/* * Ikarus Scheme -- A compiler for R6RS Scheme. * Copyright (C) 2006,2007 Abdulaziz Ghuloum * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 3 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "ikarus-data.h" #include #include #include #include #define most_positive_fixnum 0x1FFFFFFF #define most_negative_fixnum 0x20000000 #define max_digits_per_limb 10 #ifdef NDEBUG #define verify_bignum(x,caller) (x) #else static ikptr verify_bignum(ikptr x, char* caller){ if(tagof(x) != vector_tag){ fprintf(stderr, "Error in (%s) invalid primary tag %p\n", caller, x); exit(-1); } ikptr fst = ref(x, -vector_tag); int limb_count = ((unsigned int) fst) >> bignum_length_shift; if(limb_count <= 0){ fprintf(stderr, "Error in (%s) invalid limb count in fst=0x%08x\n", caller, (int)fst); exit(-1); } int pos; if((int)fst & bignum_sign_mask){ pos = 0; } else { pos = 1; } unsigned int last_limb = (unsigned int) ref(x, off_bignum_data + (limb_count - 1) * wordsize); if(last_limb == 0){ fprintf(stderr, "Error in (%s) invalid last limb = 0x%08x", caller, last_limb); exit(-1); } if(limb_count == 1){ if(pos){ if(last_limb <= most_positive_fixnum){ fprintf(stderr, "Error in (%s) should be a positive fixnum: 0x%08x\n", caller, last_limb); exit(-1); } } else { if(last_limb <= most_negative_fixnum){ fprintf(stderr, "Error in (%s) should be a negative fixnum: 0x%08x\n", caller, last_limb); exit(-1); } } } /* ok */ return x; } #endif #define BN(x) verify_bignum(x,"BN") #if 0 ikptr ikrt_isbignum(ikptr x){ if(tagof(x) == vector_tag){ ikptr fst = ref(x, -vector_tag); if (bignum_tag == (bignum_mask & (int)fst)){ return true_object; } } return false_object; } #endif ikptr ikrt_positive_bn(ikptr x){ ikptr fst = ref(x, -vector_tag); if((int)fst & bignum_sign_mask){ return false_object; } else { return true_object; } } ikptr ikrt_even_bn(ikptr x){ int fst = (int)ref(x, wordsize-vector_tag); if(fst & 1){ return false_object; } else { return true_object; } } ikptr ikrt_fxfxplus(ikptr x, ikptr y, ikpcb* pcb){ int n1 = unfix(x); int n2 = unfix(y); int r = n1 + n2; ikptr q = fix(r); if(r == unfix(q)){ return q; } else { ikptr bn = ik_safe_alloc(pcb, align(disp_bignum_data + wordsize)); if(r > 0){ ref(bn, 0) = (ikptr)(bignum_tag | (1 << bignum_length_shift)); ref(bn, disp_bignum_data) = (ikptr)r; } else { ref(bn, 0) = (ikptr)(bignum_tag | (1 << bignum_length_shift) | (1 << bignum_sign_shift)); ref(bn, disp_bignum_data) = (ikptr)-r; } return verify_bignum(bn+vector_tag, "fxfx+"); } } ikptr ikrt_fxbnplus(ikptr x, ikptr y, ikpcb* pcb){ if(x == 0){ return y ; } ikptr fst = ref(y, -vector_tag); int limb_count = ((unsigned int) fst) >> bignum_length_shift; int intx = unfix(x); if(intx > 0){ if((bignum_sign_mask & (int)fst) == 0){ /* positive fx + positive bn = even bigger positive */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(limb_count+1)*wordsize)); pcb->root0 = 0; int carry = mpn_add_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, intx); if(carry){ ref(r, disp_bignum_data + limb_count*wordsize) = (ikptr)1; ref(r, 0) = (ikptr) (((limb_count + 1) << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn+1"); } else { ref(r, 0) = (ikptr) ((limb_count << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn+2"); } } else { //fprintf(stderr, "this case 0x%08x\n", intx); /* positive fx + negative bn = smaller negative bn */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+limb_count*wordsize)); pcb->root0 = 0; int borrow = mpn_sub_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, intx); if(borrow){ fprintf(stderr, "Error: BUG in borrow1 %d\n", borrow); exit(-1); } int result_size = (ref(r, disp_bignum_data + (limb_count-1)*wordsize)) ? limb_count : (limb_count - 1); if(result_size == 0){ return 0; } if(result_size == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data + (result_size-1)*wordsize); if(last <= most_negative_fixnum){ return fix(-(int)last); } } ref(r, 0) = (ikptr) ((result_size << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn+3"); } } else { if((bignum_sign_mask & (int)fst) == 0){ /* negative fx + positive bn = smaller positive */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+limb_count*wordsize)); pcb->root0 = 0; int borrow = mpn_sub_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, - intx); if(borrow){ fprintf(stderr, "Error: BUG in borrow2\n"); exit(-1); } int result_size = (ref(r, disp_bignum_data + (limb_count-1)*wordsize) == 0) ? (limb_count - 1) : limb_count; if(result_size == 0){ return 0; } if(result_size == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data + (result_size-1)*wordsize); if(last <= most_positive_fixnum){ return fix((int)last); } } ref(r, 0) = (ikptr) ((result_size << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn+4"); } else { /* negative fx + negative bn = larger negative */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(limb_count+1)*wordsize)); pcb->root0 = 0; int carry = mpn_add_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, -intx); if(carry){ ref(r, disp_bignum_data + limb_count*wordsize) = (ikptr)1; ref(r, 0) = (ikptr) (((limb_count + 1) << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn+5"); } else { ref(r, 0) = (ikptr) ((limb_count << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn+5"); } } } } ikptr ikrt_bnbnplus(ikptr x, ikptr y, ikpcb* pcb){ unsigned int xfst = (unsigned int)ref(x, -vector_tag); unsigned int yfst = (unsigned int)ref(y, -vector_tag); int xsign = xfst & bignum_sign_mask; int ysign = yfst & bignum_sign_mask; int xlimbs = xfst >> bignum_length_shift; int ylimbs = yfst >> bignum_length_shift; if(xsign == ysign){ int n1,n2; ikptr s1,s2; if(xlimbs > ylimbs){ n1 = xlimbs; n2 = ylimbs; s1 = x; s2 = y; } else { n1 = ylimbs; n2 = xlimbs; s1 = y; s2 = x; } pcb->root0 = &s1; pcb->root1 = &s2; ikptr res = ik_safe_alloc(pcb, align(disp_bignum_data + (n1+1)*wordsize)); pcb->root0 = 0; pcb->root1 = 0; mp_limb_t carry = mpn_add((mp_limb_t*) (res+disp_bignum_data), (mp_limb_t*) (s1-vector_tag+disp_bignum_data), n1, (mp_limb_t*) (s2-vector_tag+disp_bignum_data), n2); if(carry){ ref(res, disp_vector_data + xlimbs*wordsize) = (ikptr)1; ref(res, 0) = (ikptr) (((n1+1) << bignum_length_shift) | xsign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn+1"); } else { ref(res, 0) = (ikptr) ((n1 << bignum_length_shift) | xsign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn+2"); } } else { ikptr s1=x, s2=y; int n1=xlimbs, n2=ylimbs; int result_sign = xsign; while((xlimbs == ylimbs) && (ref(x, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize) == ref(y, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize))){ xlimbs -= 1; ylimbs -= 1; if(xlimbs == 0){ return 0; } } /* |x| != |y| */ if(xlimbs <= ylimbs){ if(xlimbs == ylimbs){ if((ref(y, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize) > ref(x, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize))){ s1 = y; n1 = ylimbs; s2 = x; n2 = xlimbs; result_sign = ysign; } } else { s1 = y; n1 = ylimbs; s2 = x; n2 = xlimbs; result_sign = ysign; } } /* |s1| > |s2| */ pcb->root0 = &s1; pcb->root1 = &s2; ikptr res = ik_safe_alloc(pcb, align(disp_bignum_data + n1 * wordsize)); pcb->root0 = 0; pcb->root1 = 0; int burrow = mpn_sub((mp_limb_t*) (res + disp_bignum_data), (mp_limb_t*) (s1 - vector_tag + disp_bignum_data), n1, (mp_limb_t*) (s2 - vector_tag + disp_bignum_data), n2); if(burrow){ fprintf(stderr, "BUG: Burrow error in bnbn+\n"); exit(-1); } int len = n1; while(ref(res, disp_bignum_data + (len-1)*wordsize) == 0){ len--; if(len == 0){ return 0; } } if(result_sign == 0){ /* positive result */ if(len == 1){ unsigned int fst_limb = (unsigned int) ref(res, disp_bignum_data); if(fst_limb <= most_positive_fixnum){ return fix((int)fst_limb); } } ref(res, 0) = (ikptr) ((len << bignum_length_shift) | result_sign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn+3"); } else { /* negative result */ if(len == 1){ unsigned int fst_limb = (unsigned int) ref(res, disp_bignum_data); if(fst_limb <= most_negative_fixnum){ return fix(-(int)fst_limb); } } ref(res, 0) = (ikptr) ((len << bignum_length_shift) | result_sign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn+4"); } } } ikptr ikrt_fxfxminus(ikptr x, ikptr y, ikpcb* pcb){ int n1 = unfix(x); int n2 = unfix(y); int r = n1 - n2; if(r >= 0){ if(((unsigned int)r) <= most_positive_fixnum){ return fix(r); } else { ikptr bn = ik_safe_alloc(pcb, align(disp_bignum_data + wordsize)); ref(bn, 0) = (ikptr) (bignum_tag | (1 << bignum_length_shift)); ref(bn, disp_bignum_data) = (ikptr)r; return verify_bignum(bn+vector_tag,"fxfx-1"); } } else { ikptr fxr = fix(r); if(unfix(fxr) == r){ return fxr; } else { ikptr bn = ik_safe_alloc(pcb, align(disp_bignum_data + wordsize)); ref(bn, 0) = (ikptr) (bignum_tag | (1 << bignum_sign_shift) | (1 << bignum_length_shift)); ref(bn, disp_bignum_data) = (ikptr)(-r); return verify_bignum(bn+vector_tag, "fxfx-2"); } } } ikptr ikrt_bnnegate(ikptr x, ikpcb* pcb){ ikptr fst = ref(x, -vector_tag); int limb_count = ((unsigned int) fst) >> bignum_length_shift; if(limb_count == 1){ if((bignum_sign_mask & (int)fst) == 0){ /* positive bignum */ unsigned int limb = (unsigned int) ref(x, disp_bignum_data - vector_tag); if(limb == (most_positive_fixnum + 1)){ return fix(-(int)limb); } } } pcb->root0 = &x; ikptr bn = ik_safe_alloc(pcb, align(disp_bignum_data + limb_count * wordsize)); pcb->root0 = 0; memcpy(bn+disp_bignum_data, x-vector_tag+disp_bignum_data, limb_count*wordsize); ref(bn, 0) = (ikptr) (bignum_tag | ((1 << bignum_sign_shift) - (bignum_sign_mask & (int)fst)) | (limb_count << bignum_length_shift)); return verify_bignum(bn+vector_tag, "bnneg"); } ikptr ikrt_fxbnminus(ikptr x, ikptr y, ikpcb* pcb){ if(x == 0){ return ikrt_bnnegate(y, pcb) ; } ikptr fst = ref(y, -vector_tag); int limb_count = ((unsigned int) fst) >> bignum_length_shift; int intx = unfix(x); if(intx > 0){ if(bignum_sign_mask & (int)fst){ /* positive fx - negative bn = positive bn */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(limb_count+1)*wordsize)); pcb->root0 = 0; int carry = mpn_add_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, intx); if(carry){ ref(r, disp_bignum_data + limb_count*wordsize) = (ikptr)1; ref(r, 0) = (ikptr) (((limb_count + 1) << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn-1"); } else { ref(r, 0) = (ikptr) ((limb_count << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn-2"); } } else { /* positive fx - positive bn = smaller negative bn/fx */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+limb_count*wordsize)); pcb->root0 = 0; int borrow = mpn_sub_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, intx); if(borrow){ fprintf(stderr, "Error: BUG in borrow3\n"); exit(-1); } int result_size = (ref(r, disp_bignum_data + (limb_count-1)*wordsize)) ? limb_count : (limb_count - 1); if(result_size == 0){ return 0; } if(result_size == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data + (result_size-1)*wordsize); if(last <= most_negative_fixnum){ return fix(-(int)last); } } ref(r, 0) = (ikptr) ((result_size << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn-"); } } else { if(bignum_sign_mask & (int)fst){ /* negative fx - negative bn = smaller positive */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+limb_count*wordsize)); pcb->root0 = 0; int borrow = mpn_sub_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, - intx); if(borrow){ fprintf(stderr, "Error: BUG in borrow4\n"); exit(-1); } int result_size = (ref(r, disp_bignum_data + (limb_count-1)*wordsize) == 0) ? (limb_count - 1) : limb_count; if(result_size == 0){ return 0; } if(result_size == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data + (result_size-1)*wordsize); if(last <= most_positive_fixnum){ return fix((int)last); } } ref(r, 0) = (ikptr) ((result_size << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag,"fxbn-"); } else { /* negative fx - positive bn = larger negative */ pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(limb_count+1)*wordsize)); pcb->root0 = 0; int carry = mpn_add_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y - vector_tag + disp_bignum_data), limb_count, -intx); if(carry){ ref(r, disp_bignum_data + limb_count*wordsize) = (ikptr)1; ref(r, 0) = (ikptr) (((limb_count + 1) << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn-"); } else { ref(r, 0) = (ikptr) ((limb_count << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "fxbn-"); } } } } ikptr ikrt_bnfxminus(ikptr x, ikptr y, ikpcb* pcb){ if(y == 0){ return x; } ikptr fst = ref(x, -vector_tag); int limb_count = ((unsigned int) fst) >> bignum_length_shift; int inty = unfix(y); if(inty < 0){ if((bignum_sign_mask & (int)fst) == 0){ /* - negative fx + positive bn = positive bn */ pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(limb_count+1)*wordsize)); pcb->root0 = 0; int carry = mpn_add_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(x - vector_tag + disp_bignum_data), limb_count, -inty); if(carry){ ref(r, disp_bignum_data + limb_count*wordsize) = (ikptr)1; ref(r, 0) = (ikptr) (((limb_count + 1) << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag,"bnfx-"); } else { ref(r, 0) = (ikptr) ((limb_count << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag,"bnfx-"); } } else { /* - negative fx + negative bn = smaller negative bn/fx */ pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+limb_count*wordsize)); pcb->root0 = 0; int borrow = mpn_sub_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(x - vector_tag + disp_bignum_data), limb_count, -inty); if(borrow){ fprintf(stderr, "Error: BUG in borrow5\n"); exit(-1); } int result_size = (ref(r, disp_bignum_data + (limb_count-1)*wordsize)) ? limb_count : (limb_count - 1); if(result_size == 0){ return 0; } if(result_size == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data + (result_size-1)*wordsize); if(last <= most_negative_fixnum){ return fix(-(int)last); } } ref(r, 0) = (ikptr) ((result_size << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag,"bnfx-"); } } else { if((bignum_sign_mask & (int)fst) == 0){ /* - positive fx + positive bn = smaller positive */ pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+limb_count*wordsize)); pcb->root0 = 0; int borrow = mpn_sub_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(x - vector_tag + disp_bignum_data), limb_count, inty); if(borrow){ fprintf(stderr, "Error: BUG in borrow6\n"); exit(-1); } int result_size = (ref(r, disp_bignum_data + (limb_count-1)*wordsize) == 0) ? (limb_count - 1) : limb_count; if(result_size == 0){ return 0; } if(result_size == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data + (result_size-1)*wordsize); if(last <= most_positive_fixnum){ return fix((int)last); } } ref(r, 0) = (ikptr) ((result_size << bignum_length_shift) | (0 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "bnfx-"); } else { /* - positive fx + negative bn = larger negative */ pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(limb_count+1)*wordsize)); pcb->root0 = 0; int carry = mpn_add_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(x - vector_tag + disp_bignum_data), limb_count, inty); if(carry){ ref(r, disp_bignum_data + limb_count*wordsize) = (ikptr)1; ref(r, 0) = (ikptr) (((limb_count + 1) << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "bnfx-"); } else { ref(r, 0) = (ikptr) ((limb_count << bignum_length_shift) | (1 << bignum_sign_shift) | bignum_tag); return verify_bignum(r+vector_tag, "bnfx-"); } } } } ikptr ikrt_bnbnminus(ikptr x, ikptr y, ikpcb* pcb){ if(x == y) { return 0; } unsigned int xfst = (unsigned int)ref(x, -vector_tag); unsigned int yfst = (unsigned int)ref(y, -vector_tag); int xsign = xfst & bignum_sign_mask; int ysign = yfst & bignum_sign_mask; int xlimbs = xfst >> bignum_length_shift; int ylimbs = yfst >> bignum_length_shift; if(xsign != ysign){ int n1,n2; ikptr s1,s2; if(xlimbs >= ylimbs){ n1 = xlimbs; n2 = ylimbs; s1 = x; s2 = y; } else { n1 = ylimbs; n2 = xlimbs; s1 = y; s2 = x; } pcb->root0 = &s1; pcb->root0 = &s2; ikptr res = ik_safe_alloc(pcb, align(disp_bignum_data + (n1+1)*wordsize)); pcb->root0 = 0; pcb->root0 = 0; mp_limb_t carry = mpn_add((mp_limb_t*) (res+disp_bignum_data), (mp_limb_t*) (s1-vector_tag+disp_bignum_data), n1, (mp_limb_t*) (s2-vector_tag+disp_bignum_data), n2); if(carry){ ref(res, disp_vector_data + xlimbs*wordsize) = (ikptr)1; ref(res, 0) = (ikptr) (((n1+1) << bignum_length_shift) | xsign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn-"); } else { ref(res, 0) = (ikptr) ((n1 << bignum_length_shift) | xsign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn-"); } } else { /* same sign */ if(xlimbs == ylimbs){ while((ref(x, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize) == ref(y, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize))){ xlimbs -= 1; if(xlimbs == 0){ return 0; } } ylimbs = xlimbs; } ikptr s1=x, s2=y; int n1=xlimbs, n2=ylimbs; int result_sign = xsign; /* |x| != |y| */ if(xlimbs <= ylimbs){ if(xlimbs == ylimbs){ if((ref(y, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize) > ref(x, -vector_tag+disp_bignum_data+(xlimbs-1)*wordsize))){ s1 = y; n1 = ylimbs; s2 = x; n2 = xlimbs; result_sign = (1 << bignum_sign_shift) - ysign; } } else { s1 = y; n1 = ylimbs; s2 = x; n2 = xlimbs; result_sign = (1 << bignum_sign_shift) - ysign; } } /* |s1| > |s2| */ pcb->root0 = &s1; pcb->root0 = &s2; ikptr res = ik_safe_alloc(pcb, align(disp_bignum_data + n1 * wordsize)); pcb->root0 = 0; pcb->root0 = 0; int burrow = mpn_sub((mp_limb_t*) (res + disp_bignum_data), (mp_limb_t*) (s1 - vector_tag + disp_bignum_data), n1, (mp_limb_t*) (s2 - vector_tag + disp_bignum_data), n2); if(burrow){ fprintf(stderr, "BUG: Burrow error in bnbn-\n"); exit(-1); } int len = n1; while(ref(res, disp_bignum_data + (len-1)*wordsize) == 0){ len--; if(len == 0){ return 0; } } if(result_sign == 0){ /* positive result */ if(len == 1){ unsigned int fst_limb = (unsigned int) ref(res, disp_bignum_data); if(fst_limb <= most_positive_fixnum){ return fix((int)fst_limb); } } ref(res, 0) = (ikptr) ((len << bignum_length_shift) | result_sign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn-"); } else { /* negative result */ if(len == 1){ unsigned int fst_limb = (unsigned int) ref(res, disp_bignum_data); if(fst_limb <= most_negative_fixnum){ return fix(-(int)fst_limb); } } ref(res, 0) = (ikptr) ((len << bignum_length_shift) | result_sign | bignum_tag); return verify_bignum(res+vector_tag, "bnbn-"); } } } ikptr ikrt_fxfxmult(ikptr x, ikptr y, ikpcb* pcb){ int n1 = unfix(x); int n2 = unfix(y); mp_limb_t lo = 0; mp_limb_t s1 = n1; mp_limb_t s2 = n2; int sign = 0; if(n1 < 0){ s1 = -n1; sign = 1 - sign; } if(n2 < 0){ s2 = -n2; sign = 1 - sign; } mp_limb_t hi = mpn_mul_1(&lo, &s1, 1, s2); if(hi == 0){ if(sign){ if(lo <= most_negative_fixnum){ return fix(-((int)lo)); } } else { if(lo <= most_positive_fixnum){ return fix((int)lo); } } ikptr r = ik_safe_alloc(pcb, disp_bignum_data + wordsize); ref(r, 0) = (ikptr) (bignum_tag | (sign << bignum_sign_shift) | (1 << bignum_length_shift)); ref(r, disp_bignum_data) = (ikptr)lo; return BN(r+vector_tag); } else { ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + 2*wordsize)); ref(r, 0) = (ikptr) (bignum_tag | (sign << bignum_sign_shift) | (2 << bignum_length_shift)); ref(r, disp_bignum_data) = (ikptr)lo; ref(r, disp_bignum_data+wordsize) = (ikptr)hi; return BN(r+vector_tag); } } ikptr normalize_bignum(int limbs, int sign, ikptr r){ while(ref(r, disp_bignum_data + (limbs-1)*wordsize) == 0){ limbs--; if(limbs == 0){ return 0;} } if(limbs == 1){ unsigned int last = (unsigned int) ref(r, disp_bignum_data); if(sign == 0){ if(last <= most_positive_fixnum){ return fix((int)last); } } else { if(last <= most_negative_fixnum){ return fix(-((int)last)); } } } ref(r, 0) = (ikptr) (bignum_tag | sign | (limbs << bignum_length_shift)); return BN(r+vector_tag); } ikptr ikrt_fxbnmult(ikptr x, ikptr y, ikpcb* pcb){ int n2 = unfix(x); if(n2 == 0) { return 0; } mp_limb_t s2 = (n2>0) ? n2 : (- n2); ikptr fst = ref(y, -vector_tag); int limb_count = ((unsigned int) fst) >> bignum_length_shift; pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + (limb_count+1)*wordsize)); pcb->root0 = 0; mp_limb_t hi = mpn_mul_1((mp_limb_t*)(r+disp_bignum_data), (mp_limb_t*)(y-vector_tag+disp_bignum_data), limb_count, s2); ref(r, disp_bignum_data + limb_count * wordsize) = (ikptr)hi; int sign = ((n2 > 0) ? (bignum_sign_mask & (int)fst) : ((1 << bignum_sign_shift) - (bignum_sign_mask&(int)fst))); return normalize_bignum(limb_count+1, sign, r); } ikptr ikrt_bnbnmult(ikptr x, ikptr y, ikpcb* pcb){ int f1 = (int)ref(x, -vector_tag); int f2 = (int)ref(y, -vector_tag); int n1 = ((unsigned int)f1) >> bignum_length_shift; int n2 = ((unsigned int)f2) >> bignum_length_shift; int nr = n1 + n2; pcb->root0 = &x; pcb->root1 = &y; ikptr bn = ik_safe_alloc(pcb, align(disp_bignum_data + nr*wordsize)); pcb->root0 = 0; pcb->root1 = 0; mp_limb_t r; if(n1 >= n2){ r = mpn_mul((mp_limb_t*)(bn+disp_bignum_data), (mp_limb_t*)(x-vector_tag+disp_bignum_data), n1, (mp_limb_t*)(y-vector_tag+disp_bignum_data), n2); } else { r = mpn_mul((mp_limb_t*)(bn+disp_bignum_data), (mp_limb_t*)(y-vector_tag+disp_bignum_data), n2, (mp_limb_t*)(x-vector_tag+disp_bignum_data), n1); } int sign = ((bignum_sign_mask & f1) ? ((1 << bignum_sign_shift) - (bignum_sign_mask & f2)) : (bignum_sign_mask & f2)); return normalize_bignum(nr, sign, bn); } ikptr ikrt_bnbncomp(ikptr bn1, ikptr bn2){ ikptr f1 = ref(bn1, -vector_tag); ikptr f2 = ref(bn2, -vector_tag); if(bignum_sign_mask & (int)f1){ if(bignum_sign_mask & (int)f2){ /* both negative */ int n1 = ((unsigned int) f1) >> bignum_length_shift; int n2 = ((unsigned int) f2) >> bignum_length_shift; if(n1 < n2) { return fix(1); } else if(n1 > n2){ return fix(-1); } else { int i; for(i=(n1-1); i>=0; i--){ unsigned int t1 = (unsigned int) ref(bn1,disp_bignum_data-vector_tag+i*wordsize); unsigned int t2 = (unsigned int) ref(bn2,disp_bignum_data-vector_tag+i*wordsize); if(t1 < t2){ return fix(1); } else if(t1 > t2){ return fix(-1); } } } return 0; } else { /* n1 negative, n2 positive */ return fix(-1); } } else { if(bignum_sign_mask & (int)f2){ /* n1 positive, n2 negative */ return fix(1); } else { /* both positive */ int n1 = ((unsigned int) f1) >> bignum_length_shift; int n2 = ((unsigned int) f2) >> bignum_length_shift; if(n1 < n2) { return fix(-1); } else if(n1 > n2){ return fix(1); } else { int i; for(i=(n1-1); i>=0; i--){ unsigned int t1 = (unsigned int) ref(bn1,disp_bignum_data-vector_tag+i*wordsize); unsigned int t2 = (unsigned int) ref(bn2,disp_bignum_data-vector_tag+i*wordsize); if(t1 < t2){ return fix(-1); } else if(t1 > t2){ return fix(1); } } } return 0; } } } /* FIXME: Too complicated! */ ikptr ikrt_fxbnlogand(ikptr x, ikptr y, ikpcb* pcb){ int n1 = unfix(x); ikptr fst = ref(y, -vector_tag); if(n1 >= 0){ if(bignum_sign_mask & (unsigned int) fst){ /* y is negative */ return fix(n1 & (1+~(int)ref(y, disp_vector_data-vector_tag))); } else { /* y is positive */ return fix(n1 & (int)ref(y, disp_vector_data-vector_tag)); } } else { if(n1 == -1){ return y; } if(bignum_sign_mask & (unsigned int) fst){ /* y is negative */ int len = (((unsigned int) fst) >> bignum_length_shift); unsigned int nn = (1+~((1+~(int)ref(y, disp_bignum_data - vector_tag)) & n1)); if((len == 1) && (nn <= most_negative_fixnum)){ return fix(-nn); } pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + len * wordsize)); pcb->root0 = 0; ref(r, 0) = fst; ref(r, disp_bignum_data) = (ikptr) nn; int i; for(i=1; i> bignum_length_shift); pcb->root0 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + len * wordsize)); pcb->root0 = 0; ref(r, 0) = fst; ref(r, disp_bignum_data) = (ikptr) (((int)ref(y, disp_bignum_data - vector_tag)) & n1); int i; for(i=1; i> bignum_length_shift; if(bignum_sign_mask & (unsigned int) fst){ /* negative */ pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + n*wordsize)); pcb->root0 = 0; unsigned int* s1 = ((unsigned int*)(x+disp_bignum_data-vector_tag)); unsigned int* rd = (unsigned int*)(r+disp_bignum_data); int i; for(i=0; (iroot0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + (n+1)*wordsize)); pcb->root0 = 0; bzero(r+disp_bignum_data, n*wordsize); ((unsigned int*)(r+disp_bignum_data))[n] = 1; ref(r, 0) = (ikptr) (bignum_tag | (1<root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + n*wordsize)); pcb->root0 = 0; unsigned int* s1 = ((unsigned int*)(x+disp_bignum_data-vector_tag)); unsigned int* rd = (unsigned int*)(r+disp_bignum_data); int j; for(j=0; j> bignum_length_shift; int n2 = ((unsigned int) yfst) >> bignum_length_shift; if(bignum_sign_mask & (unsigned int) xfst){ if(bignum_sign_mask & (unsigned int) yfst){ if(n1 >= n2){ pcb->root0 = &x; pcb->root1 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + n1*wordsize)); pcb->root0 = 0; pcb->root1 = 0; unsigned int* s1 = ((unsigned int*)(x+disp_bignum_data-vector_tag)); unsigned int* s2 = ((unsigned int*)(y+disp_bignum_data-vector_tag)); unsigned int* s = ((unsigned int*)(r+disp_bignum_data)); bits_compliment(s1, s, n1); bits_compliment_logand(s2, s, s, n2); bits_compliment(s, s, n1); return normalize_bignum(n1, 1<root0 = &x; pcb->root1 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + n1*wordsize)); pcb->root0 = 0; pcb->root1 = 0; unsigned int* s1 = ((unsigned int*)(x+disp_bignum_data-vector_tag)); unsigned int* s2 = ((unsigned int*)(y+disp_bignum_data-vector_tag)); unsigned int* s = ((unsigned int*)(r+disp_bignum_data)); bits_compliment_logand(s2, s1, s, n1); return normalize_bignum(n1, 0, r); } else { /* both positive */ int n = (n1=0; i--){ int l1 = (int) ref(x, disp_bignum_data-vector_tag+i*wordsize); int l2 = (int) ref(y, disp_bignum_data-vector_tag+i*wordsize); int last = l1 & l2; if(last){ if((i == 0) && (last < most_positive_fixnum)){ return fix(last); } pcb->root0 = &x; pcb->root1 = &y; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data+(i+1)*wordsize)); pcb->root0 = 0; pcb->root1 = 0; ref(r, 0) = (ikptr) (bignum_tag | ((i+1)<> m; int i; for(i=1; i> m; } dst[n-1] = carry; } static void copy_bits_shifting_left(unsigned int* src, unsigned int* dst, int n, int m){ unsigned int carry = 0; int i; for(i=0; i> (32-m); } dst[n] = carry; } ikptr ikrt_bignum_shift_right(ikptr x, ikptr y, ikpcb* pcb){ int m = unfix(y); ikptr fst = ref(x, -vector_tag); int n = ((unsigned int) fst) >> bignum_length_shift; int whole_limb_shift = m >> 5; /* FIXME: 5 are the bits in 32-bit num */ int bit_shift = m & 31; int new_limb_count = n - whole_limb_shift; if(bignum_sign_mask & (unsigned int) fst){ if(new_limb_count <= 0){ return fix(-1); } if(bit_shift == 0){ pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + new_limb_count * wordsize)); pcb->root0 = 0; bits_compliment_with_carry( (unsigned int*)(x+off_bignum_data+whole_limb_shift*wordsize), (unsigned int*)(r+disp_bignum_data), new_limb_count, bits_carry((unsigned int*)(x+off_bignum_data), whole_limb_shift)); bits_compliment( (unsigned int*)(r+disp_bignum_data), (unsigned int*)(r+disp_bignum_data), new_limb_count); return normalize_bignum(new_limb_count, 1 << bignum_sign_shift, r); } else { pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + new_limb_count * wordsize)); pcb->root0 = 0; bits_compliment_with_carry( (unsigned int*)(x+off_bignum_data+whole_limb_shift*wordsize), (unsigned int*)(r+disp_bignum_data), new_limb_count, bits_carry((unsigned int*)(x+off_bignum_data), whole_limb_shift)); copy_bits_shifting_right( (unsigned int*)(r+disp_bignum_data), (unsigned int*)(r+disp_bignum_data), new_limb_count, bit_shift); *((unsigned int*)(r+disp_bignum_data+(new_limb_count-1)*wordsize)) |= (-1 << (32 - bit_shift)); bits_compliment( (unsigned int*)(r+disp_bignum_data), (unsigned int*)(r+disp_bignum_data), new_limb_count); return normalize_bignum(new_limb_count, 1 << bignum_sign_shift, r); fprintf(stderr, "not yet for negative bignum_shift\n"); exit(-1); } } else { if(new_limb_count <= 0){ return 0; } pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + new_limb_count * wordsize)); pcb->root0 = 0; if(bit_shift == 0){ memcpy(r+disp_bignum_data, x+off_bignum_data+whole_limb_shift*wordsize, new_limb_count * wordsize); return normalize_bignum(new_limb_count, 0, r); } else { copy_bits_shifting_right( (unsigned int*)(x+off_bignum_data+whole_limb_shift*wordsize), (unsigned int*)(r+disp_bignum_data), new_limb_count, bit_shift); return normalize_bignum(new_limb_count, 0, r); } } } ikptr ikrt_fixnum_shift_left(ikptr x, ikptr y, ikpcb* pcb){ int m = unfix(y); int n = unfix(x); int limb_count = (m >> 5) + 2; /* FIXME: 5 are the bits in 32-bit num */ int bit_shift = m & 31; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + limb_count * wordsize)); unsigned int* s = (unsigned int*)(r+disp_bignum_data); bzero(s, limb_count * wordsize); if(n >= 0){ if(bit_shift){ s[limb_count-1] = n >> (32 - bit_shift); } s[limb_count-2] = n << bit_shift; } else { if(bit_shift){ s[limb_count-1] = (-n) >> (32 - bit_shift); } s[limb_count-2] = (-n) << bit_shift; } return normalize_bignum(limb_count, (n>=0)?(0):(1<> bignum_length_shift; int whole_limb_shift = m >> 5; /* FIXME: 5 are the bits in 32-bit num */ int bit_shift = m & 31; if(bit_shift == 0){ int limb_count = n + whole_limb_shift; pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + limb_count * wordsize)); pcb->root0 = 0; unsigned int* s = (unsigned int*)(r+disp_bignum_data); bzero(s, whole_limb_shift*wordsize); memcpy(s+whole_limb_shift, x+off_bignum_data, n*wordsize); return normalize_bignum(limb_count, (unsigned int)fst & bignum_sign_mask, r); } else { int limb_count = n + whole_limb_shift + 1; pcb->root0 = &x; ikptr r = ik_safe_alloc(pcb, align(disp_bignum_data + limb_count * wordsize)); pcb->root0 = 0; unsigned int* s = (unsigned int*)(r+disp_bignum_data); bzero(s, whole_limb_shift*wordsize); copy_bits_shifting_left( (unsigned int*)(x+off_bignum_data), s+whole_limb_shift, n, bit_shift); return normalize_bignum(limb_count, (unsigned int)fst & bignum_sign_mask, r); } } #if 0 From TFM: void mpn_tdiv_qr ( mp limb t *qp, /* quotient placed here */ mp limb t *rp, /* remainder placed here */ mp size t qxn, /* must be zero! */ const mp limb t *np, /* first number */ mp size t nn, /* its length */ const mp limb t *dp, /* second number */ mp size t dn /* its length */ ) Divide {np, nn} by {dp, dn} and put the quotient at {qp,nn-dn+1} and the remainder at {rp, dn}. The quotient is rounded towards 0. No overlap is permitted between arguments. nn must be greater than or equal to dn. The most significant limb of dp must be non-zero. The qxn operand must be zero. #endif ikptr ikrt_bnbndivrem(ikptr x, ikptr y, ikpcb* pcb){ ikptr xfst = ref(x, -vector_tag); ikptr yfst = ref(y, -vector_tag); mp_size_t xn = ((unsigned int) xfst) >> bignum_length_shift; mp_size_t yn = ((unsigned int) yfst) >> bignum_length_shift; if(xn < yn){ /* quotient is zero, remainder is x */ pcb->root0 = &x; pcb->root1 = &y; ikptr rv = ik_safe_alloc(pcb, pair_size); pcb->root0 = 0; pcb->root1 = 0; ref(rv, disp_car) = 0; ref(rv, disp_cdr) = x; return rv+pair_tag; } mp_size_t qn = xn - yn + 1; mp_size_t rn = yn; /* ikptr q = ik_unsafe_alloc(pcb, align(disp_bignum_data + qn*wordsize)); ikptr r = ik_unsafe_alloc(pcb, align(disp_bignum_data + rn*wordsize)); */ pcb->root0 = &x; pcb->root1 = &y; ikptr q = ik_safe_alloc(pcb, align(disp_bignum_data + qn*wordsize) + align(disp_bignum_data + rn*wordsize)); ikptr r = q + align(disp_bignum_data + qn*wordsize); pcb->root0 = 0; pcb->root1 = 0; mpn_tdiv_qr ( (mp_limb_t*)(q+disp_bignum_data), (mp_limb_t*)(r+disp_bignum_data), 0, (mp_limb_t*)(x+off_bignum_data), xn, (mp_limb_t*)(y+off_bignum_data), yn); if(((unsigned int) xfst) & bignum_sign_mask){ /* x is negative => remainder is negative */ r = normalize_bignum(rn, 1 << bignum_sign_shift, r); } else { r = normalize_bignum(rn, 0, r); } if(((unsigned int) yfst) & bignum_sign_mask){ /* y is negative => quotient is opposite of x */ int sign = bignum_sign_mask - (((unsigned int)xfst) & bignum_sign_mask); q = normalize_bignum(qn, sign, q); } else { /* y is positive => quotient is same as x */ int sign = (((unsigned int)xfst) & bignum_sign_mask); q = normalize_bignum(qn, sign, q); } pcb->root0 = &q; pcb->root1 = &r; ikptr rv = ik_safe_alloc(pcb, pair_size); pcb->root0 = 0; pcb->root1 = 0; ref(rv, disp_car) = q; ref(rv, disp_cdr) = r; return rv+pair_tag; } #if 0 [Function] mp_limb_t mpn_divrem_1 ( mp limb t *r1p, mp size t qxn, mp limb t *s2p, mp size t s2n, mp limb t s3limb ) Divide {s2p, s2n} by s3limb, and write the quotient at r1p. Return the remainder. The integer quotient is written to {r1p+qxn, s2n} and in addition qxn fraction limbs are developed and written to {r1p, qxn}. Either or both s2n and qxn can be zero. For most usages, qxn will be zero. #endif ikptr ikrt_bnfxdivrem(ikptr x, ikptr y, ikpcb* pcb){ int yint = unfix(y); ikptr fst = ref(x, -vector_tag); mp_size_t s2n = ((unsigned int) fst) >> bignum_length_shift; pcb->root0 = &x; ikptr quot = ik_safe_alloc(pcb, align(s2n*wordsize + disp_bignum_data)); pcb->root0 = 0; mp_limb_t* s2p = (mp_limb_t*)(x+off_bignum_data); mp_limb_t rv = mpn_divrem_1( (mp_limb_t*)(quot+disp_bignum_data), 0, s2p, s2n, abs(yint)); ikptr rem; if(yint < 0){ /* y is negative => quotient is opposite of x */ int sign = bignum_sign_mask - (((unsigned int)fst) & bignum_sign_mask); quot = normalize_bignum(s2n, sign, quot); } else { /* y is positive => quotient is same as x */ int sign = (((unsigned int)fst) & bignum_sign_mask); quot = normalize_bignum(s2n, sign, quot); } /* the remainder is always less than |y|, so it will always be a fixnum. (if y == most_negative_fixnum, then |remainder| will be at most most_positive_fixnum). */ if(((unsigned int) fst) & bignum_sign_mask){ /* x is negative => remainder is negative */ rem = (ikptr) -(rv << fx_shift); } else { rem = fix(rv); } pcb->root0 = " pcb->root0 = &rem; ikptr p = ik_safe_alloc(pcb, pair_size); pcb->root0 = 0; pcb->root0 = 0; ref(p, disp_car) = quot; ref(p, disp_cdr) = rem; return p+pair_tag; } ikptr ikrt_bnfx_modulo(ikptr x, ikptr y, ikpcb* pcb){ int yint = unfix(y); mp_limb_t* s2p = (mp_limb_t*)(x+off_bignum_data); ikptr fst = ref(x, -vector_tag); mp_size_t s2n = ((unsigned int) fst) >> bignum_length_shift; if(yint < 0){ if(((unsigned int) fst) & bignum_sign_mask){ /* x negative, y negative */ mp_limb_t m = mpn_mod_1(s2p, s2n, -yint); return fix(-m); } else { /* x positive, y negative */ mp_limb_t m = mpn_mod_1(s2p, s2n, -yint); return fix(yint+m); } } else { if(((unsigned int) fst) & bignum_sign_mask){ /* x negative, y positive */ mp_limb_t m = mpn_mod_1(s2p, s2n, yint); return fix(yint-m); } else { /* x positive, y positive */ mp_limb_t m = mpn_mod_1(s2p, s2n, yint); return fix(m); } } } static int limb_length(unsigned int n){ int i=0; while(n != 0){ n = n >> 1; i++; } return i; } ikptr ikrt_bignum_length(ikptr x){ ikptr fst = ref(x, -vector_tag); mp_limb_t* sp = (mp_limb_t*)(x+off_bignum_data); mp_size_t sn = ((unsigned int) fst) >> bignum_length_shift; mp_limb_t last = sp[sn-1]; int n0 = limb_length(last); if(((unsigned int) fst) & bignum_sign_mask){ /* negative */ if (last == (1<<(n0-1))){ /* single bit set in last limb */ int i; for(i=0; i<(sn-1); i++){ if(sp[i] != 0){ /* another bit set */ return fix((sn-1)*mp_bits_per_limb + n0); } } /* number is - #b100000000000000000000000000 */ /* fxnot(n) = #b011111111111111111111111111 */ /* so, subtract 1. */ return fix((sn-1)*mp_bits_per_limb + n0 - 1); } else { return fix((sn-1)*mp_bits_per_limb + n0); } } else { return fix((sn-1)*mp_bits_per_limb + n0); } } ikptr ikrt_bignum_to_bytevector(ikptr x, ikpcb* pcb){ /* FIXME: avoid calling malloc, instead, use the heap pointer itself * as a buffer to hold the temporary data after ensuring that it has enough * space */ ikptr fst = ref(x, -vector_tag); int limb_count = (((unsigned int)fst) >> bignum_length_shift); if(limb_count <= 0){ fprintf(stderr, "BUG: nbtostring: invalid length %d\n", limb_count); exit(-1); } int sign_bit = bignum_sign_mask & (int) fst; int nbsize = limb_count * sizeof(mp_limb_t); int strsize = limb_count * max_digits_per_limb; int mem_req = nbsize + strsize + 1; unsigned char* mem = malloc(mem_req); if(! mem){ fprintf(stderr, "Error allocating space for bignum\n"); exit(-1); } memcpy(mem, x - vector_tag + disp_bignum_data, nbsize); mp_size_t bytes = mpn_get_str(mem+nbsize, /* output string */ 10, /* base */ (mp_limb_t*) mem, /* limb */ limb_count /* number of limbs */ ); unsigned char* string_start = mem + nbsize; while(*string_start == 0){ string_start++; bytes--; } ikptr bv = ik_safe_alloc(pcb, align(bytes + disp_bytevector_data + (sign_bit?1:0))); ref(bv, 0) = fix(bytes + (sign_bit?1:0)); ikptr dest = bv + disp_bytevector_data; if(sign_bit){ *dest = '-'; dest++; } { int i = 0; while(i < bytes){ dest[i] = string_start[i] + '0'; i++; } dest[bytes] = 0; } free(mem); return bv + bytevector_tag; } ikptr ikrt_fxrandom(ikptr x){ int mask = 1; int n = unfix(x); { while(mask < n){ mask = (mask << 1) | 1; } } while(1){ long r = random() & mask; if(r < n){ return fix(r); } } }