch can be found.

https://launchpad.net/r6rs-clos
https://launchpad.net/r6rs-clos
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5.5 SRFI-41: (streams)

The (streams), (streams primitive), and (streams derived) libraries are writ-
ten by Philip L. Bewig as the reference implementation for SRFI-41. See http:

//srfi.schemers.org/srfi-41/srfi-41.html for more details. The following
abstract is excerpted from the SRFI document.

Abstract

Streams, sometimes called lazy lists, are a sequential data structure containing
elements computed only on demand. A stream is either null or is a pair with a
stream in its cdr. Since elements of a stream are computed only when accessed,
streams can be inɹnite. Once computed, the value of a stream element is cached
in case it is needed again.

Streams without memoization were ɹrst described by Peter Landin in 1965. Mem-
oization became accepted as an essential feature of streams about a decade later.
Today, streams are the signature data type of functional programming languages
such as Haskell.

This Scheme Request for Implementation describes two libraries for operating on
streams: a canonical set of stream primitives and a set of procedures and syntax
derived from those primitives that permits convenient expression of stream oper-
ations. They rely on facilities provided by R6RS, including libraries, records, and
error reporting. To load both stream libraries, say:

(import (streams))

http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-41/srfi-41.html
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Chapter 6

Missing Features

Ikarus does not fully conform to R6RS yet. Although it implements most of R6RS’s
macros and procedures, some are still missing. This section summarizes the set of
missing features and procedures.

• The procedure equal?may not terminate on equal? inɹnite (circular) input.

• number->string does not accept the third argument (precision). Similarly,
string->number and the reader do not recognize the |p notation.

• The following procedures are missing from (rnrs unicode):

string-titlecase

string-normalize-nfc string-normalize-nfd

string-normalize-nfkc string-normalize-nfkd

• The following procedures are missing from (rnrs arithmetic bitwise):

bitwise-reverse-bit-field bitwise-rotate-bit-field

• The following procedures are missing from (rnrs arithmetic fixnum):

fxreverse-bit-field fxrotate-bit-field

• The following procedures are missing from (rnrs hashtables):
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make-eqv-hashtable make-hashtable equal-hash

hashtable-hash-function hashtable-equivalence-function

• The following procedures are missing from (rnrs io ports):

port-has-port-position? port-position

port-has-set-port-position!? set-port-position!

make-custom-binary-input/output-port

make-custom-textual-input/output-port

open-file-input/output-port
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