
Ikarus Schem˳
User’s Guid˳

(Preliminary Document) Versio˿ 0.0.2

Abdulaziz Ghulou˾
November 12, 2007

Ikarus Scheme User’s Guide
Copyright c⃝ 2007, Abdulaziz Ghuloum

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 pub-
lished by the Free Software Foundation; with no Invariant Sections, the
Front-Cover Texts being “Ikarus Scheme User’s Guide”, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents

1 Getting Started 1
1.1 Introduction . 1
1.2 Technology Overview 2
1.3 System Requirements 2

1.3.1 Hardware 2
1.3.2 Operating Systems 3
1.3.3 Additional Software 3

1.4 Installation . 4
1.4.1 Installation Details 4
1.4.2 Uninstalling Ikarus 6

1.5 Command-line Switches 7

2 R6RS Crash Course 9
2.1 Writing a simple script 10
2.2 Writing simple libraries 11
2.3 R6RS record types . 13

2.3.1 Defining new record types 13
2.3.2 Extending existing record types 14
2.3.3 Specifying custom constructors 15
2.3.4 Custom constructors for derived record types . 16

2.4 Exception Handling 17

3 The (ikarus) library 21
3.1 Parameters . 22
3.2 Local Modules . 25
3.3 Gensyms . 26
3.4 Printing . 30

iii

iv CONTENTS

3.5 Tracing . 37
3.6 Timing . 40

4 Missing Features 43
4.1 List of missing R6RS procedures 44

Chapter 1

Getting Started

1.1 Introduction

Ikarus Scheme is an implementation of the Scheme programming language.
The preliminary release of Ikarus implements the majority of the features
found in the current standard, the Revised6 report on the algorithmic lan-
guage Scheme[5] including full R6RS library and script syntax, syntax-case,
unicode strings, bytevectors, user-defined record types, exception han-
dling, conditions, and enumerations. Over 80% of the R6RS procedures
and keywords are currently implemented and subsequent releases will pro-
ceed towards brining Ikarus to full R6RS conformance.

The main purpose behind releasing Ikarus early is to give Scheme pro-
grammers the opportunity to experiment with the various new features
that were newly introduced in R6RS. The most important of such fea-
tures is the ability to structure large programs into libraries; where each
library extends the language through procedural and syntactic abstractions.
Many useful libraries can be written using the currently supported set of
R6RS features including text processing tools, symbolic logic systems, in-
terpreters and compilers, and many mathematical and scientific packages.
It is my hope that this release will encourage the Scheme community to
write and to share their most useful R6RS libraries.

1

2 CHAPTER 1. GETTING STARTED

1.2 Technology Overview

Ikarus Scheme provides the programmer with many advantages:

Optimizing code generator: The compiler’s backend employs state of
the art technologies in code generation that produce fast efficient machine
code. When developing computationally intensive programs, one is not
constrained by using a slow interpreter.

Fast incremental compilation: Every library and script is quickly com-
piled to native machine code. When developing large software, one is not
constrained by how slow the batch compiler runs.

Robust and fine-tuned standard libraries: The standard libraries are
written such that they perform as much error checking as required to pro-
vide a safe and fast runtime environment.

Multi-generational garbage collector: The BiBOP[2] based garbage col-
lector used in Ikarus allows the runtime system to expand its memory foot-
print as needed. The entire 32-bit virtual address space could be used and
unneeded memory is released back to the operating system.

Supports many operating systems: Ikarus runs on the most popular and
widely used operating systems for servers and personal computers. The
supported systems include Mac OS X, GNU/Linux, FreeBSD, NetBSD,
and Microsoft Windows.

1.3 System Requirements

1.3.1 Hardware

Ikarus Scheme runs on the IA-32 (x86) architecture supporting SSE2 ex-
tensions. This includes the Athlon 64, Sempron 64, and Turion 64 proces-
sors from AMD and the Pentium 4, Xeon, Celeron, Pentium M, Core, and
Core2 processors from Intel. The system does not run on Intel Pentium III
or earlier processors.

1.3. SYSTEM REQUIREMENTS 3

The Ikarus compiler generates SSE2 instructions to handle Scheme’s IEEE
floating point representation (flonums) for inexact numbers.

1.3.2 Operating Systems

Ikarus is tested under the following operating systems:

• Mac OS X version 10.4.

• Linux 2.6.18 (Debian, Fedora, Gentoo, and Ubuntu).

• FreeBSD version 6.2.

• NetBSD version 3.1.

• Microsoft Windows XP (using Cygwin 1.5.24).

1.3.3 Additional Software

• GMP: Ikarus uses the GNU Multiple Precision Arithmetic Library
(GMP) for some bignum arithmetic operations. To build Ikarus from
scratch, GMP version 4.2 or better must be installed along with the
required header files. Pre-built GMP packages are available for most
operating systems. Alternatively, GMP can be downloaded from
http://gmplib.org/.

• GCC: The GNU C Compiler is required to build the Ikarus executable
(e.g. the garbage collector, loader, and OS-related runtime). GCC
versions 4.1 and 4.2 were successfully used to build Ikarus.

• Autoconf and Automake: The GNU Autoconf (version 2.59) and
GNU Automake (version 1.9) tools are required if one wishes to mod-
ify the Ikarus source base. They are not required to build the official
release of Ikarus.

• XeLaTeX: The XeLaTeX typesetting system is required for building
the documentation. XeLaTeX (and XeTeX) is an implementation of
the LaTeX (and TeX) typesetting system.

http://gmplib.org/

4 CHAPTER 1. GETTING STARTED

Note: Ikarus runs in 32-bit mode only. To run it in 64-bit en-
vironments, you will have to obtain the 32-bit version of GMP,
or compile it yourself after adding ABI=32 to its configuration
options.

1.4 Installation

If you are familiar with installing Unix software on your system, then all
you need to know is that Ikarus uses the standard installation method found
in most other Unix software. Simply run the following commands from the
shell:

$ tar -zxf ikarus-n.n.n.tar.gz
$ cd ikarus-n.n.n
$./configure [--prefix=path] [CFLAGS=-I/dir] [LDFLAGS=-L/dir]
$ make
$ make install
$

The rest of this section describes the build process in more details. It is
targeted to users who are unfamiliar with steps mentioned above.

1.4.1 Installation Details

1. Download the Ikarus source distribution. The source is distributed
as a gzip-compressed tar file (ikarus-n.n.n.tar.gz where n.n.n is a
3-digit number indicating the current revision). The latest revision
can be downloaded from the following URL:
http://www.cs.indiana.edu/~aghuloum/ikarus/

2. Unpack the source distribution package. From your shell command,
type:

$ tar -zxf ikarus-n.n.n.tar.gz
$

http://www.cs.indiana.edu/~aghuloum/ikarus/

1.4. INSTALLATION 5

This creates the base directory ikarus-n.n.n.

3. Configure the build system by running the configure script located in
the base directory. To do this, type the following commands:

$ cd ikarus-n.n.n
$./configure
checking build system type... i386-apple-darwin8.10.1
checking host system type... i386-apple-darwin8.10.1
...
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating scheme/Makefile
config.status: creating doc/Makefile
config.status: executing depfiles commands
$

This configures the system to be built then installed in the system-
wide location (binaries are installed in /usr/local/bin) . If you wish
to install it in another location (e.g. in your home directory), you can
supply a --prefix location to the configure script as follows:

$./configure --prefix=/path/to/installation/location

The configure script will fail if it cannot locate the location where
GMP is installed. If running configure fails to locate GMP, you should
supply the location in which the GMP header file, gmp.h, and the GMP
library file, libgmp.so, are installed. This is done by supplying the two
paths in the CFLAGS and LDFLAGS arguments:

$./configure CFLAGS=-I/path/to/include LDFLAGS=-L/path/to/lib

4. Build the system by running:

$ make

6 CHAPTER 1. GETTING STARTED

This performs two tasks. First, it builds the ikarus executable from
the C files located in the src directory. It then uses the ikarus ex-
ecutable and the pre-built ikarus.boot.orig boot file to rebuild the
Scheme boot image file ikarus.boot from the Scheme sources located
in the scheme directory.

5. Install Ikarus by typing:

$ make install

If you are installing Ikarus in a system-wide location, you might need
to have administrator privileges (use the sudo or su commands).

6. Test that Ikarus runs from the command line.

$ ikarus
Ikarus Scheme (Build 2007-10-20)
Copyright (c) 2006-2007 Abdulaziz Ghuloum

>

If you get the prompt, then Ikarus was successfully installed on your
system. You may need to update the PATH variable in your environ-
ment to contain the directory in which the ikarus executable was
installed.
Do not delete the ikarus-n.n.n directory from which you configured,
built, and installed Ikarus. It will be needed if you decide at a later
time to uninstall Ikarus.

1.4.2 Uninstalling Ikarus

To uninstall Ikarus, use the following steps:

$ cd path/to/ikarus-n.n.n
$ make uninstall
$

1.5. COMMAND-LINE SWITCHES 7

1.5 Command-line Switches

The ikarus executable recognizes a few command-line switches that influ-
ence how Ikarus starts.

• ikarus -h

The presence of the -h flag causes ikarus to display a help message
then exits. The help message summarizes the command-line switches.
No further action is performed.

• ikarus -b path/to/boot/file.boot

The -b flag (which requires an extra argument) directs ikarus to use
the specified boot file as the initial system boot file. The boot file is a
binary file that contains all the code and data of the Scheme system.
In the absence of -b flag, the executable attempts to guess the location
of the boot file using the following strategy:

1. If ikarus was started by supplying an explicit location such as
/usr/local/bin/ikarus or ./ikarus, then the name of the boot
file is the concatenation of a .boot prefix to the executable file
name (e.g. /usr/local/bin/ikarus.boot or ./ikarus.boot).

2. Otherwise, ikarus assumes that it was started from a location in
the PATH environment variable. In that case, it searches for the lo-
cation of ikarus in the PATH. If ikarus is found in /path/to/ikarus,
then the name of the boot file becomes /path/to/ikarus.boot.

3. Failing both guesses, ikarus prints an error message and exits.

The motivation for this strategy was to allow one to (1) rename the
ikarus executable and the corresponding boot file to some new names
(e.g. my-ikarus and my-ikarus.boot) without conflicting with other
installed versions of Ikarus, and (2) override the location of the boot
file for testing and building purposes (e.g. the installation process
using one boot file to build another).
The rest of the command-line arguments are recognized by the stan-
dard Scheme run time system. They are processed after the boot file
is loaded.

8 CHAPTER 1. GETTING STARTED

• ikarus --r6rs-script script-file-name [arguments ...]

The --r6rs-script argument instructs Ikarus that the supplied file is
an R6RS script. See Section 2.1 for a short introduction to writ-
ing R6RS scripts. The script file name and any additional optional
arguments can be obtained by calling the command-line procedure.

$ cat test.ss
(import (rnrs))
(write (command-line))
(newline)

$ ikarus --r6rs-script test.ss hi there
("test.ss" "hi" "there")
$

• ikarus files ... [-- arguments ...]

The lack of an --r6rs-script argument causes Ikarus to start in in-
teractive mode. Each of the files is first loaded, in the interaction
environment. The interaction environment initially contains all the
bindings exported from the (ikarus) library (see Chapter 3). The
optional arguments following the -- marker can be obtained by calling
the command-line procedure. In interactive mode, the first element
of the returned list will be the string "*interactive*", corresponding
to the script name in R6RS-script mode.

Note: The interactive mode is intended for quickly experi-
menting with the built-in features. It is intended neither for
developing applications nor for writing any substantial pieces of
code. The main reason for this is that the interaction between
R6RS libraries and the interactive environment is not well un-
derstood. We hope to achieve better interaction between the
two subsystems in the future.

Chapter 2

R6RS Crash Course

The major difference between R5RS and R6RS is the way in which programs
are loaded and evaluated.

In R5RS, Scheme implementations typically start as an interactive session
(often referred to as the REPL, or read-eval-print-loop). Inside the interac-
tive session, the user enters definitions and expressions one at a time using
the keyboard. Files, which also contain definitions and expressions, can be
loaded and reloaded by calling the load procedure. The environment in
which the interactive session starts often contains implementation-specific
bindings that are not found R5RS and users may redefine any of the ini-
tial bindings. The semantics of a loading a file depends on the state of the
environment at the time the file contents are evaluated.

R6RS differs from R5RS in that it specifies how whole programs, or scripts,
are compiled and evaluated. An R6RS script is closed in the sense that all
the identifiers found in the body of the script must either be defined in the
script or imported from a library. R6RS also specifies how libraries can be
defined and used. While files in R5RS are loaded imperatively into the top-
level environments, R6RS libraries can be imported declaratively in scripts
and in other R6RS libraries.

9

10 CHAPTER 2. R6RS CRASH COURSE

2.1 Writing a simple script

An R6RS script is a set of definitions and expressions preceded by an import
form. The import form specifies the language (i.e. the variable and key-
word bindings) in which the library body is written. A very simple example
of an R6RS script is listed below.

(import (rnrs))

(display "Hello World!\n")

The first line imports the (rnrs) library. All the bindings exported from the
(rnrs) library are made available to be used within the body of the library.
The exports of the (rnrs) library include variables (e.g. cons, car, display,
etc.) and keywords (e.g. define, lambda, quote, etc.). The second line
displays the string Hello World! followed by a new line character.

In addition to expressions, such as the call to display in the previous ex-
ample, a script may define some variables. The script below defines the
variable greeting and calls the procedure bound to it.

(import (rnrs))

(define greeting
(lambda ()

(display "Hello World!\n")))

(greeting)

Additional keywords may be defined within a script. In the example below,
we define the (do-times n exprs ...) macro that evaluates the expressions
exprs n times. Running the script displays Hello World 3 times.

2.2. WRITING SIMPLE LIBRARIES 11

(import (rnrs))

(define greeting
(lambda ()

(display "Hello World!\n")))

(define-syntax do-times
(syntax-rules ()

[(_ n exprs ...)
(let f ([i n])

(unless (zero? i)
exprs ...
(f (- i 1))))]))

(do-times 3 (greeting))

2.2 Writing simple libraries

A script is intended to be a small piece of the program—useful abstractions
belong to libraries. The do-times macro that was defined in the previous
section may be useful in places other than printing greeting messages. So,
we can create a small library, (iterations) that contains common iteration
forms.

An R6RS library form is made of four essential parts: (1) the library name,
(2) the set of identifiers that the library exports, (3) the set of libraries that
the library imports, and (4) the body of the library.

The library name can be any non-empty list of identifiers. R6RS-defined
libraries includes (rnrs), (rnrs unicode), (rnrs bytevectors), and so on.

The library exports are a set of identifiers that are made available to import-
ing libraries. Every exported identifier must be bound: it may either be
defined in the libraries or imported from another library. Library exports
include variables, keywords, record names, condition names.

12 CHAPTER 2. R6RS CRASH COURSE

Library imports are similar to script imports: they specify the set of li-
braries whose exports are made visible within the body of the library.

The body of a library contains definitions (variable, keyword, record, con-
dition, etc.) followed by an optional set of expressions. The expressions
are evaluated for side effect when needed.

The (iteration) library may be written as follows:

(library (iteration)
(export do-times)
(import (rnrs))

(define-syntax do-times
(syntax-rules ()

[(_ n exprs ...)
(let f ([i n])

(unless (zero? i)
exprs ...
(f (- i 1))))])))

To use the (iteration) library in our script, we add the name of the li-
brary to the script’s import form. This makes all of (iteration)’s exported
identifiers, e.g. do-times, visible in the body of the script.

(import (rnrs) (iteration))

(define greeting
(lambda ()

(display "Hello World!\n")))

(do-times 3 (greeting))

2.3. R6RS RECORD TYPES 13

2.3 R6RS record types

R6RS provides ways for users to define new types, called record types. A
record is a fixed-size data structure with a unique type (called a record
type). A record may have any finite number of fields that hold arbitrary
values. This section briefly describes what we expect to be the most com-
monly used features of the record system. Full details are in the R6RS
Standard Libraries document[6].

2.3.1 Defining new record types

To define a new record type, use the define-record-type form. For exam-
ple, suppose we want to define a new record type for describing points,
where a point is a data structure that has two fields to hold the point’s x and
y coordinates. The following definition achieves just that:

(define-record-type point
(fields x y))

The above use of define-record-type defines the following procedures au-
tomatically for you:

• The constructor make-point that takes two arguments, x and y and
returns a new record whose type is point.

• The predicate point? that takes an arbitrary value and returns #t if
that value is a point, #f otherwise.

• The accessors point-x and point-y that, given a record of type point,
return the value stored in the x and y fields.

Both the x and y fields of the point record type are immutable, meaning
that once a record is created with specific x and y values, they cannot be
changed later. If you want the fields to be mutable, then you need to specify
that explicitly as in the following example.

14 CHAPTER 2. R6RS CRASH COURSE

(define-record-type point
(fields (mutable x) (mutable y)))

This definition gives us, in addition to the constructor, predicate, and ac-
cessors, two additional procedures:

• The mutators set-point-x! and set-point-y! that, given a record of
type point, and a new value, sets the value stored in the x field or y
field to the new value.

Note: Records in Ikarus have a printable representation in or-
der to enable debugging programs that use records. Records
are printed in the #[type-name field-values ...] notation. For
example, (write (make-point 1 2)) produces #[point 1 2].

2.3.2 Extending existing record types

A record type may be extended by defining new variants of a record with
additional fields. In our running example, suppose we want to define a
colored-point record type that, in addition to being a point, it has an addi-
tional field: a color. A simple way of achieving that is by using the following
record definition:

(define-record-type cpoint
(parent point)
(fields color))

Here, the definition of cpoint gives us:

• A constructor make-cpoint that takes three arguments (x, y, and color
in that order) and returns a cpoint record.

2.3. R6RS RECORD TYPES 15

• A predicate cpoint? that takes a single argument and determines whether
the argument is a cpoint record.

• An accessor cpoint-color that returns the value of the color field of
a cpoint object.

All procedures that are applicable to records of type point (point?, point-x,
point-y) are also applicable to records of type cpoint since a cpoint is also
a point.

2.3.3 Specifying custom constructors

The record type definitions explained so far use the default constructor
that takes as many arguments as there are fields and returns a new record
type with the values of the fields initialized to the arguments’ values. It is
sometimes necessary or convenient to provide a constructor that performs
more than the default constructor. For example, we can modify the defi-
nition of our point record in such way that the constructor takes either no
arguments, in which case it would return a point located at the origin, or
two arguments specifying the x and y coordinates. We use the protocol
keyword for specifying such constructor as in the following example:

(define-record-type point
(fields x y)
(protocol

(lambda (new)
(case-lambda

[(x y) (new x y)]
[() (new 0 0)]))))

The protocol here is a procedure that takes a constructor procedure new
(new takes as many arguments as there are fields.) and returns the desired
custom constructor that we want (The actual constructor will be the value
of the case-lambda expression in the example above). Now the construc-
tor make-point would either take two arguments which constructs a point

16 CHAPTER 2. R6RS CRASH COURSE

record as before, or no arguments, in which case (new 0 0) is called to
construct a point at the origin.

Another reason why one might want to use custom constructors is to pre-
compute the initial values of some fields based on the values of other fields.
An example of this case is adding a distance field to the record type which
is computed as d =

√
x2 + y2. The protocol in this case may be defined as:

(define-record-type point
(fields x y distance)
(protocol

(lambda (new)
(lambda (x y)

(new x y (sqrt (+ (expt x 2) (expt y 2))))))))

Note that derived record types need not be modified when additional fields
are added to the parent record type. For example, our cpoint record type
still works unmodified even after we added the new distance field to the
parent. Calling (point-distance (make-cpoint 3 4 #xFF0000)) returns 5.0
as expected.

2.3.4 Custom constructors for derived record types

Just like how base record types (e.g. point in the running example) may
have a custom constructor, derived record types can also have custom con-
structors that do other actions. Suppose that you want to construct cpoint
records using an optional color that, if not supplied, defaults to the value
0. To do so, we supply a protocol argument to define-record-type. The
only difference here is that the procedure new is a curried constructor. It
first takes as many arguments as the constructor of the parent record type,
and returns a procedure that takes the initial values of the new fields.

In our example, the constructor for the point record type takes two argu-
ments. cpoint extends point with one new field. Therefore, new in the def-
inition below first takes the arguments for point’s constructor, then takes

2.4. EXCEPTION HANDLING 17

the initial color value. The definition below shows how the custom con-
structor may be defined.

(define-record-type cpoint
(parent point)
(fields color)
(protocol

(lambda (new)
(case-lambda

[(x y c) ((new x y) c)]
[(x y) ((new x y) 0)]))))

2.4 Exception Handling

The procedure with-exception-handler allows the programmer to specify
how to handle exceptional situations. It takes two procedures as arguments:

• An exception handler which is a procedure that take a single argu-
ment, the object that was raised.

• A body thunk which is a procedure with no arguments whose body is
evaluated with the exception handler installed.

In addition to installing exception handlers, R6RS provides two ways of
raising exceptions: raise and raise-continuable. We describe the proce-
dure raise-continuable first since it’s the simpler of the two. For the code
below, assume that print is defined as:

(define (print who obj)
(display who)
(display ": ")
(display obj)
(newline))

18 CHAPTER 2. R6RS CRASH COURSE

The first example, below, shows how a simple exception handler is in-
stalled. Here, the exception handler prints the object it receives and re-
turns the symbol there. The call to raise-continuable calls the exception
handler, passing it the symbol here. When the handler returns, the re-
turned value becomes the value of the calls to raise-continuable.

(with-exception-handler
(lambda (obj) ;;; prints

(print "handling" obj) ;;; handling: here
'there) ;;; returned: there

(lambda ()
(print "returned" (raise-continuable 'here))))

Exceptional handlers may nest, and in that case, if an exception is raised
while evaluating an inner handler, the outer handler is called as the follow-
ing example illustrates:

(with-exception-handler
(lambda (obj) ;;; prints

(print "outer" obj) ;;; inner: here
'outer) ;;; outer: there

(lambda () ;;; returned: outer
(with-exception-handler

(lambda (obj)
(print "inner" obj)
(raise-continuable 'there))

(lambda ()
(print "returned" (raise-continuable 'here))))))

In short, with-exception-handler binds an exception handler within the dy-
namic context of evaluating the thunk, and raise-continuable calls it.

The procedure raise is similar to raise-continuable except that if the han-
dler returns, a new exception is raised, calling the next handler in sequence
until the list of handlers is exhausted.

2.4. EXCEPTION HANDLING 19

(call/cc ;;; prints
(lambda (escape) ;;; inner: here

(with-exception-handler ;;; outer: #[condition ---]
(lambda (obj) ;;; returns

(print "outer" obj) ;;; 12
(escape 12))

(lambda ()
(with-exception-handler

(lambda (obj)
(print "inner" obj)
'there)

(lambda ()
(print "returned" (raise 'here))))))))

Here, the call to raise calls the inner exception handler, which returns,
causing raise to re-raise a non-continuable exception to the outer excep-
tion handler. The outer exception handler then calls the escape continua-
tion.

The following procedure provides a useful example of using the excep-
tion handling mechanism. Consider a simple definition of the procedure
configuration-option which returns the value associated with a key where
the key/value pairs are stored in an association list in a configuration file.

(define (configuration-option filename key)
(cdr (assq key (call-with-input-file filename read))))

Possible things may go wrong with calling configuration-option including
errors opening the file, errors reading from the file (file may be corrupt),
error in assq since what’s read may not be an association list, and error
in cdr since the key may not be in the association list. Handling all error
possibilities is tedious and error prone. Exceptions provide a clean way
of solving the problem. Instead of guarding against all possible errors, we
install a handler that suppresses all errors and returns a default value if

20 CHAPTER 2. R6RS CRASH COURSE

things go wrong. Error handling for configuration-option may be added as
follows:

(define (configuration-option filename key default)
(define (getopt)

(cdr (assq key (call-with-input-file filename read))))
(call/cc

(lambda (k)
(with-exception-handler

(lambda (_) (k default))
getopt))))

Chapter 3

The (ikarus) library

In addition to the libraries listed in the R6RS standard, Ikarus contains the
(ikarus) library which provides additional useful features. The (ikarus)
library is a composite library—it exports a superset of all the supported
bindings of R6RS. While not all of the exports of (ikarus) are documented
at this time, this chapter attempts to describe a few of these useful exten-
sions.

21

22 CHAPTER 3. THE (IKARUS) LIBRARY

3.1 Parameters

Parameters in Ikarus1 are intended for customizing the behavior of a pro-
cedure during the dynamic execution of some piece of code. Parameters
are first class entities (represented as procedures) that hold the parameter
value. A parameter procedure accepts either zero or one argument. If
given no arguments, it returns the current value of the parameter. If given
a single argument, it must set the state to the value of the argument. Pa-
rameters replace the older concept of using starred *global* customization
variables. For example, instead of writing:

(define *screen-width* 72)

and then mutate the variable *screen-width* with set!, we could wrap
screen-width with a screen-width parameter as follows:

(define *screen-width* 72)
(define screen-width

(case-lambda
[() *screen-width*]
[(x) (set! *screen-width* x)]))

The value of screen-width can now be passed as argument, returned as a
value, and exported from libraries.

make-parameter procedure
(make-parameter x)
(make-parameter x f)

As parameters are common in Ikarus, the procedure make-parameter is de-
fined to model common usage pattern of parameter construction.

1Parameters are found in many Scheme implementations such as Chez Scheme and
MzScheme.

3.1. PARAMETERS 23

(make-parameter x) constructs a parameter with x as the initial value. For
example, the code above could be written succinctly as:

(define screen-width (make-parameter 72))

(make-parameter x f) constructs a parameter which filters the assigned
values through the procedure f. The initial value of the parameter is the
result of calling (f x). Typical used of the filter procedure include checking
some constraints on the passed argument or converting it to a different data
type. The screen-width parameter may be constructed more robustly as:

(define screen-width
(make-parameter 72

(lambda (w)
(assert (and (integer? w) (exact? w)))
(max w 1))))

This definition ensures, through assert, that the argument passed is an ex-
act integer. It also ensures, through max that the assigned value is always
positive.

parameterize syntax
(parameterize ([lhs* rhs*] ...) body body* ...)

Parameters can be assigned to by simply calling the parameter procedure
with a single argument. The parameterize syntax is used to set the value of
a parameter within the dynamic extent of the body body* ... expressions.

The lhs* ... are expressions, each of which must evaluate to a parameter.
Such parameters are not necessarily constructed by make-parameter—any
procedure that follows the parameters protocol works.

The advantage of using parameterize over explicitly assigning to parameters
(same argument applies to global variables) is that you’re guaranteed that
whenever control exits the body of a parameterize expression, the value
of the parameter is reset back to what it was before the body expressions

24 CHAPTER 3. THE (IKARUS) LIBRARY

were entered. This is true even in the presence of call/cc, errors, and
exceptions.

The following example shows how to set the text property of a termi-
nal window. The parameter terminal-property sends an ANSI escape se-
quence to the terminal whenever the parameter value is changed. The
use of terminal-property within parameterize changes the property before
(display "RED!") is called and resets it back to normal when the body re-
turns.

(define terminal-property
(make-parameter "0"

(lambda (x)
(display "\x1b;[")
(display x)
(display "m")
x)))

(display "Normal and ")
(parameterize ([terminal-property "41;37"])

(display "RED!"))
(newline)

3.2. LOCAL MODULES 25

3.2 Local Modules

This section is not documented yet. Please refer to Section 10.5 of Chez
Scheme User’s Guide [1], Chapter 3 of Oscar Waddel’s Ph.D Thesis [7], and
its POPL99 paper [8] for details on using the module and import keywords.
Ikarus’s internal module system is similar in spirit to that of Chez Scheme.

module syntax
(module M definitions ... expressions ...)
(module definitions ... expressions ...)

import syntax
(import M)

26 CHAPTER 3. THE (IKARUS) LIBRARY

3.3 Gensyms

Gensym stands for a generated symbol—a fresh symbol that is generated at
run time and is guaranteed to be not eq? to any other symbol present in
the system. Gensyms are useful in many applications including expanders,
compilers, and interpreters when generating an arbitrary number of unique
names is needed.

Ikarus is similar to Chez Scheme in that the readers (including the read
procedure) and writers (including write and pretty-print) maintain the
read/write invariance on gensyms. When a gensym is written to an output
port, the system automatically generates a random unique identifier for the
gensym. When the gensym is read back though the #{gensym} read syntax,
a new gensym is not regenerated, but instead, it is looked up in the global
symbol table.

A gensym’s name is composed of two parts: a pretty string and a unique
string. The Scheme procedure symbol->string returns the pretty string of
the gensym and not its unique string. Gensyms are printed by default as
#{pretty-string unique-string}.

gensym procedure
(gensym)
(gensym string)
(gensym symbol)

The procedure gensym constructs a new gensym. If passed no arguments,
it constructs a gensym with no pretty name. The pretty name is con-
structed when and if the pretty name of the resulting gensym is needed.
See gensym-prefix (page 35) and gensym-count (page 35) for details.

> (gensym)
#{g0 |y0zf>GlFvcTJE0xw|}
> (gensym)
#{g1 |U%X&sF6kX!YC8LW=|}
> (eq? (gensym) (gensym))
#f

3.3. GENSYMS 27

(gensym string) constructs a new gensym with string as its pretty name.
Similarly, (gensym symbol) constructs a new gensym with the pretty name
of symbol, if it has one, as its pretty name.

> (gensym "foo")
#{foo |>VgOllCM&$dSvRN=|}
> (gensym 'foo)
#{foo |!TqQLmtw2hoEYfU>|}
> (gensym (gensym 'foo))
#{foo |N2C>5O0>C?OROUBU|}

gensym? procedure
(gensym? x)

The gensym? predicate returns #t if its argument is a gensym, and returns
#f otherwise.

> (gensym? (gensym))
#t
> (gensym? 'foo)
#f
> (gensym? 12)
#f

gensym->unique-string procedure
(gensym->unique-string gensym)

The gensym->unique-string procedure returns the unique name associated
with the gensym argument.

> (gensym->unique-string (gensym))
"YukrolLMgP?%ElcR"

28 CHAPTER 3. THE (IKARUS) LIBRARY

#{gensym} reader syntax
#{unique-name}

#{pretty-name unique-name}
#:pretty-name

Ikarus’s read and write procedures extends the lexical syntax of Scheme by
the ability to read and write gensyms using one of the three forms listed
above.

#{unique-name} constructs, at read time, a gensym whose unique name is
the one specified. If a gensym with the same unique name already exists in
the system’s symbol table, that gensym is returned.

> '#{some-long-name}
#{g0 |some-long-name|}
> (gensym? '#{some-long-unique-name})
#t
> (eq? '#{another-unique-name} '#{another-unique-name})
#t

The two-part #{pretty-name unique-name} gensym syntax is similar to the
syntax shown above with the exception that if a new gensym is constructed
(that is, if the gensym did not already exist in the symbol table), the pretty
name of the constructed gensym is set to pretty-name.

> '#{foo unique-identifier}
#{foo |unique-identifier|}
> '#{unique-identifier}
#{foo |unique-identifier|}
> '#{bar unique-identifier}
#{foo |unique-identifier|}

The #:pretty-name form constructs, at read time, a gensym whose pretty
name is pretty-name and whose unique name is fresh. This form guarantees
that the resulting gensym is not eq? to any other symbol in the system.

3.3. GENSYMS 29

> '#:foo
#{foo |j=qTGlEwS/Zlp2Dj|}
> (eq? '#:foo '#:foo)
#f

generate-temporaries example

The (rnrs syntax-case) library provides a generate-temporaries proce-
dure, which takes a syntax object (representing a list of things) and returns
a list of fresh identifiers. Using gensym, that procedure can be defined as
follows:

(define (generate-temporaries* stx)
(syntax-case stx ()

[(x* ...)
(map (lambda (x)

(datum->syntax #'unimportant
(gensym

(if (identifier? x)
(syntax->datum x)
't))))

#'(x* ...))]))

The above definition works by taking the input stx and destructuring it
into the list of syntax objects x* The inner procedure maps each x
into a new syntax object (constructed with datum->syntax). The datum is
a gensym, whose name is the same name as x if x is an identifier, or the
symbol t if x is not an identifier. The output of generate-temporaries*
generates names similar to their input counterpart:

> (print-gensym #f)
> (generate-temporaries* #'(x y z 1 2))
(#<syntax x> #<syntax y> #<syntax z> #<syntax t> #<syntax t>)

30 CHAPTER 3. THE (IKARUS) LIBRARY

3.4 Printing

pretty-print procedure
(pretty-print datum)
(pretty-print datum output-port)

The procedure pretty-print is intended for printing Scheme data, typically
Scheme programs, in a format close to how a Scheme programmer would
write it. Unlike write, which writes its input all in one line, pretty-print
inserts spaces and new lines in order to produce more pleasant output.

(define fact-code
'(letrec ([fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))])

(fact 5)))

> (pretty-print fact-code)
(letrec ((fact

(lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))
(fact 5))

The second argument to pretty-print, if supplied, must be an output port.
If not supplied, the current-output-port is used.

Limitations: As shown in the output above, the current imple-
mentation of pretty-print does not handle printing of square
brackets properly.

pretty-width parameter
(pretty-width)
(pretty-width n)

The parameter pretty-width controls the number of characters after which
the pretty-print starts breaking long lines into multiple lines. The initial

3.4. PRINTING 31

value of pretty-width is set to 60 characters, which is suitable for most
terminals and printed material.

> (parameterize ([pretty-width 40])
(pretty-print fact-code))

(letrec ((fact
(lambda (n)

(if (zero? n)
1
(* n (fact (- n 1)))))))

(fact 5))

Note that pretty-width does not guarantee that the output will not extend
beyond the specified number. Very long symbols, for examples, cannot be
split into multiple lines and may force the printer to go beyond the value
of pretty-width.

format procedure
(format fmt-string args ...)

The procedure format produces a string formatted according to the value of
fmt-string and the supplied arguments. The format string contains mark-
ers in which the string representation of each argument is placed. The
markers include:

"˜s" instructs the formatter to place the next argument as if the procedure
write has printed it. If the argument contains a string, the string will
be quoted and all quotes and backslashes in the string will be escaped.
Similarly, characters will be printed using the #
x notation.

"˜a" instructs the formatter to place the next argument as if the procedure
display has printed it. Strings and characters are placed as they are
in the output.

32 CHAPTER 3. THE (IKARUS) LIBRARY

"˜b" instructs the formatter to convert the next argument to its binary
(base 2) representation. The argument must be an exact number.
Note that the #b numeric prefix is not produced in the output.

"˜o" is similar to "˜b" except that the number is printed in octal (base 8).

"˜x" is similar to "˜b" except that the number is printed in hexadecimal
(base 16).

"˜d" outputs the next argument, which can be an exact or inexact number
in its decimal (base 10) representation.

"˜˜" instructs the formatter to place a tilde character, ˜, in the output
without consuming an argument.

> (format "message: ~s, ~s, and ~s" 'symbol "string" #\c)
"message: symbol, \"string\", and #\\c"

> (format "message: ~a, ~a, and ~a" 'symbol "string" #\c)
"message: symbol, string, and c"

printf procedure
(printf fmt-string args ...)

The procedure printf is similar to format except that the output is sent to
the current-output-port instead of being collected in a string.

> (printf "message: ~s, ~s, and ~s\n" 'symbol "string" #\c)
message: symbol, "string", and #\c

> (printf "message: ~a, ~a, and ~a\n" 'symbol "string" #\c)
message: symbol, string, and c

fprintf procedure
(fprintf output-port fmt-string args ...)

3.4. PRINTING 33

The procedure fprintf is similar to printf except that the output port to
which the output is sent is specified as the first argument.

print-graph parameter
(print-graph)
(print-graph #t)
(print-graph #f)

The print-graph parameter controls how the writers (e.g. pretty-print
and write) handle shared and cyclic data structures. In Ikarus, all writers
detect cyclic data structures and they all terminate on all input, cyclic or
otherwise.

If the value of print-graph is set to #f (the default), then the writers does
not attempt to detect shared data structures. Any part of the input that is
shared is printed as if no sharing is present.

If the value of print-graph is set to #t, all sharing of data structures is
marked using the #n= and #n# notation.

> (parameterize ([print-graph #f])
(let ([x (list 1 2 3 4)])

(pretty-print (list x x x))))
((1 2 3 4) (1 2 3 4) (1 2 3 4))

> (parameterize ([print-graph #t])
(let ([x (list 1 2 3 4)])

(pretty-print (list x x x))))
(#0=(1 2 3 4) #0# #0#)

> (parameterize ([print-graph #f])
(let ([x (list 1 2)])

(let ([y (list x x x x)])
(set-car! (last-pair y) y)
(pretty-print (list y y)))))

(#0=((1 2) (1 2) (1 2) #0#) #0#)

34 CHAPTER 3. THE (IKARUS) LIBRARY

> (parameterize ([print-graph #t])
(let ([x (list 1 2)])

(let ([y (list x x x x)])
(set-car! (last-pair y) y)
(pretty-print (list y y)))))

(#0=(#1=(1 2) #1# #1# #0#) #0#)

print-gensym parameter
(print-gensym)
(print-gensym #t)
(print-gensym #f)
(print-gensym 'pretty)

The parameter print-gensym controls how gensyms are printed by the var-
ious writers.

If the value of print-gensym is #f, then gensym syntax is suppressed by the
writers and only the gensyms’ pretty names are printed. If the value of
print-gensym is #t, then the full #{pretty unique} syntax is printed. Finally,
if the value of print-gensym is the symbol pretty, then gensyms are printed
using the #:pretty notation.

> (parameterize ([print-gensym #f])
(pretty-print (list (gensym) (gensym))))

(g0 g1)

> (parameterize ([print-gensym #t])
(pretty-print (list (gensym) (gensym))))

(#{g2 |KR1M2&CTt1<B0n/m|} #{g3 |FBAb&7NC6&=c82!O|})

> (parameterize ([print-gensym 'pretty])
(pretty-print (list (gensym) (gensym))))

(#:g4 #:g5)

The initial value of print-gensym is #t.

3.4. PRINTING 35

gensym-prefix parameter
(gensym-prefix)
(gensym-prefix string)

The parameter gensym-prefix specifies the string to be used as the prefix
to generated pretty names. The default value of gensym-prefix is the string
"g", which causes generated strings to have pretty names in the sequence
g0, g1, g2, etc.

> (parameterize ([gensym-prefix "var"] [print-gensym #f])
(pretty-print (list (gensym) (gensym) (gensym))))

(var0 var1 var2)

Beware that the gensym-prefix controls how pretty names are generated,
and has nothing to do with how gensym constructs a new gensym. In par-
ticular, notice the difference between the output in the first example with
the output of the examples below:

> (pretty-print
(parameterize ([gensym-prefix "var"] [print-gensym #f])

(list (gensym) (gensym) (gensym))))
(g3 g4 g5)

> (let ([ls (list (gensym) (gensym) (gensym))])
(parameterize ([gensym-prefix "var"] [print-gensym #f])

(pretty-print ls)))
(var5 var6 var7)

gensym-count parameter
(gensym-count)
(gensym-count n)

The parameter gensym-count determines the number which is attached to
the gensym-prefix when gensyms’ pretty names are generated. The value

36 CHAPTER 3. THE (IKARUS) LIBRARY

of gensym-count starts at 0 when the system starts and is incremented every
time a pretty name is generated. It might be set to any non-negative integer
value.

> (let ([x (gensym)])
(parameterize ([gensym-count 100] [print-gensym #f])

(pretty-print (list (gensym) x (gensym)))))
(g100 g101 g102)

Notice from all the examples so far that pretty names are generated in the
order at which the gensyms are printed, not in the order in which gensyms
were created.

3.5. TRACING 37

3.5 Tracing

trace-define syntax
(trace-define (name . args) body body* ...)
(trace-define name expression)

The trace-define syntax is similar to define except that the bound value,
which must be a procedure, becomes a traced procedure. A traced pro-
cedure prints its arguments when it is called and prints its values when it
returns.

> (trace-define (fact n)
(if (zero? n) 1 (* n (fact (- n 1)))))

> (fact 5)
|(fact 5)
| (fact 4)
| |(fact 3)
| | (fact 2)
| | |(fact 1)
| | | (fact 0)
| | | 1
| | |1
| | 2
| |6
| 24
|120
120

The tracing facility in Ikarus preserves and shows tail recursion and distin-
guishes it from non-tail recursion by showing tail calls starting at the same
line in which their parent was called.

> (trace-define (fact n)
(trace-define (fact-aux n m)

(if (zero? n) m (fact-aux (- n 1) (* n m))))

38 CHAPTER 3. THE (IKARUS) LIBRARY

(fact-aux n 1))
> (fact 5)
|(fact 5)
|(fact-aux 5 1)
|(fact-aux 4 5)
|(fact-aux 3 20)
|(fact-aux 2 60)
|(fact-aux 1 120)
|(fact-aux 0 120)
|120
120

Moreover, the tracing facility interacts well with continuations and excep-
tions.

> (call/cc
(lambda (k)

(trace-define (loop n)
(if (zero? n)

(k 'done)
(+ (loop (- n 1)) 1)))

(loop 5)))
|(loop 5)
| (loop 4)
| |(loop 3)
| | (loop 2)
| | |(loop 1)
| | | (loop 0)
done

trace-lambda syntax
(trace-lambda name args body body* ...)

The trace-lambda macro is similar to lambda except that the resulting proce-
dure is traced: it prints the arguments it receives and the results it returns.

3.5. TRACING 39

make-traced-procedure procedure
(make-traced-procedure name proc)

The procedure make-traced-procedure takes a name (typically a symbol)
and a procedure. It returns a procedure similar to proc except that it traces
its arguments and values.

> (define (fact n)
(if (zero? n)

(lambda (k) (k 1))
(lambda (k)

((fact (- n 1))
(make-traced-procedure `(k ,n)

(lambda (v)
(k (* v n))))))))

> (call/cc
(lambda (k)

((fact 5) (make-traced-procedure 'K k))))
|((k 1) 1)
|((k 2) 1)
|((k 3) 2)
|((k 4) 6)
|((k 5) 24)
|(K 120)
120

40 CHAPTER 3. THE (IKARUS) LIBRARY

3.6 Timing

This section describes some of Ikarus’s timing facilities which may be useful
for benchmarking and performance tuning.

time syntax
(time expression)

The timemacro performs the following: it evaluates expression, then prints
a summary of the run time statistics, then returns the values returned by
expression. The run-time summary includes the number of bytes allo-
cated, the number of garbage collection runs, and the time spent in both
the mutator and the collector.

> (let () ;;; 10 million
(define ls (time (vector->list (make-vector 10000000))))
(time (append ls ls))
(values))

running stats for (vector->list (make-vector 10000000)):
3 collections
672 ms elapsed cpu time, including 547 ms collecting
674 ms elapsed real time, including 549 ms collecting
120012328 bytes allocated

running stats for (append ls ls):
4 collections
1536 ms elapsed cpu time, including 1336 ms collecting
1538 ms elapsed real time, including 1337 ms collecting
160000040 bytes allocated

Note: The output listed above is just a sample that was taken at some point
on some machine. The output on your machine at the time you read this
may vary.

3.6. TIMING 41

time-it procedure
(time-it who thunk)

The procedure time-it takes a datum denoting the name of the computation
and a thunk (i.e. a procedure with no arguments), invokes the thunk, prints
the stats, and returns the values obtained from invoking the thunk. If the
value of who is non-false, who is used when displaying the run-time statistics.
If the value of who is #f, then no name for the computation is displayed.

> (time-it "a very fast computation"
(lambda () (values 1 2 3)))

running stats for a very fast computation:
no collections
0 ms elapsed cpu time, including 0 ms collecting
0 ms elapsed real time, including 0 ms collecting
56 bytes allocated

1
2
3

> (time-it #f (lambda () 12))
running stats:

no collections
0 ms elapsed cpu time, including 0 ms collecting
0 ms elapsed real time, including 0 ms collecting
32 bytes allocated

12

42 CHAPTER 3. THE (IKARUS) LIBRARY

Chapter 4

Missing Features

Ikarus does not fully conform to R6RS yet. Although it implements the
most immediately useful features of R6RS including more than 80% of
R6RS’s macros and procedures, some areas are still lacking. This section
summarizes the set of missing features and procedures.

• Numeric tower is complete except for complex numbers.
Consequences:
– Reader does not recognize complex number notation (e.g. 5-7i).
– Procedures that may construct complex numbers from non-complex
arguments may signal an error or return an incorrect value (for ex-
ample, (sqrt -1) should not be +nan.0).

• Reader does not recognize #!r6rs syntax. It should be modified to
accept both #!r6rs and #!ikarus so that Ikarus-specific reader features
(gensym syntax, record syntax, shared graphs, fasl objects, etc.) can
be enabled/disabled as needed.

• The procedure equal? may not terminate on equal? infinite (circular)
input.

• Representation of I/O ports is missing a transcoder field.

43

44 CHAPTER 4. MISSING FEATURES

4.1 List of missing R6RS procedures

The following procedures are missing from (rnrs base):

angle magnitude make-polar make-rectangular

The following procedures are missing form (rnrs bytevectors):

string->utf16 string->utf32 utf16->string utf32->string

The following procedures are missing from (rnrs unicode):

string-downcase string-foldcase string-titlecase string-upcase
string-normalize-nfc string-normalize-nfd
string-normalize-nfkc string-normalize-nfkd

The following procedures are missing from (rnrs arithmetic bitwise):

bitwise-ior bitwise-xor bitwise-if
bitwise-copy-bit-field bitwise-bit-set? bitwise-copy-bit
bitwise-first-bit-set bitwise-bit-count bitwise-bit-field
bitwise-reverse-bit-field bitwise-rotate-bit-field bitwise-length

The following procedures are missing from (rnrs arithmetic fixnum):

fxbit-count fxbit-field fxbit-set? fxcopy-bit fxcopy-bit-field
fxfirst-bit-set fxlength fxreverse-bit-field fxrotate-bit-field

The following procedures are missing from (rnrs hashtables):

hashtable-copy
make-eqv-hashtable make-hashtable
hashtable-hash-function hashtable-equivalence-function
equal-hash string-hash string-ci-hash symbol-hash

4.1. LIST OF MISSING R6RS PROCEDURES 45

The following procedures are missing from (rnrs io ports):

call-with-bytevector-output-port call-with-string-output-port
binary-port? textual-port? port-eof?
port-has-port-position? port-position
port-has-set-port-position!? set-port-position!
call-with-port close-port
get-bytevector-all get-bytevector-some
get-bytevector-n get-bytevector-n!
get-char put-char lookahead-char
get-u8 lookahead-u8 put-u8
get-string-all get-string-n get-string-n! put-string
get-datum put-datum
make-custom-binary-input-port make-custom-binary-input/output-port
make-custom-binary-output-port make-custom-textual-input-port
make-custom-textual-input/output-port make-custom-textual-output-port
open-bytevector-input-port open-bytevector-output-port
open-file-input-port open-file-input/output-port open-file-output-port
open-string-input-port open-string-output-port
output-port-buffer-mode
transcoded-port port-transcoderput-bytevector
standard-error-port standard-input-port standard-output-port
string->bytevector bytevector->string

46 CHAPTER 4. MISSING FEATURES

Bibliography

[1] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide. Cadence Research
Systems, 2005.

[2] R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stop the Bi-
BOP: Flexible and efficient storage management for dynamically-typed
languages. Technical Report 400, Indiana University, March 1994.

[3] Abdulaziz Ghuloum and R. Kent Dybvig. Generation-friendly Eq hash
tables. In Proceedings of the 2007 Workshop on Scheme and Functional
Programming, pages 27–35. Université Laval Technical Report DIUL-
RT-0701, 2007.

[4] Abdulaziz Ghuloum and R. Kent Dybvig. Implicit phasing for R6RS
libraries. In ICFP ’07: Proceedings of the 2007 ACM SIGPLAN inter-
national conference on Functional programming, pages 303–314, New
York, NY, USA, 2007. ACM.

[5] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton
Van Straaten (Editors). Revised6 report on the algorithmic language
Scheme. 2007.

[6] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton
Van Straaten (Editors). Revised6 report on the algorithmic language
Scheme–standard libraries. 2007.

[7] Oscar Waddell. Extending the Scope of Syntactic Abstraction. PhD thesis,
Indiana University Computer Science Department, August 1999.

47

48 BIBLIOGRAPHY

[8] Oscar Waddell and R. Kent Dybvig. Extending the scope of syn-
tactic abstraction. In Conference Record of POPL’99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 203–213, January 1999.

Index

#:pretty reader syntax, 28
#{pretty unique} reader syntax, 28
#{unique} reader syntax, 28

Boot files, 7

command-line, 8
Command-line switches, 7

Examples
generate-temporaries, 29
Hello World, 10

format, 31
fprintf, 32

generate-temporaries, 29
gensym, 26
#{gensym}, 28
gensym->unique-string, 27
gensym-count, 35
gensym-prefix, 35
gensym?, 27

import, 25
Invoke, 12

make-parameter, 22
make-traced-procedure, 39
module, 25

parameterize, 23
pretty-print, 30

pretty-width, 30
print-gensym, 34
print-graph, 33
printf, 32

R6RS Script, 8
Import, 9

time, 40
time-it, 41
trace-define, 37
trace-lambda, 38

49

	1 Getting Started
	1.1 Introduction
	1.2 Technology Overview
	1.3 System Requirements
	1.3.1 Hardware
	1.3.2 Operating Systems
	1.3.3 Additional Software

	1.4 Installation
	1.4.1 Installation Details
	1.4.2 Uninstalling Ikarus

	1.5 Command-line Switches

	2 R6RS Crash Course
	2.1 Writing a simple script
	2.2 Writing simple libraries
	2.3 R6RS record types
	2.3.1 Defining new record types
	2.3.2 Extending existing record types
	2.3.3 Specifying custom constructors
	2.3.4 Custom constructors for derived record types

	2.4 Exception Handling

	3 The (ikarus) library
	3.1 Parameters
	3.2 Local Modules
	3.3 Gensyms
	3.4 Printing
	3.5 Tracing
	3.6 Timing

	4 Missing Features
	4.1 List of missing R6RS procedures

