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Chapter 1

Getting Started

1.1 Introduction

Ikarus Scheme is an implementation of the Scheme programming language. The
preliminary release of Ikarus implements the majority of the features found in the
current standard, the Revised6 report on the algorithmic language Scheme[5] in-
cluding full R6RS library and script syntax, syntax-case, unicode strings, bytevec-
tors, user-defined record types, exception handling, conditions, and enumerations.
User-define R6RS libraries can be compiled in-memory on the fly or compiled to
disk and loaded in subsequent runs.

In addition to supporting R6RS (and most of the features found in the the previ-
ous RnRS standards), Ikarus supports powerful interprocess communication facili-
ties including support for communication with child processes via pipes and with
remote processes via TCP and UDP sockets. The facility also allows for both syn-
chronous and asynchronous communication so that a Scheme program running in
Ikarus can communicate with many processes concurrently.

Ikarus also supports basic foreign function interface (FFI) facilities. This allows the
programmer to define accessors and mutators for native data structures. It also
allows for Scheme programs to dynamically load any library found on the host
machine. Native procedures and Scheme procedures can call to each other by the
call-out and call-back facilities of Ikarus.

1
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1.2 Technology overview

Ikarus Scheme provides the programmer with many advantages:

Optimizing code generator: The compiler’s backend employs state of the art tech-
nologies in code generation that produce fast efficient machine code. When devel-
oping computationally intensive programs, one is not constrained by using a slow
interpreter.

Fast incremental compilation: Every library and script is quickly compiled to
native machine code. When developing large software, one is not constrained by
how slow the batch compiler runs.

Robust and fine-tuned standard libraries: The standard libraries are written such
that they perform as much error checking as required to provide a safe and fast
runtime environment.

Multi-generational garbage collector: The BiBOP[2] based garbage collector
used in Ikarus allows the runtime system to expand its memory footprint as needed.
The entire 32-bit virtual address space could be used and unneeded memory is re-
leased back to the operating system.

32-bit and 64-bit computing: Ikarus supports both the Intel-x86 and the AMD-64
architectures. 64-bit computing allows the programmer to utilize larger address
space (larger than 4GB) and provides a greater range for fixnums (61-bit fixnums).
Running in 32-bit mode, however, makes more efficient utilization of resources
due to the smaller memory footprint for most data structures.
(64-bit support is experimental at this stage of development.)

Supports many operating systems: Ikarus runs on the most popular and widely
used operating systems for servers and personal computers. The supported systems
include Mac OS X, GNU/Linux, FreeBSD, NetBSD, and Microsoft Windows.

1.3 System requirements

This section provides an overview of the hardware and software requirements
needed for running Ikarus.
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1.3.1 Hardware

Ikarus Scheme runs in 32-bit mode on the IA-32 (x86) architecture supporting SSE2
extensions. It also runs in 64-bit mode on platforms supporing the AMD-64 archi-
tecture. This includes the Athlon 64, Sempron 64, and Turion 64 processors from
AMD and the Pentium 4, Xeon, Celeron, Pentium M, Core, and Core2 processors
from Intel. Ikarus does not run on Intel Pentium III or earlier processors.

The Ikarus compiler generates SSE2 instructions to handle Scheme’s IEEE floating
point representation (flonums) for inexact numbers.

1.3.2 Operating systems

Ikarus is tested under the following operating systems:

• Mac OS X version 10.4 and 10.5.

• Linux 2.6.18 (Debian, Fedora, Gentoo, and Ubuntu).

• FreeBSD version 6.2.

• NetBSD version 3.1.

• Microsoft Windows XP (using Cygwin 1.5.24).

1.3.3 Additional software

• GMP: Ikarus uses the GNU Multiple Precision Arithmetic Library (GMP) for
some bignum arithmetic operations. To build Ikarus from scratch, GMP ver-
sion 4.2 or better must be installed along with the required header files.
Pre-built GMP packages are available for most operating systems. Alterna-
tively, GMP can be downloaded from
http://gmplib.org/.

• FFI: The libffi library (version 3.0.6) can be utilized to enable Scheme
procedures to call and be called from native procedure (see Chapter 5 for

http://gmplib.org/
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details). To enable libffi while building Ikarus, one must pass --enable-
libffi to the configure script along with the paths to libffi’s include and
lib directory. The libffi library can be obtained from http://sourceware.

org/libffi/. FFI support is optional. It is not required if all one needs is
writing pure Scheme code.

• GCC: The GNU C Compiler is required to build the Ikarus executable (e.g.
the garbage collector, loader, and OS-related runtime). GCC versions 4.1 and
4.2 were successfully used to build Ikarus.

• Autoconf and Automake: The GNU Autoconf (version 2.61) and GNU Au-
tomake (version 1.10) tools are required if one wishes to modify the Ikarus
source base. They are not required to build the official release of Ikarus.

• XƎLATEX: The XƎLATEX typesetting system is required for building the docu-
mentation. XƎLATEX (and XƎTEX) is an implementation of the LATEX (and TEX)
typesetting system. XƎLATEX can be obtained from http://scripts.sil.org/

xetex and is included with TEX-Live1 and and Mac-TEX2 distributions.

1.4 Installation

If you are familiar with installing Unix software on your system, then all you need
to know is that Ikarus uses the standard installation method found in most other
Unix software. Simply run the following commands from the shell:

$ tar -zxf ikarus-n.n.n.tar.gz

$ cd ikarus-n.n.n

$ ./configure [--prefix=path] [CFLAGS=-I/dir] [LDFLAGS=-L/dir]

$ make

$ make install

$

The rest of this section describes the build process in more details. It is targeted to
users who are unfamiliar with steps mentioned above.

1http://tug.org/texlive/
2http://tug.org/mactex/

http://sourceware.org/libffi/
http://sourceware.org/libffi/
http://scripts.sil.org/xetex
http://scripts.sil.org/xetex
http://tug.org/texlive/
http://tug.org/mactex/
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1.4.1 Installation details

1. Download the Ikarus source distribution. The source is distributed as a gzip-
compressed tar file (ikarus-n.n.n.tar.gzwhere n.n.n is a 3-digit number
indicating the current revision). The latest revision can be downloaded from
the following URL:
http://www.cs.indiana.edu/~aghuloum/ikarus/

2. Unpack the source distribution package. From your shell command, type:

$ tar -zxf ikarus-n.n.n.tar.gz

$

This creates the base directory ikarus-n.n.n.

3. Configure the build system by running the configure script located in the
base directory. To do this, type the following commands:

$ cd ikarus-n.n.n

$ ./configure

checking build system type... i386-apple-darwin8.10.1

checking host system type... i386-apple-darwin8.10.1

...

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating scheme/Makefile

config.status: creating doc/Makefile

config.status: executing depfiles commands

$

This configures the system to be built then installed in the system-wide loca-
tion (binaries are installed in /usr/local/bin) . If you wish to install it in
another location (e.g. in your home directory), you can supply a --prefix

location to the configure script as follows:

$ ./configure --prefix=/path/to/installation/location

http://www.cs.indiana.edu/~aghuloum/ikarus/
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The configure script will fail if it cannot locate the location where GMP
is installed. If running configure fails to locate GMP, you should supply
the location in which the GMP header file, gmp.h, and the GMP library file,
libgmp.so, are installed. This is done by supplying the two paths in the
CFLAGS and LDFLAGS arguments:

$ ./configure CFLAGS=-I/path/to/include LDFLAGS=-L/path/to/lib

If you wish to enable support for accessing and calling to/from foreign li-
braries, you need to configure Ikarus with the --enable-libffi option and
supply the approriate CFLAGS and LDFLAGS as needed.

$ ./configure --enable-libffi \

[CFLAGS=/path/to/ffi.h] \

[LDFLAGS=/path/to/libffi.so|.dylib|.dll]

4. Build the system by running:

$ make

This performs two tasks. First, it builds the ikarus executable from the C
files located in the src directory. It then uses the ikarus executable and the
pre-built ikarus.boot.orig boot file to rebuild the Scheme boot image file
ikarus.boot from the Scheme sources located in the scheme directory.

5. Install Ikarus by typing:

$ make install

If you are installing Ikarus in a system-wide location, you might need to have
administrator privileges (use the sudo or su commands).

6. Test that Ikarus runs from the command line.

$ ikarus

Ikarus Scheme version 0.0.4

Copyright (c) 2006-2008 Abdulaziz Ghuloum

>
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If you get the prompt, then Ikarus was successfully installed on your system.
You may need to update the PATH variable in your environment to contain
the directory in which the ikarus executable was installed.
Do not delete the ikarus-n.n.n directory from which you configured, built,
and installed Ikarus. It will be needed if you decide at a later time to uninstall
Ikarus.

1.4.2 Uninstalling Ikarus

To uninstall Ikarus, use the following steps:

$ cd path/to/ikarus-n.n.n

$ make uninstall

$

1.5 Command-line switches

The ikarus executable recognizes a few command-line switches that influence how
Ikarus starts.

• ikarus -h

The presence of the -h flag causes ikarus to display a help message then
exits. The help message summarizes the command-line switches. No further
action is performed.

• ikarus -b path/to/boot/file.boot

The -b flag (which requires an extra argument) directs ikarus to use the
specified boot file as the initial system boot file. The boot file is a binary
file that contains all the code and data of the Scheme system. In the absence
of -b flag, the executable will use the default boot file. Running ikarus -h

shows the location where the default boot file was installed.
The rest of the command-line arguments are recognized by the standard
Scheme run time system. They are processed after the boot file is loaded.
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• ikarus files ... --r6rs-script script-file arguments ...

The --r6rs-script argument instructs Ikarus that the supplied file is an
R6RS script. The optional list of filesmust be paths to files, each containing
a set of libraries that Ikarus must load, sequentially, before running the R6RS
script script-file. See Section 2.1 for a short introduction to writing R6RS
scripts. The script file name and any additional optional arguments can be
obtained by calling the command-line procedure.

$ cat test.ss

(import (rnrs))

(write (command-line))

(newline)

$ ikarus --r6rs-script test.ss hi there

("test.ss" "hi" "there")

$

• ikarus files ... [-- arguments ...]

The lack of an --r6rs-script argument causes Ikarus to start in interac-
tive mode. Each of the files is first loaded, in the interaction environ-
ment. The interaction environment initially contains all the bindings ex-
ported from the (ikarus) library (see Chapter 3). The optional arguments
following the -- marker can be obtained by calling the command-line pro-
cedure. In interactive mode, the first element of the returned list will be the
string "*interactive*", corresponding to the script name in R6RS-script
mode.

Note: The interactive mode is intended for quickly experimenting with
the built-in features. It is intended neither for developing applications
nor for writing any substantial pieces of code.

1.6 Using scheme-script

Scheme scripts can be executed using the ikarus --r6rs-script script-name

command as described in the previous section. For convenience, Ikarus follows
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the R6RS recommendations and installs a wrapper program called scheme-script.
Typically, a script you write would start with a #! line that directs your operating
system to the interpreter used to evaluate the script file. The following example
shows a very simple script that uses the scheme-script command.

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World\n")

If the above script was placed in a file called hello-world, then one can make it
executable using the chmod Unix command.

$ cat hello-world

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World\n")

$ chmod 755 hello-world

$ ./hello-world

Hello World

$

Under Mac OS X, if a script name ends with the .command exten-
sion, then it can be executed from the Finder by double-clicking on
it. This brings up a terminal window in which the script is executed.
The .command extension can be hidden from the Get Info item from the
Finder’s File menu.
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1.7 Mapping library names to file names

The name of an R6RS library consists of a non-empty list of identifiers (symbols),
followed by an optional version number. All of the standard R6RS libraries are
built into Ikarus, thus importing any one of them does not require any special
action other than listing the library name in the import part of a library or a script.
The same holds for the (ikarus) library (chapter 3, page 27).

When importing a user library, Ikarus uses a simple mechanism to map library
names to file names. A library name is converted to a file path by joining the
library identifiers with a path separator, e.g. "/".

Library Name ⇒ File name
(foo) ⇒ foo

(foo bar) ⇒ foo/bar

(foo bar baz) ⇒ foo/bar/baz

Having mapped a library name to a file path, Ikarus attempts to locate that file
in one of several locations. The locations attempted depend on two settings: the
search path and the file extension set (e.g., .sls, .ss, .scm, etc.). First, Ikarus
attempts to locate the file in the current working directory from which Ikarus was
invoked. In the current working directory, Ikarus enumerates all file extensions
first before searching other locations. If the file is not found in the current directory,
Ikarus tries to find it in the Ikarus library directory. The Ikarus library directory
is determined when Ikarus is installed (based on the --prefix argument that was
passed to the configure script). If Ikarus failes to locate the library file, it raises
an exception and exits.

Tip: Use simple library names for the libraries that you define. Library
names that contain non-printable characters, complex punctuations,
or unicode may pose a challenge for some operating systems. If Ikarus
cannot find a library, it will raise an error listing the locations in which
it looked, helping you move the library file to a place where Ikarus can
find it.
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1.8 Writing cross-implementation libraries

When searching for a library, Ikarus appends an extension (e.g., .ss) to the appro-
priate file name (e.g., foo/bar). The initial set of file extensions are:
/main.ikarus.sls, /main.ikarus.ss, /main.ikarus.scm, /main.sls, /main.ss,
/main.scm, .ikarus.sls, .ikarus.ss, .ikarus.scm, .sls, .ss, and .scm.

The list of file extensions are searched sequentially. As a consequence, files ending
with the .ikarus.* extensions are given precedence over files that have generic
Scheme extensions. The rationale for this behavior is to facilitate writing cross-
implementation libraries: ones that take advantage of implementation-specific fea-
tures, while at the same time provide a fail-safe alternative for other R6RS imple-
mentations.

Consider for example a program which would like to use the pretty-print pro-
cedure to format some code, and suppose further that pretty printing is just a nice
add-on (e.g., using write suffices, but pretty-printing is just prettier) Ikarus exports a
good pretty-printing facility in its (ikarus) library. However, since pretty-print
is not a standard procedure, a program that uses it would be rendered unportable
to other R6RS Scheme implementations.

The programmer can put the .ikarus.* extensions to use in this situation. First,
the programmer writes two versions of a (pretty-printing) library: one for use
by Ikarus, and one portable for other implementations.

(library (pretty-printing) ;;; this is pretty-printing.ikarus.ss

(export pretty-print) ;;; can only be used by Ikarus

(import (only (ikarus) pretty-print)))

(library (pretty-printing) ;;; this is pretty-printing.sls

(export pretty-print) ;;; *portable* though not very pretty.

(import (rnrs)) ;;; for any other implementation

(define (pretty-print x port)

(write x port)

(newline port)))
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The /main.* extensions serve a different purpose. Often times, a set of libraries are
distributed together as a package and it is convenient for the programmer to group
related files in directories. If a package contains the libraries (foo), (foo core),
and (foo compat), then putting all such library files together in one directory
makes it easier to package, install, and remove these libraries en masse. The layout
of the package would look like:

foo/README : ignored by Ikarus
foo/COPYING :

foo/main.ss : (foo) implementation independent
foo/core.ss : (foo core)

foo/compat.ss : (foo compat) default R6RS library
foo/compat.ikarus.ss : specific for Ikarus
foo/compat.mzscheme.ss : specific for MzScheme

By default, running the configure script installs a set of contributed libraries into
the /usr/local/lib/ikarus directory. If a --prefix DIR argument was supplied
to configure, then the libraries are installed in the DIR/ikarus/lib directory.

You may install additional libraries into the Ikarus library directory. Doing so
makes them available for import into other libraries and script regardless of where
the importing code is located or the current directory in which it is executed.

1.9 Defining IKARUS_LIBRARY_PATH

There may be situations in which you may wish to install your own libraries into a
different location. For example, you may not have sufficient administrative privi-
leges to write to the system directory, or you may wish to keep your own libraries
separate from the standard libraries. Whatever the reason is, your can store your
library files in any location you want and set up the IKARUS_LIBRARY_PATH envi-
ronment variable to point to these locations. The value of IKARUS_LIBRARY_PATH
is a colon-separated list of directories in which Ikarus will search.

For example, suppose your script imports the (streams derived) library. First,
Ikarus will map the library name to the file path streams/derived.ss. Suppose
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that Ikarus was installed using the --prefix /usr/local configuration option,
and suppose further that the value of IKARUS_LIBRARY_PATH is set by the user to
be /home/john/ikarus-libraries:/home/john/srfis. Ikarus will search in the
following locations in sequence until it finds the file it is looking for.

./streams/derived.ss

/home/john/ikarus-libraries/streams/derived.ss

/home/john/srfis/streams/derived.ss

/usr/local/lib/ikarus/streams/derived.ss

The method in which the value of IKARUS_LIBRARY_PATH is defined is typically
shell dependant. If you use GNU Bash, you typically set the values of environment
variables in the ~/.bash_profile or ~/.bashrc file by adding the following lines:

IKARUS_LIBRARY_PATH=/path/to/some/directory:/and/another

export IKARUS_LIBRARY_PATH
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Chapter 2

R6RS Crash Course

The major difference between R5RS and R6RS is the way in which programs are
loaded and evaluated.

In R5RS, Scheme implementations typically start as an interactive session (often
referred to as the REPL, or read-eval-print-loop). Inside the interactive session, the
user enters definitions and expressions one at a time using the keyboard. Files,
which also contain definitions and expressions, can be loaded and reloaded by
calling the load procedure. The environment in which the interactive session starts
often contains implementation-specific bindings that are not found R5RS and users
may redefine any of the initial bindings. The semantics of loading a file depends
on the state of the environment at the time the file contents are evaluated.

R6RS differs from R5RS in that it specifies how whole programs, or scripts, are com-
piled and evaluated. An R6RS script is closed in the sense that all the identifiers
found in the body of the script must either be defined in the script or imported
from a library. R6RS also specifies how libraries can be defined and used. While
files in R5RS are typically loaded imperatively into the top-level environments, R6RS
libraries are imported declaratively in scripts and in other R6RS libraries.

15
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2.1 Writing a simple script

An R6RS script is a set of definitions and expressions preceded by an import form.
The import form specifies the language (i.e. the variable and keyword bindings)
in which the library body is written. A very simple example of an R6RS script is
listed below.

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World!\n")

The first line imports the (rnrs) library. All the bindings exported from the (rnrs)
library are made available to be used within the body of the script. The exports
of the (rnrs) library include variables (e.g. cons, car, display, etc.) and key-
words (e.g. define, lambda, quote, etc.). The second line displays the string Hello
World! followed by a new line character.

In addition to expressions, such as the call to display in the previous example, a
script may define some variables. The script below defines the variable greeting
and calls the procedure bound to it.

#!/usr/bin/env scheme-script

(import (rnrs))

(define greeting

(lambda ()

(display "Hello World!\n")))

(greeting)

Additional keywords may be defined within a script. In the example below, we
define the (do-times n exprs ...) macro that evaluates the expressions exprs
n times. Running the script displays Hello World 3 times.
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#!/usr/bin/env scheme-script

(import (rnrs))

(define greeting

(lambda ()

(display "Hello World!\n")))

(define-syntax do-times

(syntax-rules ()

[(_ n exprs ...)

(let f ([i n])

(unless (zero? i)

exprs ...

(f (- i 1))))]))

(do-times 3 (greeting))

2.2 Writing simple libraries

A script is intended to be a small piece of the program—useful abstractions belong
to libraries. The do-times macro that was defined in the previous section may be
useful in places other than printing greeting messages. So, we can create a small
library, (iterations) that contains common iteration forms.

An R6RS library form is made of four essential parts: (1) the library name, (2) the
set of identifiers that the library exports, (3) the set of libraries that the library
imports, and (4) the body of the library.

The library name can be any non-empty list of identifiers. R6RS-defined libraries
includes (rnrs), (rnrs unicode), (rnrs bytevectors), and so on.

The library exports are a set of identifiers that are made available to importing
libraries. Every exported identifier must be bound: it may either be defined in
the library or imported using the import form. Library exports include variables,
keywords, record names, and condition names.
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Library imports are similar to script imports: they specify the set of libraries whose
exports are made visible within the body of the library.

The body of a library contains definitions (variable, keyword, record, condition,
etc.) followed by an optional set of expressions. The expressions are evaluated for
side effect when needed.

The (iteration) library may be written as follows:

(library (iteration)

(export do-times)

(import (rnrs))

(define-syntax do-times

(syntax-rules ()

[(_ n exprs ...)

(let f ([i n])

(unless (zero? i)

exprs ...

(f (- i 1))))])))

To use the (iteration) library in our script, we add the name of the library to
the script’s import form. This makes all of (iteration)’s exported identifiers, e.g.
do-times, visible in the body of the script.

#!/usr/bin/env scheme-script

(import (rnrs) (iteration))

(define greeting

(lambda ()

(display "Hello World!\n")))

(do-times 3 (greeting))
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2.3 R6RS record types

R6RS provides ways for users to define new types, called record types. A record is
a fixed-size data structure with a unique type (called a record type). A record may
have any finite number of fields that hold arbitrary values. This section briefly
describes what we expect to be the most commonly used features of the record
system. Full details are in the R6RS Standard Libraries document[6].

2.3.1 Defining new record types

To define a new record type, use the define-record-type form. For example,
suppose we want to define a new record type for describing points, where a point
is a data structure that has two fields to hold the point’s x and y coordinates. The
following definition achieves just that:

(define-record-type point

(fields x y))

The above use of define-record-type defines the following procedures automat-
ically for you:

• The constructor make-point that takes two arguments, x and y and returns
a new record whose type is point.

• The predicate point? that takes an arbitrary value and returns #t if that
value is a point, #f otherwise.

• The accessors point-x and point-y that, given a record of type point, return
the value stored in the x and y fields.

Both the x and y fields of the point record type are immutable, meaning that once
a record is created with specific x and y values, they cannot be changed later. If
you want the fields to be mutable, then you need to specify that explicitly as in the
following example.
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(define-record-type point

(fields (mutable x) (mutable y)))

This definition gives us, in addition to the constructor, predicate, and accessors,
two additional procedures:

• The mutators point-x-set! and point-y-set! that, given a record of type
point, and a new value, sets the value stored in the x field or y field to the
new value.

Note: Records in Ikarus have a printable representation in order to
enable debugging programs that use records. Records are printed in
the #[type-name field-values ...] notation. For example, (write
(make-point 1 2)) produces #[point 1 2].

2.3.2 Extending existing record types

A record type may be extended by defining new variants of a record with additional
fields. In our running example, suppose we want to define a colored-point record
type that, in addition to being a point, it has an additional field: a color. A simple
way of achieving that is by using the following record definition:

(define-record-type cpoint

(parent point)

(fields color))

Here, the definition of cpoint gives us:

• A constructor make-cpoint that takes three arguments (x, y, and color in
that order) and returns a cpoint record.
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• A predicate cpoint? that takes a single argument and determines whether
the argument is a cpoint record.

• An accessor cpoint-color that returns the value of the color field of a
cpoint object.

All procedures that are applicable to records of type point (point?, point-x,
point-y) are also applicable to records of type cpoint since a cpoint is also a
point.

2.3.3 Specifying custom constructors

The record type definitions explained so far use the default constructor that takes
as many arguments as there are fields and returns a new record type with the val-
ues of the fields initialized to the arguments’ values. It is sometimes necessary or
convenient to provide a constructor that performs more than the default construc-
tor. For example, we can modify the definition of our point record so that the
constructor takes either no arguments, in which case it would return a point lo-
cated at the origin, or two arguments specifying the x and y coordinates. We use
the protocol keyword for specifying such constructor as in the following example:

(define-record-type point

(fields x y)

(protocol

(lambda (new)

(case-lambda

[(x y) (new x y)]

[() (new 0 0)]))))

The protocol here is a procedure that takes a constructor procedure new (new takes
as many arguments as there are fields.) and returns the desired custom constructor
that we want (The actual constructor will be the value of the case-lambda expres-
sion in the example above). Now the constructor make-point would either take
two arguments which constructs a point record as before, or no arguments, in
which case (new 0 0) is called to construct a point at the origin.
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Another reason why one might want to use custom constructors is to precompute
the initial values of some fields based on the values of other fields. An example
of this case is adding a distance field to the record type which is computed as
d =

√
x2 + y2. The protocol in this case may be defined as:

(define-record-type point

(fields x y distance)

(protocol

(lambda (new)

(lambda (x y)

(new x y (sqrt (+ (expt x 2) (expt y 2))))))))

Note that derived record types need not be modified when additional fields are
added to the parent record type. For example, our cpoint record type still works
unmodified even after we added the new distance field to the parent. Calling
(point-distance (make-cpoint 3 4 #xFF0000)) returns 5.0 as expected.

2.3.4 Custom constructors for derived record types

Just like how base record types (e.g. point in the running example) may have a
custom constructor, derived record types can also have custom constructors that do
other actions. Suppose that you want to construct cpoint records using an optional
color that, if not supplied, defaults to the value 0. To do so, we supply a protocol
argument to define-record-type. The only difference here is that the procedure
new is a curried constructor. It first takes as many arguments as the constructor of
the parent record type, and returns a procedure that takes the initial values of the
new fields.

In our example, the constructor for the point record type takes two arguments.
cpoint extends point with one new field. Therefore, new in the definition below
first takes the arguments for point’s constructor, then takes the initial color value.
The definition below shows how the custom constructor may be defined.
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(define-record-type cpoint

(parent point)

(fields color)

(protocol

(lambda (new)

(case-lambda

[(x y c) ((new x y) c)]

[(x y) ((new x y) 0)]))))

2.4 Exception handling

The procedure with-exception-handler allows the programmer to specify how
to handle exceptional situations. It takes two procedures as arguments:

• An exception handler which is a procedure that takes a single argument, the
object that was raised.

• A body thunk which is a procedure with no arguments whose body is evalu-
ated with the exception handler installed.

In addition to installing exception handlers, R6RS provides two ways of raising
exceptions: raise and raise-continuable. We describe the raise-continuable
procedure first since it’s the simpler of the two. For the code below, assume that
print is defined as:

(define (print who obj)

(display who)

(display ": ")

(display obj)

(newline))

The first example, below, shows how a simple exception handler is installed. Here,
the exception handler prints the object it receives and returns the symbol there.
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The call to raise-continuable calls the exception handler, passing it the symbol
here. When the handler returns, the returned value becomes the value of the call
to raise-continuable.

(with-exception-handler

(lambda (obj) ;;; prints

(print "handling" obj) ;;; handling: here

'there) ;;; returned: there

(lambda ()

(print "returned" (raise-continuable 'here))))

Exceptional handlers may nest, and in that case, if an exception is raised while
evaluating an inner handler, the outer handler is called as the following example
illustrates:

(with-exception-handler

(lambda (obj) ;;; prints

(print "outer" obj) ;;; inner: here

'outer) ;;; outer: there

(lambda () ;;; returned: outer

(with-exception-handler

(lambda (obj)

(print "inner" obj)

(raise-continuable 'there))

(lambda ()

(print "returned" (raise-continuable 'here))))))

In short, with-exception-handler binds an exception handler within the dynamic
context of evaluating the thunk, and raise-continuable calls it.

The procedure raise is similar to raise-continuable except that if the handler
returns, a new exception is raised, calling the next handler in sequence until the
list of handlers is exhausted.
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(call/cc ;;; prints

(lambda (escape) ;;; inner: here

(with-exception-handler ;;; outer: #[condition ---]

(lambda (obj) ;;; returns

(print "outer" obj) ;;; 12

(escape 12))

(lambda ()

(with-exception-handler

(lambda (obj)

(print "inner" obj)

'there)

(lambda ()

(print "returned" (raise 'here))))))))

Here, the call to raise calls the inner exception handler, which returns, causing
raise to re-raise a non-continuable exception to the outer exception handler. The
outer exception handler then calls the escape continuation.

The following procedure provides a useful example of using the exception handling
mechanism. Consider a simple definition of the procedure configuration-option
which returns the value associated with a key where the key/value pairs are stored
in an association list in a configuration file.

(define (configuration-option filename key)

(cdr (assq key (call-with-input-file filename read))))

Possible things may go wrong with calling configuration-option including errors
opening the file, errors reading from the file (file may be corrupt), error in assq

since what’s read may not be an association list, and error in cdr since the key may
not be in the association list. Handling all error possibilities is tedious and error
prone. Exceptions provide a clean way of solving the problem. Instead of guarding
against all possible errors, we install a handler that suppresses all errors and returns
a default value if things go wrong. Error handling for configuration-optionmay
be added as follows:
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(define (configuration-option filename key default)

(define (getopt)

(cdr (assq key (call-with-input-file filename read))))

(call/cc

(lambda (k)

(with-exception-handler

(lambda (_) (k default))

getopt))))



Chapter 3

The (ikarus) library

In addition to the libraries listed in the R6RS standard, Ikarus contains the (ikarus)
library which provides additional useful features. The (ikarus) library is a com-
posite library—it exports a superset of all the supported bindings of R6RS. While
not all of the exports of (ikarus) are documented at this time, this chapter at-
tempts to describe a few of these useful extensions. Extensions to Scheme’s lexical
syntax are also documented.

#!ikarus reader syntax

Ikarus extends Scheme’s lexical syntax (R6RS Chapter 4) in a variety of ways in-
cluding:
• end-of-file marker, #!eof (page 29)
• gensym syntax, #{gensym} (page 37)
• graph syntax, #nn= #nn# (page 42)

The syntax extensions are made available by default on all input ports, until the
#!r6rs token is read. Thus, reading the #!r6rs token disables all extensions to the
lexical syntax on the specific port, and the #!ikarus enables them again.

If you are writing code that is intended to be portable across different Scheme
implementations, we recommend adding the #!r6rs token to the top of every script

27
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and library that you write. This allows Ikarus to alert you when using non-portable
features. If you’re writing code that’s intended to be Ikarus-specific, we recommend
adding the #!ikarus token in order to get an immediate error when your code is
run under other implementations.

port-mode procedure
(port-mode ip)

The port-mode procedure accepts an input port as an argument and returns one
of r6rs-mode or ikarus-mode as a result. All input ports initially start in the
ikarus-mode and thus accept Ikarus-specific reader extensions. When the #!r6rs
token is read from a port, its mode changes to ikarus-mode.

> (port-mode (current-input-port))

ikarus-mode

> #!r6rs (port-mode (current-input-port))

r6rs-mode

> #!ikarus (port-mode (current-input-port))

ikarus-mode

set-port-mode! procedure
(set-port-mode! ip mode)

The set-port-mode! proceduremodifies the lexical syntax accepted by subsequent
calls to read on the input port. The mode is a symbol which should be one of
r6rs-mode or ikarus-mode. The effect of setting the port mode is similar to that
of reading the #!r6rs or #ikarus from that port.

> (set-port-mode! (current-input-port) 'r6rs-mode)

> (port-mode (current-input-port))

r6rs-mode
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#!eof reader syntax

The end-of-file marker, #!eof, is an extension to the R6RS syntax. The primary
utility of the #!eof marker is to stop the reader (e.g. read and get-datum) from
reading the rest of the file.

#!/usr/bin/env scheme-script

(import (ikarus))

<some code>

(display "goodbye\n")

#!eof

<some junk>

The #!eof marker also serves as a datum in Ikarus, much like #t and #f, when it
is found inside other expressions.

> (eof-object)

#!eof

> (read (open-input-string ""))

#!eof

> (read (open-input-string "#!eof"))

#!eof

> (quote #!eof)

#!eof

> (eof-object? '#!eof)

#t

> #!r6rs #!eof

Unhandled exception

Condition components:

1. &error

2. &who: tokenize

3. &message: "invalid syntax: #!e"

> #!ikarus #!eof

$
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3.1 Parameters

Parameters in Ikarus1 are intended for customizing the behavior of a procedure
during the dynamic execution of some piece of code. Parameters are first class
entities (represented as procedures) that hold the parameter value. A parameter
procedure accepts either zero or one argument. If given no arguments, it returns
the current value of the parameter. If given a single argument, it must set the state
to the value of the argument. Parameters replace the older concept of using starred
*global* customization variables. For example, instead of writing:

(define *screen-width* 72)

and then mutating the variable *screen-width* with set!, we could wrap the
variable *screen-width* with a screen-width parameter as follows:

(define *screen-width* 72)

(define screen-width

(case-lambda

[() *screen-width*]

[(x) (set! *screen-width* x)]))

The value of screen-width can now be passed as argument, returned as a value,
and exported from libraries.

make-parameter procedure
(make-parameter x)

(make-parameter x f)

As parameters are common in Ikarus, the procedure make-parameter is defined to
model the common usage pattern of parameter construction.

(make-parameter x) constructs a parameter with x as the initial value. For ex-
ample, the code above could be written succinctly as:

1Parameters are found in many Scheme implementations such as Chez Scheme and MzScheme.



3.1. PARAMETERS 31

(define screen-width (make-parameter 72))

(make-parameter x f) constructs a parameter which filters the assigned values
through the procedure f. The initial value of the parameter is the result of calling
(f x). Typical uses of the filter procedure include checking some constraints on
the passed argument or converting it to a different data type. The screen-width

parameter may be constructed more robustly as:

(define screen-width

(make-parameter 72

(lambda (w)

(assert (and (integer? w) (exact? w)))

(max w 1))))

This definition ensures, through assert, that the argument passed is an exact in-
teger. It also ensures, through max that the assigned value is always positive.

parameterize syntax
(parameterize ([lhs* rhs*] ...) body body* ...)

Parameters can be assigned to by simply calling the parameter procedure with a
single argument. The parameterize syntax is used to set the value of a parameter
within the dynamic extent of the body body* ... expressions.

The lhs* ... are expressions, each of which must evaluate to a parameter. Such
parameters are not necessarily constructed by make-parameter—any procedure
that follows the parameters protocol works.

The advantage of using parameterize over explicitly assigning to parameters (same
argument applies to global variables) is that you’re guaranteed that whenever con-
trol exits the body of a parameterize expression, the value of the parameter is
reset back to what it was before the body expressions were entered. This is true
even in the presence of call/cc, errors, and exceptions.

The following example shows how to set the text property of a terminal window.
The parameter terminal-property sends an ANSI escape sequence to the terminal
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whenever the parameter value is changed. The use of terminal-property within
parameterize changes the property before (display "RED!") is called and resets
it back to normal when the body returns.

(define terminal-property

(make-parameter "0"

(lambda (x)

(display "\x1b;[")

(display x)

(display "m")

x)))

(display "Normal and ")

(parameterize ([terminal-property "41;37"])

(display "RED!"))

(newline)
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3.2 Local library imports

import syntax
(import import-spec* ...)

The import keyword which is exported from the (ikarus) library can be used
anywhere definitions can occur: at a script body, library’s top-level, or in internal
definitions context. The syntax of the local import form is similar to the import

that appears at the top of a library or a script form, and carries with it the same
restrictions: no identifier name may be imported twice unless it denotes the same
identifier; no identifier may be both imported and defined; and imported identifiers
are immutable.

Local import forms are useful for two reasons: (1) they minimize the namespace
clutter that usually occurs when many libraries are imported at the top level, and
(2) they limit the scope of the import and thus help modularize a library’s depen-
dencies.

Suppose you are constructing a large library and at some point you realize that
one of your procedures needs to make use of some other library for performing a
specific task. Importing that library at top level makes it available for the entire
library. Consequently, even if that library is no longer used anywhere in the code
(say when the code that uses it is deleted), it becomes very hard to delete the
import without first examiniming the entire library body for potential usage leaks.
By locally importing a library into the appropriate scope, we gain the ability to
delete the import form when the procedure that was using it is deleted.
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3.3 Local modules

This section is not documented yet. Please refer to Section 10.5 of Chez Scheme
User’s Guide [1], Chapter 3 of Oscar Waddel’s Ph.D Thesis [7], and its POPL99
paper [8] for details on using the module and import keywords. Ikarus’s internal
module system is similar in spirit to that of Chez Scheme.

module syntax
(module M definitions ... expressions ...)

(module definitions ... expressions ...)

import syntax
(import M)
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3.4 Gensyms

Gensym stands for a generated symbol—a fresh symbol that is generated at run time
and is guaranteed to be not eq? to any other symbol present in the system. Gensyms
are useful in many applications including expanders, compilers, and interpreters
when generating an arbitrary number of unique names is needed.

Ikarus is similar to Chez Scheme in that the readers (including the read procedure)
and writers (including write and pretty-print) maintain the read/write invari-
ance on gensyms. When a gensym is written to an output port, the system auto-
matically generates a random unique identifier for the gensym. When the gensym
is read back though the #{gensym} read syntax, a new gensym is not regenerated,
but instead, it is looked up in the global symbol table.

A gensym’s name is composed of two parts: a pretty string and a unique string. The
Scheme procedure symbol->string returns the pretty string of the gensym and not
its unique string. Gensyms are printed by default as
#{pretty-string unique-string}.

gensym procedure
(gensym)

(gensym string)

(gensym symbol)

The procedure gensym constructs a new gensym. If passed no arguments, it con-
structs a gensym with no pretty name. The pretty name is constructed when
and if the pretty name of the resulting gensym is needed. If gensym is passed a
string, that string is used as the pretty name. If gensym is passed a symbol, the
pretty name of the symbol is used as the pretty name of the returned gensym. See
gensym-prefix (page 44) and gensym-count (page 45) for details.

> (gensym)

#{g0 |y0zf>GlFvcTJE0xw|}

> (gensym)

#{g1 |U%X&sF6kX!YC8LW=|}

> (eq? (gensym) (gensym))

#f
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(gensym string) constructs a new gensym with string as its pretty name. Simi-
larly, (gensym symbol) constructs a new gensym with the pretty name of symbol,
if it has one, as its pretty name.

> (gensym "foo")

#{foo |>VgOllCM&$dSvRN=|}

> (gensym 'foo)

#{foo |!TqQLmtw2hoEYfU>|}

> (gensym (gensym 'foo))

#{foo |N2C>5O0>C?OROUBU|}

gensym? procedure
(gensym? x)

The gensym? predicate returns #t if its argument is a gensym, and returns #f oth-
erwise.

> (gensym? (gensym))

#t

> (gensym? 'foo)

#f

> (gensym? 12)

#f

gensym->unique-string procedure
(gensym->unique-string gensym)

The gensym->unique-string procedure returns the unique name associated with
the gensym argument.

> (gensym->unique-string (gensym))

"YukrolLMgP?%ElcR"
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#{gensym} reader syntax
#{unique-name}

#{pretty-name unique-name}

#:pretty-name

Ikarus’s read and write procedures extend the lexical syntax of Scheme by the
ability to read and write gensyms using one of the three forms listed above.

#{unique-name} constructs, at read time, a gensym whose unique name is the one
specified. If a gensym with the same unique name already exists in the system’s
symbol table, that gensym is returned.

> '#{some-long-name}

#{g0 |some-long-name|}

> (gensym? '#{some-long-unique-name})

#t

> (eq? '#{another-unique-name} '#{another-unique-name})

#t

The two-part #{pretty-name unique-name} gensym syntax is similar to the syn-
tax shown above with the exception that if a new gensym is constructed (that is,
if the gensym did not already exist in the symbol table), the pretty name of the
constructed gensym is set to pretty-name.

> '#{foo unique-identifier}

#{foo |unique-identifier|}

> '#{unique-identifier}

#{foo |unique-identifier|}

> '#{bar unique-identifier}

#{foo |unique-identifier|}

The #:pretty-name form constructs, at read time, a gensym whose pretty name
is pretty-name and whose unique name is fresh. This form guarantees that the
resulting gensym is not eq? to any other symbol in the system.

> '#:foo
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#{foo |j=qTGlEwS/Zlp2Dj|}

> (eq? '#:foo '#:foo)

#f

generate-temporaries example

The (rnrs syntax-case) library provides a generate-temporaries procedure,
which takes a syntax object (representing a list of things) and returns a list of fresh
identifiers. Using gensym, that procedure can be defined as follows:

(define (generate-temporaries* stx)

(syntax-case stx ()

[(x* ...)

(map (lambda (x)

(datum->syntax #'unimportant

(gensym

(if (identifier? x)

(syntax->datum x)

't))))

#'(x* ...))]))

The above definition works by taking the input stx and destructuring it into the
list of syntax objects x* .... The inner procedure maps each x into a new syntax
object (constructed with datum->syntax). The datum is a gensym, whose name is
the same name as x if x is an identifier, or the symbol t if x is not an identifier. The
output of generate-temporaries* generates names similar to their input counter-
part:

> (print-gensym #f)

> (generate-temporaries* #'(x y z 1 2))

(#<syntax x> #<syntax y> #<syntax z> #<syntax t> #<syntax t>)
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3.5 Printing

pretty-print procedure
(pretty-print datum)

(pretty-print datum output-port)

The procedure pretty-print is intended for printing Scheme data, typically Scheme
programs, in a format close to how a Scheme programmer would write it. Unlike
write, which writes its input all in one line, pretty-print inserts spaces and new
lines in order to produce more pleasant output.

(define fact-code

'(letrec ([fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))])

(fact 5)))

> (pretty-print fact-code)

(letrec ((fact

(lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))

(fact 5))

The second argument to pretty-print, if supplied, must be an output port. If not
supplied, the current-output-port is used.

Limitations: As shown in the output above, the current implemen-
tation of pretty-print does not handle printing of square brackets
properly.

pretty-width parameter
(pretty-width)

(pretty-width n)

The parameter pretty-width controls the number of characters after which the
pretty-print starts breaking long lines into multiple lines. The initial value of
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pretty-width is set to 60 characters, which is suitable for most terminals and
printed material.

> (parameterize ([pretty-width 40])

(pretty-print fact-code))

(letrec ((fact

(lambda (n)

(if (zero? n)

1

(* n (fact (- n 1)))))))

(fact 5))

Note that pretty-width does not guarantee that the output will not extend be-
yond the specified number. Very long symbols, for examples, cannot be split into
multiple lines and may force the printer to go beyond the value of pretty-width.

format procedure
(format fmt-string args ...)

The procedure format produces a string formatted according to fmt-string and
the supplied arguments. The format string contains markers in which the string
representation of each argument is placed. The markers include:

"~s" instructs the formatter to place the next argument as if the procedure write
has printed it. If the argument contains a string, the string will be quoted and
all quotes and backslashes in the string will be escaped. Similarly, characters
will be printed using the #\x notation.

"~a" instructs the formatter to place the next argument as if the procedure display
has printed it. Strings and characters are placed as they are in the output.

"~b" instructs the formatter to convert the next argument to its binary (base 2)
representation. The argument must be an exact number. Note that the #b

numeric prefix is not produced in the output.

"~o" is similar to "~b" except that the number is printed in octal (base 8).

"~x" is similar to "~b" except that the number is printed in hexadecimal (base 16).
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"~d" outputs the next argument, which can be an exact or inexact number, in its
decimal (base 10) representation.

"~~" instructs the formatter to place a tilde character, ~, in the output without
consuming an argument.

Note that the #b, #o, and #x numeric prefixes are not added to the output when ~b,
~o, and ~x are used.

> (format "message: ~s, ~s, and ~s" 'symbol "string" #\c)

"message: symbol, \"string\", and #\\c"

> (format "message: ~a, ~a, and ~a" 'symbol "string" #\c)

"message: symbol, string, and c"

printf procedure
(printf fmt-string args ...)

The procedure printf is similar to format except that the output is sent to the
current-output-port instead of being collected in a string.

> (let ([n (+ (expt 2 32) #b11001)])

(printf "~d = #b~b = #x~x\n" n n n))

4294967321 = #b100000000000000000000000000011001 = #x100000019

fprintf procedure
(fprintf output-port fmt-string args ...)

The procedure fprintf is similar to printf except that the output port to which
the output is sent is specified as the first argument.

print-graph parameter
(print-graph)
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(print-graph #t)

(print-graph #f)

The graph notation is a way of marking and referencing parts of a data structure
and, consequently, creating shared and cyclic data structures at read time instead
of resorting to explicit mutation at run time. The #n= marks the following data
structure with mark n, where n is a nonnegative integer. The #n# references the
data structure marked n. Marks can be assigned and referenced in any order but
each mark must be assigned to exactly once in an expression.

> (let ([x '#0=(1 2 3)])

(eq? x '#0#))

#t

> (let ([x '#0#] [y '#0=(1 2 3)])

(eq? x y))

#t

> (eq? (cdr '(12 . #1#)) '#1=(1 2 3))

#t

> (let ([x '#1=(#1# . #1#)])

(and (eq? x (car x))

(eq? x (cdr x))))

#t

The print-graph parameter controls how the writers (e.g. pretty-print and
write) handle shared and cyclic data structures. In Ikarus, all writers detect cyclic
data structures and they all terminate on all input, cyclic or otherwise.

If the value of print-graph is set to #f (the default), then the writers does not
attempt to detect shared data structures. Any part of the input that is shared is
printed as if no sharing is present. If the value of print-graph is set to #t, all
sharing of data structures is marked using the #n= and #n# notation.

> (parameterize ([print-graph #f])

(let ([x (list 1 2 3 4)])

(pretty-print (list x x x))))

((1 2 3 4) (1 2 3 4) (1 2 3 4))



3.5. PRINTING 43

> (parameterize ([print-graph #t])

(let ([x (list 1 2 3 4)])

(pretty-print (list x x x))))

(#0=(1 2 3 4) #0# #0#)

> (parameterize ([print-graph #f])

(let ([x (list 1 2)])

(let ([y (list x x x x)])

(set-car! (last-pair y) y)

(pretty-print (list y y)))))

(#0=((1 2) (1 2) (1 2) #0#) #0#)

> (parameterize ([print-graph #t])

(let ([x (list 1 2)])

(let ([y (list x x x x)])

(set-car! (last-pair y) y)

(pretty-print (list y y)))))

(#0=(#1=(1 2) #1# #1# #0#) #0#)

print-gensym parameter
(print-gensym)

(print-gensym #t)

(print-gensym #f)

(print-gensym 'pretty)

The parameter print-gensym controls how gensyms are printed by the various
writers.

If the value of print-gensym is #f, then gensym syntax is suppressed by the writers
and only the gensyms’ pretty names are printed. If the value of print-gensym is
#t, then the full #{pretty unique} syntax is printed. Finally, if the value of
print-gensym is the symbol pretty, then gensyms are printed using the #:pretty
notation.

> (parameterize ([print-gensym #f])

(pretty-print (list (gensym) (gensym))))
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(g0 g1)

> (parameterize ([print-gensym #t])

(pretty-print (list (gensym) (gensym))))

(#{g2 |KR1M2&CTt1<B0n/m|} #{g3 |FBAb&7NC6&=c82!O|})

> (parameterize ([print-gensym 'pretty])

(pretty-print (list (gensym) (gensym))))

(#:g4 #:g5)

The initial value of print-gensym is #t.

gensym-prefix parameter
(gensym-prefix)

(gensym-prefix string)

The parameter gensym-prefix specifies the string to be used as the prefix to gen-
erated pretty names. The default value of gensym-prefix is the string "g", which
causes generated strings to have pretty names in the sequence g0, g1, g2, etc.

> (parameterize ([gensym-prefix "var"]

[print-gensym #f])

(pretty-print (list (gensym) (gensym) (gensym))))

(var0 var1 var2)

Beware that the gensym-prefix controls how pretty names are generated, and has
nothing to do with how gensym constructs a new gensym. In particular, notice the
difference between the output in the first example with the output of the examples
below:

> (pretty-print

(parameterize ([gensym-prefix "var"] [print-gensym #f])

(list (gensym) (gensym) (gensym))))

(g3 g4 g5)
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> (let ([ls (list (gensym) (gensym) (gensym))])

(parameterize ([gensym-prefix "var"] [print-gensym #f])

(pretty-print ls)))

(var5 var6 var7)

gensym-count parameter
(gensym-count)

(gensym-count n)

The parameter gensym-count determines the number which is attached to the
gensym-prefix when gensyms’ pretty names are generated. The initial value of
gensym-count is 0 and is incremented every time a pretty name is generated. It
might be set to any non-negative integer value.

> (let ([x (gensym)])

(parameterize ([gensym-count 100] [print-gensym #f])

(pretty-print (list (gensym) x (gensym)))))

(g100 g101 g102)

Notice from all the examples so far that pretty names are generated in the order at
which the gensyms are printed, not in the order in which gensyms were created.
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3.6 Tracing

trace-define syntax
(trace-define (name . args) body body* ...)

(trace-define name expression)

The trace-define syntax is similar to define except that the bound value, which
must be a procedure, becomes a traced procedure. A traced procedure prints its
arguments when it is called and prints its values when it returns.

> (trace-define (fact n)

(if (zero? n) 1 (* n (fact (- n 1)))))

> (fact 5)

|(fact 5)

| (fact 4)

| |(fact 3)

| | (fact 2)

| | |(fact 1)

| | | (fact 0)

| | | 1

| | |1

| | 2

| |6

| 24

|120

120

The tracing facility in Ikarus preserves and shows tail recursion and distinguishes
it from non-tail recursion by showing tail calls starting at the same line in which
their parent was called.

> (trace-define (fact n)

(trace-define (fact-aux n m)

(if (zero? n) m (fact-aux (- n 1) (* n m))))

(fact-aux n 1))
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> (fact 5)

|(fact 5)

|(fact-aux 5 1)

|(fact-aux 4 5)

|(fact-aux 3 20)

|(fact-aux 2 60)

|(fact-aux 1 120)

|(fact-aux 0 120)

|120

120

Moreover, the tracing facility interacts well with continuations and exceptions.

> (call/cc

(lambda (k)

(trace-define (loop n)

(if (zero? n)

(k 'done)

(+ (loop (- n 1)) 1)))

(loop 5)))

|(loop 5)

| (loop 4)

| |(loop 3)

| | (loop 2)

| | |(loop 1)

| | | (loop 0)

done

trace-lambda syntax
(trace-lambda name args body body* ...)

The trace-lambda macro is similar to lambda except that the resulting procedure
is traced: it prints the arguments it receives and the results it returns.
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make-traced-procedure procedure
(make-traced-procedure name proc)

The procedure make-traced-procedure takes a name (typically a symbol) and a
procedure. It returns a procedure similar to proc except that it traces its arguments
and values.

> (define (fact n)

(if (zero? n)

(lambda (k) (k 1))

(lambda (k)

((fact (- n 1))

(make-traced-procedure `(k ,n)

(lambda (v)

(k (* v n))))))))

> (call/cc

(lambda (k)

((fact 5) (make-traced-procedure 'K k))))

|((k 1) 1)

|((k 2) 1)

|((k 3) 2)

|((k 4) 6)

|((k 5) 24)

|(K 120)

120
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3.7 Timing

This section describes some of Ikarus’s timing facilities which may be useful for
benchmarking and performance tuning.

time syntax
(time expression)

The time macro performs the following: it evaluates expression, then prints a
summary of the run time statistics, then returns the values returned by expression.
The run-time summary includes the number of bytes allocated, the number of
garbage collection runs, and the time spent in both the mutator and the collec-
tor.

> (let () ;;; 10 million

(define ls (time (vector->list (make-vector 10000000))))

(time (append ls ls))

(values))

running stats for (vector->list (make-vector 10000000)):

3 collections

672 ms elapsed cpu time, including 547 ms collecting

674 ms elapsed real time, including 549 ms collecting

120012328 bytes allocated

running stats for (append ls ls):

4 collections

1536 ms elapsed cpu time, including 1336 ms collecting

1538 ms elapsed real time, including 1337 ms collecting

160000040 bytes allocated

Note: The output listed above is just a sample that was taken at some point on some
machine. The output on your machine at the time you read this may vary.
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time-it procedure
(time-it who thunk)

The procedure time-it takes a datum denoting the name of the computation and
a thunk (i.e. a procedure with no arguments), invokes the thunk, prints the stats,
and returns the values obtained from invoking the thunk. If the value of who is
non-false, who is used when displaying the run-time statistics. If the value of who
is #f, then no name for the computation is displayed.

> (time-it "a very fast computation"

(lambda () (values 1 2 3)))

running stats for a very fast computation:

no collections

0 ms elapsed cpu time, including 0 ms collecting

0 ms elapsed real time, including 0 ms collecting

24 bytes allocated

1

2

3

> (time-it #f (lambda () 12))

running stats:

no collections

0 ms elapsed cpu time, including 0 ms collecting

0 ms elapsed real time, including 0 ms collecting

0 bytes allocated

12
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The (ikarus ipc) library

4.1 4.2 4.3
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4.1 Environment variables

When the operating system starts a process, it starts the process in some envi-
ronment that maps environment variables to values. Typical keys found in the
environment are HOME (pointing to the home directory of the user), PATH (contain-
ing a colon-separated list of directories to be searched when running a command
from the shell), SHELL, EDITOR, and PAGER. This section describes the procedures
provided by Ikarus for manipulating this environment.

The environment procedures are placed in the (ikarus ipc) library because they
provide a (limited) way for one process to communicate to a subprocess, akin to
parameter passing.

getenv procedure
(getenv key)

The procedure getenv retrieves the value associated with key (which must be a
string) in the environment. The value returned is a (utf8-decoded) string, or #f if
there is no mapping for key in the environment.

setenv procedure
(setenv key value)

(setenv key value overwrite?)

The procedure setenv sets the mapping of key to value in the environment. Both
key and value must be strings. If the overwrite? argument is provided and is #f,
setenv does not overwrite a value associated with key if one already exists. The
procedure setenv may raise an exception if the operating system cannot allocate
enough memory to hold the new mapping.

unsetenv procedure
(unsetenv key)

The procedure unsetenv removes key and its associated value (if one exists) from
the environment.
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Caveat: The underlying system procedure setenv may leak some
memory in some operating systems when passed some values. Ikarus
has no way of getting around this system limitation and thus may leak
some memory for some calls to setenv. Use sparingly.
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4.2 Subprocess communication

This section describes the facilities that Ikarus provides for starting subprocesses
and sending and receiving data through the subprocesses’ standard input, output,
and error ports.

system procedure
(system string)

The system procedure takes a string represeting an external shell command and
arguments and invokes the shell (typically sh on Unix systems) on this command.
The returned value from system is the exit status of the external command.

Ikarus’s system procedure is a thin wrapper around the system procedure in the
Standard C Library libc.

> (system "ls M*")

Makefile Makefile.am Makefile.in

0

process procedure
(process program-name args ...)

The process procedure takes as input a string representing the path to an exter-
nal program and a set of strings that are the arguments to the external program.
It invokes the program with the given arguments, and returns four values: (1) a
process identifier (pid), (2) an output port which pipes to the process’s stdin, (3)
an input port wired to the process’s stdout, and (4) an input port wired to the pro-
cess’s stderr. All three ports are blocking: reading and writing to any one of them
blocks Ikarus until the some bytes are available for reading or writing. Attempt-
ing to read from the process’s stdout port may block indefinitely if the external
program does not write anything (e.g., if it attempts to read from stdin instead).
Communicating with an external process must therefore be done according to the
protocol in which the external process communicates.
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process-nonblocking procedure
(process-nonblocking program-name args ...)

The procedure process-nonblocking is similar to the process procedure except
that the three returned ports are put in nonblocking mode. Attempting to perform
a read or write operation on a nonblocking port in which bytes are not available for
reading or writing causes Ikarus to enqueue the port with the continuation in which
the read/write operation occurs and attempt to dispatch previously enqueued ports
on which some bytes are ready for read or write. See Section 4.3 for more details
on blocking and nonblocking operations.

waitpid procedure
(waitpid)

(waitpid pid)

(waitpid pid block?)

(waitpid pid block? want-error?)

The waitpid procedure waits for the process with the given pid to terminate and,
if successful, returns a wstatus object encapsulating the wait status of the process.
Without arguments, waitpid defaults the pid to -1which allows one to wait for any
child process to exit. If the block? argument is true (the default), waitpid blocks
indefinitely waiting for a child process to exit. When block? is false, waitpid
returns immediately regardless of whether or not a child process has exited. The
want-error? controls what happens if block? was specified to be #f and no child
had exited. If want-error? is true (the default), an error is signaled. Otherwise,
waitpid returns #f if no process has exited. Operations on the wait status result
are listed below.

wstatus-pid procedure
(wstatus-pid wstatus)

The wstatus-pid returns the pid of the process whose status is recorded in the
wstatus object. This pid is most useful when the default pid of -1 is given to
waitpid and thus the pid of the exiting process is not known beforehand.
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wstatus-exit-status procedure
(wstatus-exit-status wstatus)

The procedure wstatus-exit-status returns the exit status of the child process.
It is typically 0 if the child exited normally and has other numeric values if the
child process encountered an error.

wstatus-received-signal procedure
(wstatus-received-signal wstatus)

The procedure wstatus-received-signal returns the name of the signal (or the
number of the signal if the name is not known) that caused the child process to
exit.

The signal name is one of the following symbols:

SIGABRT SIGALRM SIGBUS SIGCHLD SIGCONT SIGFPE SIGHUP

SIGILL SIGINT SIGKILL SIGPIPE SIGQUIT SIGSEGV SIGSTOP

SIGTERM SIGTSTP SIGTTIN SIGTTOU SIGUSR1 SIGUSR2 SIGPOLL

SIGPROF SIGSYS SIGTRAP SIGURG SIGVTALRM SIGXCPU SIGXFSZ

kill procedure
(kill pid signal-name)

The kill procedure takes a pid and a signal name (a symbol from the list above)
and asks the operating system to send the signal to the given process.
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4.3 TCP and UDP sockets

Ikarus supports synchronous (blocking) and asynchronous (multiplexing) commu-
nication facilities over both TCP/IP and UDP/IP channels. It facilitates writing
client and server applications that serve a variety of purposes, e.g., web servers,
char clients, mail, news, et cetera.

The synchronous model is simple and is ideal for noninteractive command-line ap-
plications that communicate with a single host at a time. FTP clients, HTTP spiders,
and off-line netnews caching programs typically use synchronous communication.
The basic operations start with connecting (via tcp-connect) to an internet service
(identified by a port number or a service name) located on some host (identified
by its host name or IP number). By connecting to a server, we obtain an input port
and an output port forming bidirectional channel of communication. Depending on
the service protocol, the client exchanges information with the server by reading
and writing to the designated ports. Read and write operations in this model may
block indefinitely until appropriate number of bytes are read/written, or until the
operation times out. Communication ends when the client closes both ports.

The asynchronous model allows for communicating with many hosts simultane-
ously. Ikarus maintains a queue of pending ports, the blocking operation per-
formed on these ports, and their respective continuations. Whenever the oper-
ating system indicates that a read/write operation may block, Ikarus schedules
the port and a restarting continuation into the queue and then dispatches one of
the ready operations. This is reminiscent of how multitasking operating systems
schedule I/O-bound threads, except that in Ikarus, threads are lightweight, repre-
sented by ordinary continuations. Thus, reading or writing to a nonblocking port
causes Ikarus to transparently capture a continuation, enlist it in the queue, and
dispatch another continuation captured earlier. Multiple read and write operations
from multiple connections are fulfilled concurrently, dispatching whichever one is
ready and without one operation blocking the rest.

Because asynchronous scheduling and dispatching involves switching continua-
tions, winders that maintain the dynamic environment (e.g., those established by
dynamic-wind, parameterize, with-output-to-file, with-exception-handler,
etc.) are properly invoked when leaving a dynamic context and entering another.
Care must be taken when using winders that perform externally-visible side effects
upon entering/leaving a dynamic context.
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tcp-connect procedure
(tcp-connect host service)

The procedure tcp-connect attempts to connect to the service located on the
remote host through the TCP/IP protocol. The host argument is a string repre-
senting either the IP address (e.g., "127.0.0.1") or a fully-qualified domain name
(e.g., "www.example.com"), in which case name to address resolution is performed
automatically. The service argument is also a string which can be either a port
number (e.g., "80") or a service name (e.g., "http") in which case the service name
is mapped to the canonical port number for the service.

Upon success, tcp-connect returns two values: a binary input port and a binary
output port. Writing and reading from the obtained ports may block indefinitely
until an appropriate number of bytes is read/written. Closing both ports closes the
communication channel and frees the underlying operating-system resources.

tcp-connect-nonblocking procedure
(tcp-connect-nonblocking host service)

The procedure tcp-connect-nonblocking is similar to tcp-connect except that
the two returned ports are put in nonblocking mode. If an attempt to perform a read
(write) operation on the input (output) port may block, a restart continuation is
captured and scheduled in the I/O queue and a perviously blocked operation may
be restarted (when its blocking operation can progress).

udp-connect procedure
(udp-connect host service)

The procedure udp-connect is similar to tcp-connect except that it connects to
the remote server through the UDP protocol (as implied by the name).

udp-connect-nonblocking procedure
(udp-connect-nonblocking host-name service-name)

The procedure udp-connect-nonblocking is similar to tcp-connect-nonblocking
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except that it connects to the remote server through the UDP protocol.

tcp-server-socket procedure
(tcp-server-socket port-number)

The procedure tcp-server-socket attempts to listen on the given port number
for incoming connections. On success, tcp-server-socket returns an abstract
tcp-server object encapsulating the underlying operating-system server socket. The
server socket is placed in blocking mode: an attempt to accept a connection on such
server blocks indefinitely until a remote client attempts to establish a connection.

tcp-server-socket-nonblocking procedure
(tcp-server-socket-nonblocking port-number)

This procedure is similar to tcp-server-socket except that the returned server
socket is placed in nonblocking mode. An attempt to accept a connection from a
nonblocking server socket does not block the entire process, instead, a restarting
continuation is scheduled and is invoked when an incoming connection is available
(and another I/O-bound operation blocks).

accept-connection procedure
(accept-connection tcp-server)

The procedure accept-connection takes a tcp-server socket (e.g., one obtained
from tcp-server-socket) and returns two values: a binary input port and a binary
output port through which the server communicates with the connecting client. If
the tcp-server object is in blocking mode, accept-connectionmay block the en-
tire process until an incoming connection is obtained. If the server is in nonblocking
mode, an (otherwise) blocking operation would be rescheduled and invoked later
when a connection occurs.

The input and output ports that accept-connection returns are put in blocking
mode. .
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accept-connection-nonblocking procedure
(accept-connection-nonblocking tcp-server)

The procedure accept-connection-nonblocking is similar to accept-connection
except that the two returned ports are put in nonblocking mode.

close-tcp-server-socket procedure
(close-tcp-server-socket tcp-server)

This procedure closing the server socket (so that no more incoming connections
can be accepted) and frees the underlying operating-system resources associated
with the socket.

register-callback procedure
(register-callback input-port thunk)

(register-callback output-port thunk)

(register-callback tcp-server thunk)

The procedure register-callback takes a nonblocking port or server socket and
a callback procedure. It enqueues the port/socket and the thunk into the event
queue. The given procedure is called when another I/O operation blocks and data
is ready to be read (for an input port argument), written (for an output port ar-
gument), or an incoming connection is available (for a tcp-server argument). The
register-callback procedure returns immediately. It does not block and does not
attempt to perform any read, write, or accept operation on the given argument.



Chapter 5

The (ikarus foreign) library

This chapter describes the facilities through which Ikarus interfaces with the host
operating system and other external libraries. The facilities of the (ikarus foreign)

library give the Scheme program unrestricted access to the computer memory, al-
lowing one to allocate, access, modify, and free memory as needed. The facilities
also allow the Scheme program to call out to system procedures as well as allow
the native procedures to call back into Scheme.

This chapter is organized as follows: Section 5.1 gives an overview of the basic
concepts such as shared libraries, external symbols, foreign data types, pointers,
and procedures. Section 5.3 describes the primitives that (ikarus foreign) pro-
vides for direct manipulation of memory. Section ?? deals with loading external
libraries and calling out to native library procedures and calling back into Scheme.
To demonstrate the usefulness of the foreign facilities, Ikarus ships with two li-
braries that also serve as extended examples for using the system. Section ?? de-
scribes The OpenGL library (ikarus opengl) which allows the programmer to
produce 2D and 3D computer graphics. Section ?? describes the (ikarus objc)

which allows the programmer to access libraries and frameworks written in the
Objective-C programming language and thus provides full access to the Mac OS X
system (e.g., making graphical user interfaces with Cocoa and drawing graphics
with Quartz all from Scheme).

Ikarus version 0.0.4 is the first version of Ikarus to support the described foreign
interfaces.
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5.1 Overview

In order to make full use of the computer, it is important for a programming en-
vironment (e.g., Ikarus Scheme) to facilitate access to the underlying architecture
on which it runs. The underlying architecture includes the API provided by the
host operating system kernel (e.g., Linux), the system libraries (e.g., libc), and
other site-installed libraries (e.g., sqlite3). Providing direct access to such API
from within Scheme allows the programmer to write Scheme libraries that have
few or no dependencies on external programs (such as C development toolchain).
When dealing with system libraries, the programmer must have a thorough under-
standing of many aspects of the targetted system. This section attempts to provide
answers to many questions that are frequently encountered when interfacing to
external libraries.

5.2 Memory management

Ikarus Scheme is a managed environment. Like in many programming environ-
ments, Ikarus manages its own memory. Scheme objects are allocated in a spe-
cial memory region (the Scheme heap) and have type-specific object layout that
allows the run time system to distinguish object types and allows the garbage col-
lector to locate all potentially live objects and reclaim the memory of dead objects.
Scheme objects are also opaque in the sense that the data structures used to repre-
sent Scheme objects (e.g., pairs) are not exposed to the programmer, who can only
interact with objects through an interface (e.g., car, cdr).

Unmanaged environments, such as the operating system on which Ikarus runs,
require that the programmer manages the allocation and deallocation of system
resources herself. Memory regions, file handles, external devices, the screen, etc.,
are all examples of resources whose management must be coordinated among the
different parts of the system, and this becomes the responsibility of the programmer
who is wiring the different subsystems together.

Memory, from a system’s point of view, is transparent. A pointer is an integer denot-
ing an address of memory. This memory address may contain a value that requires
interpretation. At the lowest-level, each byte of memory contains eight bits, each
of which may be toggled on or off. A level higher, contiguous sequences of bytes
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are grouped together and are interpreted as integers, floating point numbers, or
pointers to other memory addresses. These are the basic data types that are of-
ten interpreted atomically. Yet a level higher, groups of basic types form data
structures such as arrays, linked lists, trees, and so on. Objects, as found in object-
oriented programming languages, are at an even higher level of abstraction since
they are treated as opaque references that retain state and know how to respond
to messages.

The procedures in the (ikarus foreign) library are meant to provide a way to
interface with the low level memory operations such as setting and getting bytes
from specific locations in memory. Although they do not provide high-level oper-
ations, the basic procdures make implementing high-level operations (such as the
Objective-C system presented in Chapter ??) possible. Programmers are encour-
aged to define their own abstractions that are most suitable for the specific target
library rather than using the low-level operations directly. This results in writing
more robust and more easily maintainable libraries. To put it more boldly: Do not
sprinkle your code with low-level memory operations.

5.3 Memory operations

malloc procedure
(malloc n)

The malloc procedure allocates n bytes of memory and returns a pointer to the
allocated memory. The malloc Scheme procedure is implemented using the host-
provided malloc system procedure (often found in libc). The number of bytes, n,
must be a positive exact integer.

> (malloc 10)

#<pointer #x00300320>

> (malloc 10000)

#<pointer #x01800400>
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free procedure
(free p)

The free procedure takes a pointer and frees the memory region at the given ad-
dress. The memory region must be allocated with malloc, calloc, or a similar sys-
tem procedure. Once freed, memory operations on the given address are invalid
and may cause the system to crash at unpredictable times. Ikarus cannot check
for such errors since the memory may be freed by procedures that are external to
Ikarus.

pointer->integer procedure
(pointer->integer p)

The procedure pointer->integer converts the value of the pointer p to an exact
integer value. The result may be a fixnum or a bignum depending on the pointer.

integer->pointer procedure
(integer->pointer n)

The procedure integer->pointer converts the exact integer n to a pointer value.
The lower 32 bits (or 64 bits on 64-bit systems) of the value of n are signifi-
cant in computing the pointer value. It is guaranteed that (integer->pointer
(pointer->integer p)) points to the same address as p.

pointer? procedure
(pointer? x)

The predicate pointer? returns #t if the value of x is a pointer, and returns #f
otherwise.

Note: The result of calling the procedures eq?, eqv? and equal? on
pointer values is unspecified.



5.3. MEMORY OPERATIONS 65

pointer-set-c-char! procedure
(pointer-set-c-char! p i n)

The procedure pointer-set-c-char! sets a single byte of memory located at offset
i from the pointer p to the value of n. The pointer p must be a valid pointer. The
index imust be an exact integer. The value of nmust be an exact integer. Only the
8 lowermost bits of n are used in the operation and the remaining bits are ignored.

pointer-set-c-short! procedure
(pointer-set-c-short! p i n)

The procedure pointer-set-c-char!! sets two bytes located at offset i and (+

i 1) to the 16 lowermost bits of the exact integer n. Note that the offset i is a
byte offset; pointer-set-c-short! does not perform any pointer arithmetic such
as scaling the offset by the size of the memory location.

pointer-set-c-int! procedure
(pointer-set-c-int! p i n)

The procedure pointer-set-c-int! sets four bytes located at offset i to (+ i

3) to the 32 lowermost bits of the exact integer n. Like pointer-set-c-short!,
pointer-set-c-int! does not scale the offset i.

pointer-set-c-long! procedure
(pointer-set-c-long! p i n)

On 64-bit systems, the procedure pointer-set-c-long! sets eight bytes located
at offset i to (+ i 7) to the 64 lowermost bits of the exact integer n. Like the
previous procedures, pointer-set-c-long! does not scale the offset i. On 32-bit
systems, pointer-set-c-long! performs the same task as pointer-set-c-int!.

pointer-set-c-float! procedure
(pointer-set-c-float! p i fl)
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The procedure pointer-set-c-float! converts the Scheme floating point number
fl (represented in Ikarus as an IEEE-754 double precision floating point number)
to a float (an IEEE-754 single precision floating point number) and stores the result
in the four bytes at offset i of the pointer p.

pointer-set-c-double! procedure
(pointer-set-c-double! p i fl)

The procedure pointer-set-c-double! stores the double precision IEEE-754 float-
ing point value of the Scheme flonum fl in the eight bytes at offset i of the pointer
p.

pointer-set-c-pointer! procedure
(pointer-set-c-pointer! p i pv)

On 64-bit systems, the procedure pointer-set-c-pointer! sets eight bytes lo-
cated at offset i to (+ i 7) to the 64-bit pointer value of pv. On 32-bit sys-
tems, the procedure pointer-set-c-pointer! sets four bytes located at offset
i to (+ i 3) to the 32-bit pointer value of pv. Like the previous procedures,
pointer-set-c-pointer! does not scale the offset i.

pointer-ref-c-signed-char procedure
(pointer-ref-c-signed-char p i)

The procedure pointer-ref-c-signed-char loads a single byte located at offset
i from the pointer p and returns an exact integer representing the sign-extended
integer value of that byte. The resulting value is in the range of [−128, 127] inclu-
sive.

pointer-ref-c-unsigned-char procedure
(pointer-ref-c-unsigned-char p i)

The procedure pointer-ref-c-unsigned-char loads a single byte located at offset
i from the pointer p and returns an exact integer representing the unsigned integer
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value of that byte. The resulting value is in the range [0, 255] inclusive.

The following example shows the difference between pointer-ref-c-signed-char
and pointer-ref-c-unsigned-char.

> (let ([p (malloc 3)])

(pointer-set-c-char! p 0 #b01111111)

(pointer-set-c-char! p 1 #b10000000)

(pointer-set-c-char! p 2 #b11111111)

(let ([result

(list (pointer-ref-c-signed-char p 0)

(pointer-ref-c-signed-char p 1)

(pointer-ref-c-signed-char p 2)

(pointer-ref-c-unsigned-char p 0)

(pointer-ref-c-unsigned-char p 1)

(pointer-ref-c-unsigned-char p 2))])

(free p)

result))

(127 -128 -1 127 128 255)

pointer-ref-c-signed-short procedure
(pointer-ref-c-signed-short p i)

The procedure pointer-ref-c-signed-short loads two bytes located at offsets
i and (+ i 1) from the pointer p and returns an exact integer representing the
sign-extended integer value of the sequence. The resulting value is in the range
[−32768, 32767] inclusive.

pointer-ref-c-unsigned-short procedure
(pointer-ref-c-unsigned-short p i)

The procedure pointer-ref-c-unsigned-short loads two bytes located at offsets
i and (+ i 1) from the pointer p and returns an exact integer representing the un-
signed integer value of the sequence. The resulting value is in the range [0, 65535]
inclusive.
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pointer-ref-c-signed-int procedure
(pointer-ref-c-signed-int p i)

The procedure pointer-ref-c-signed-int loads four bytes starting at offset i of
pointer p and returns an exact integer in the range of [−231, 231 − 1] inclusive.

pointer-ref-c-unsigned-int procedure
(pointer-ref-c-unsigned-int p i)

The procedure pointer-ref-c-unsigned-int loads four bytes starting at offset i
of pointer p and returns an exact integer in the range of [0, 232 − 1] inclusive.

pointer-ref-c-signed-long procedure
(pointer-ref-c-signed-long p i)

On 64-bit systems, the procedure pointer-ref-c-signed-long loads eight bytes
starting at offset i of pointer p and returns an integer in the range of [−263, 263−1]
inclusive. On 32-bit systems, the procedure pointer-ref-c-signed-long per-
forms the same task as pointer-ref-c-signed-int.

pointer-ref-c-unsigned-long procedure
(pointer-ref-c-unsigned-long p i)

On 64-bit systems, the procedure pointer-ref-c-unsigned-long loads eight bytes
starting at offset i of pointer p and returns an integer in the range of [0, 264 −
1] inclusive. On 32-bit systems, the procedure pointer-ref-c-unsigned-long

performs the same task as pointer-ref-c-unsigned-int.

pointer-ref-c-float procedure
(pointer-ref-c-float p i)

The procedure pointer-ref-c-float returns the four-byte float (represented as
IEEE-754 single precision floating point number) stored at offset i of the pointer p.
The value is extended to an IEEE-754 double precision floating point number that
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Ikarus uses to represent inexact numbers.

pointer-ref-c-double procedure
(pointer-ref-c-double p i)

The procedure pointer-ref-c-double returns the eight-byte float (represented as
IEEE-754 double precision floating point number) stored at offset i of the pointer
p.

pointer-ref-c-pointer procedure
(pointer-ref-c-pointer p i)

The procedure pointer-ref-c-pointer returns the pointer stored at offset i from
the pointer p. The size of the pointer (also the number of bytes loaded) depends
on the architecture: it is 4 bytes on 32-bit systems and 8 bytes on 64-bit systems.

5.4 Accessing foreign objects from Scheme

dlopen procedure
(dlopen)

(dlopen library-name)

(dlopen library-name lazy? global?)

The procedure dlopen takes a string library-name represented a system library
and calls the system procedure dlopen which dynamically loads the given library
into the running process. The name of the library is system-dependent and must
include the appropriate suffix (e.g., *.so on Linux, *.dylib on Darwin and *.dll

on Cygwin). The library-name may include a full path which identifies the loca-
tion of the library, or may be just the name of the library in which case the system
will lookup the library name using the LD_LIBRARY_PATH environment variable.

The argument lazy? specifies how library dependencies are loaded. If true, dlopen
delays the resolution and loading of dependent libraries until they are actually used.
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If false, all library dependencies are loaded before the call to dlopen returns.

The argument global? specifies how the scope of the symbols exported from the
loaded library. If true, all exported symbols become part of the running image, and
subsequent dlsym calls may not need to specify the library from which the symbol
is loaded. If false, the exported symbols are not global and the library pointer needs
to be specified for dlsym.

Calling (dlopen library-name) is equivalent to (dlopen library-name #f #f).
Calling (dlopen) without arguments returns a pointer to the current process.

If succesful, dlopen returns a pointer to the external library which can be used
subsequently by dlsym and dlclose. If the library cannot be loaded, dlopen returns
#f and the procedure dlerror can be used to obtain the cause of the failure.

Consult the dlopen(3) page in your system manual for further details.

dlclose procedure
(dlclose library-pointer)

The procedure dlclose is a wrapped around the system procedure with the same
name. It receives a library pointer (e.g., one obtained from dlopen) and releases
the resources loaded from that library. Closing a library renders all symbols and
static data structures that the library exports invalid and the program may crash
or corrupt its memory if such symbols are used after a library is closed.

Most system implementations of dynamic loading employ reference counting for
dlopen and dlclose in that library resources are not freed until the number of calls
to dlclose matches the number of calls to dlopen.

The procedure dlclose returns a boolean value indicating whether the success
status of the operation. If dlclose returns #f, the procedure dlerror can be used
to obtain the cause of the error.

Consult the dlclose(3) page in your system manual for further details.

dlerror procedure
(dlerror)
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If any of the dynamic loading operations (i.e., dlopen, dlclose, dlsym) fails, the
cause of the error can be obtained by calling dlerror which returns a string de-
scribing the error. The procedure dlerror returns #f if there was no dynamic
loading error.

Consult the dlerror(3) page in your system manual for further details.

dlsym procedure
(dlsym library-pointer string)

The procedure dlsym takes a library pointer (e.g., one obtained by a call to dlopen)
and a string representing the name of a symbol that the library exports and returns
a pointer to the location of that symbol in memory. If dlsym fails, it returns #f and
the cause of the error can be obtained using the procedure dlerror.

Consult the dlsym(3) page in your system manual for further details.

5.5 Calling out to foreign procedures

Ikarus provides the means to call out from Scheme to foreign procedures. This
allows the programmers to extend Ikarus to access system-specific facilities that is
available on the host machine.

In order to call out to a foreign procedure, one must provide two pieces of infor-
mation: the signature of the foreign procedure (e.g., its type declaration if it is
a C procedure) and the address of the procedure in memory. The address of the
procedure can be easily obtained using dlsym if the name of the procedure and its
exporting library are known. The signature of the procedure cannot, in general, be
obtained dynamically, and therefore must be hard coded into the program.

The signature of the foreign procedure is required for proper linkeage between the
Scheme system and the foreign system. Using the signature, Ikarus determines how
Scheme values are converted into native values, and where (e.g., in which registers
and stack slots) to put these arguments. The signature also determines where the
returned values are placed and how they are converted from the system data types
to the corresponding Scheme data types.
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A procedure’s signature is composed of two parts: the return type and the param-
eter types. The return type is a symbol that can be any one of the type specifiers
listed in Figure 5.1, page 73. The parameter types is a list of type specifier symbols.
The symbol void can appear as a return type but cannot appear as a parameter type.

make-c-callout procedure
((make-c-callout return-type parameter-types) native-pointer)

The procedure make-c-callout is the primary facility for making foreign proce-
dures callable from Scheme. It works as follows. First, make-c-callout receives
two arguments denoting the signature of the procedure to be called. It prepares
a bridge that converts from Scheme’s calling conventions and data structures to
their foreign counterparts. It returns a procedure p1. Second, the procedure p1

accepts a pointer to a foreign procedure (e.g., one obtained from dlsym) and re-
turns a Scheme procedure p2 that encapsulates the foreign procedure. The final
procedure p2 can be called with as many arguments as the ones specified in the
parameter-types. The parameters supplies to p2 must match the types supplied
as the parameter-types according to the “Valid Scheme types” column in the ta-
ble in Figure 5.1. The procedure p2 converts the parameters from Scheme types to
native types, calls the foreign procedure, obtains the result, and converts it to the
appropriate Scheme value (depending on the return-type).

The interface of make-c-callout is broken down into three stages in order to ac-
comodate common usage patterns. Often types, a function signature can be used
by many foreign procedures and therefore, make-c-callout can be called once
per signature and each signature can be used multiple times. Similarly, separating
the foreign procedure preparation from parameter passing allows for preparing the
foreign procedure once and calling it many times.

The types listed in Figure 5.1 are restricted to basic types and provide no automatic
conversion from composite Scheme data structures (such as strings, symbols, vec-
tors, and lists) to native types. The restriction is intentional in order for Ikarus to
avoid making invalid assumptions about the memory management of the targeted
library. For example, while Ikarus can convert a Scheme string to a native byte
array (e.g., using string->bytevector to decode the string, then using malloc to
allocate a temporary buffer, and copying the bytes from the bytevector to the allo-
cated memory), it cannot decide when this allocated byte array is no longer needed
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and should be freed. This knowledge is library-dependent and is often procedure-
dependent. Therefore, Ikarus leaves it to the programmer to manage all memory
related issues.

Outgoing parameters to foreign procedures are checked against the declared types.
For example, if a callback is prepared to expect a parameter of type signed-int,
only exact integers are allowed to be passed out. For integer types, only a fixed
number of bits is used and the remaining bits are ignored. For floating point types,
the argument is checked to be a Scheme flonum. No implicit conversion between
exact and inexact numbers is performed.

The following example illustrates the use of the make-c-callout procedure in com-
bination with dlopen and dlsym. The session was run on a 32-bit Ikarus running
under Mac OS X 10.4. First, the libc.dylib foreign library is loaded and is bound
to the variable libc. Next, we obtain a pointer to the atan foreign procedure that is
defined in libc. The native procedure atan takes a double as an argument and re-

Type specifier Size Valid Scheme types Corresponding C types
signed-char 1 byte exact integer char

unsigned-char 1 byte exact integer unsigned char

signed-short 2 bytes exact integer short

unsigned-short 2 bytes exact integer unsigned short

signed-int 4 bytes exact integer int

unsigned-int 4 bytes exact integer unsigned int

signed-long 4/8 bytes exact integer long

unsigned-long 4/8 bytes exact integer unsigned long

float 4 bytes flonum float

double 8 bytes flonum double

pointer 4/8 bytes pointer void*, char*, int*, int**,
int(*)(int,int,int), etc.

void – – void

Figure 5.1: The above table lists valid type specifiers that can be used in callout
and callback signatures. Specifiers with “4/8 bytes” have size that depends on the
system: it is 4 bytes on 32-bit systems and 8 bytes on 64-bit systems. The void

specifier can only be used as a return value specifier to mean “no useful value is
returned”.
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turns a double and that’s the signature that we use for make-c-callout. Finally, we
call the foreign procedure interface with one argument, 1.0, which is a flonum and
thus matches the required parameter type. The native procedure returns a double
value which is converted to the Scheme flonum with value 0.7853981633974483.

> (import (ikarus foreign))

> (define libc (dlopen "libc.dylib"))

> libc

#<pointer #x00100770>

> (define libc-atan-ptr (dlsym libc "atan"))

> libc-atan-ptr

#<pointer #x9006CB1F>

> (define libc-atan

((make-c-callout 'double '(double)) libc-atan-ptr))

> libc-atan

#<procedure>

> (libc-atan 1.0)

0.7853981633974483

> (libc-atan 1)

Unhandled exception

Condition components:

1. &assertion

2. &who: callout-procedure

3. &message: "argument does not match type double"

4. &irritants: (1)

5.6 Calling back to Scheme

In order to provide full interoperability with native procedures, Ikarus allows native
procedures to call back into Scheme just as it allows Scheme to call out to native
procedures. This is important for many system libraries that provide graphical user
interfaces with event handling (e.g., Cocoa, GTK+, GLUT, etc.), database engines
(e.g., libsqlite, libmysql, etc.), among others.

The native calling site for the call back is compiled with a specific callback signa-
ture encoding the expected parameter types and return type. Therefore, a Scheme
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procedure used for a call back must be wrapped with a proper adapter that converts
the incoming parameters from native format to Scheme values as well as convert
the value that the Scheme procedure returns back to native format. The signature
format is similar to the one used for call outs (see Figure 5.1 on page 73 for details).

make-c-callback procedure
((make-c-callback return-type parameter-types) scheme-procedure)

The procedure make-c-callback is similar to the procedure make-c-callout ex-
cept that it provides a bridge from native procedures back into Scheme. While
the procedure make-c-callout takes a native pointer and returns a Scheme pro-
cedure, make-c-callback takes a Scheme procedure and returns a native pointer.
The native pointer can be called by foreign procedures. The native parameters are
converted to Scheme data (according to parameter-types), the Scheme procedure
is called with these parameters, and the returned value is converted back into na-
tive format (according to return-type) before control returns to the native call
site.

Note that the native procedure pointer obtained from make-c-callback is indis-
tinguishable from other native procedures that are obtained using dlsym or similar
means. In particular, such native pointers can be passed to make-c-callout re-
sulting in a Scheme procedure that calls out to the native procedure that in turn
calls back into Scheme. The following segment illustrates a very inefficient way of
extracting the lowermost 32 bits from an exact integer.

> (format "~x"

(((make-c-callout 'unsigned-int '(unsigned-int))

((make-c-callback 'unsigned-int '(unsigned-int))

values))

#xfedcba09876543210fedcba09876543210))

"76543210"

Caveat emptor: Preparing each call out and call back procedure leaks
a small amount of memory. This is because the system cannot track
such pointers that go into native code (which may retain such pointers
indefinitely). Use judiciously.
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Appendix A

Missing Features

Ikarus does not fully conform to R6RS yet. Although it implements most of R6RS’s
macros and procedures, some are still missing. This section summarizes the set of
missing features and procedures.

• number->string does not accept the third argument (precision). Similarly,
string->number and the reader do not recognize the |p notation.

• The following procedures are missing from (rnrs arithmetic bitwise):

bitwise-reverse-bit-field bitwise-rotate-bit-field

• The following procedures are missing from (rnrs arithmetic fixnum):

fxreverse-bit-field fxrotate-bit-field

• The following procedures are missing from (rnrs hashtables):

equal-hash

• The following procedures are missing from (rnrs io ports):

make-custom-binary-input/output-port

make-custom-textual-input/output-port

open-file-input/output-port
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