;;; Copied from ;;; Efficient Nondestructive Equality Checking for Trees and Graphs ;;; Michael D. Adams and R. Kent Dybvig ;;; ICFP 2008 (library (ikarus.equal) (export equal?) (import (except (ikarus) equal?)) (module UNSAFE (< <= > >= = + - vector-ref vector-length car cdr) (import (rename (ikarus system $vectors) ($vector-length vector-length) ($vector-ref vector-ref)) (rename (ikarus system $pairs) ($car car) ($cdr cdr)) (rename (ikarus system $fx) ($fx+ +) ($fx- -) ($fx< <) ($fx> >) ($fx>= >=) ($fx<= <=) ($fx= =)))) (define (union-find ht x y) (import UNSAFE) (define-struct box (content)) (define eq-hashtable-ref hashtable-ref) (define eq-hashtable-set! hashtable-set!) (define (find b) (let ([n (box-content b)]) (if (box? n) (let loop ([b b] [n n]) (let ([nn (box-content n)]) (if (box? nn) (begin (set-box-content! b nn) (loop n nn)) n))) b))) (let ([bx (eq-hashtable-ref ht x #f)] [by (eq-hashtable-ref ht y #f)]) (if (not bx) (if (not by) (let ([b (make-box 1)]) (eq-hashtable-set! ht x b) (eq-hashtable-set! ht y b) #f) (let ([ry (find by)]) (eq-hashtable-set! ht x ry) #f)) (if (not by) (let ([rx (find bx)]) (eq-hashtable-set! ht y rx) #f) (let ([rx (find bx)] [ry (find by)]) (or (eq? rx ry) (let ([nx (box-content rx)] [ny (box-content ry)]) (if (> nx ny) (begin (set-box-content! ry rx) (set-box-content! rx (+ nx ny)) #f) (begin (set-box-content! rx ry) (set-box-content! ry (+ ny nx)) #f))))))))) (define (pre? x y k) (import UNSAFE) (cond [(eq? x y) k] [(pair? x) (and (pair? y) (if (<= k 0) k (let ([k (pre? (car x) (car y) (- k 1))]) (and k (pre? (cdr x) (cdr y) k)))))] [(vector? x) (and (vector? y) (let ([n (vector-length x)]) (and (= (vector-length y) n) (let f ([i 0] [k k]) (if (or (= i n) (<= k 0)) k (let ([k (pre? (vector-ref x i) (vector-ref y i) (- k 1))]) (and k (f (+ i 1) k))))))))] [(string? x) (and (string? y) (string=? x y) k)] [else (and (eqv? x y) k)])) (define (interleave? x y k) (import UNSAFE) (let ([ht #f]) (define (call-union-find x y) (unless ht (set! ht (make-eq-hashtable))) (union-find ht x y)) (define (e? x y k) (if (<= k 0) (if (= k kb) (fast? x y (random (* 2 k0))) (slow? x y k)) (fast? x y k))) (define (slow? x y k) (cond [(eq? x y) k] [(pair? x) (and (pair? y) (if (call-union-find x y) 0 (let ([k (e? (car x) (car y) (- k 1))]) (and k (e? (cdr x) (cdr y) k)))))] [(vector? x) (and (vector? y) (let ([n (vector-length x)]) (and (= (vector-length y) n) (if (call-union-find x y) 0 (let f ([i 0] [k (- k 1)]) (if (= i n) k (let ([k (e? (vector-ref x i) (vector-ref y i) k)]) (and k (f (+ i 1) k)))))))))] [(string? x) (and (string? y) (string=? x y) k)] [else (and (eqv? x y) k)])) (define (fast? x y k) (let ([k (- k 1)]) (cond [(eq? x y) k] [(pair? x) (and (pair? y) (let ([k (e? (car x) (car y) k)]) (and k (e? (cdr x) (cdr y) k))))] [(vector? x) (and (vector? y) (let ([n (vector-length x)]) (and (= (vector-length y) n) (let f ([i 0] [k k]) (if (= i n) k (let ([k (e? (vector-ref x i) (vector-ref y i) k)]) (and k (f (+ i 1) k))))))))] [(string? x) (and (string? y) (string=? x y) k)] [else (and (eqv? x y) k)]))) (and (e? x y k) #t))) (define k0 400) (define kb -40) (define (interleave-equal? x y) (interleave? x y k0)) (define (precheck/interleave-equal? x y) (let ([k (pre? x y k0)]) (and k (or (> k 0) (interleave? x y 0))))) (define (equal? x y) (precheck/interleave-equal? x y)) )