;;; MATRIX -- Obtained from Andrew Wright.
  
(library (rnrs-benchmarks matrix)
  (export main)
  (import (rnrs) (rnrs r5rs) (rnrs mutable-pairs) (rnrs-benchmarks))
  ; Chez-Scheme compatibility stuff:
  
  (define (chez-box x) (cons x '()))
  (define (chez-unbox x) (car x))
  (define (chez-set-box! x y) (set-car! x y))
  
  ; Test that a matrix with entries in {+1, -1} is maximal among the matricies
  ; obtainable by
  ;       re-ordering the rows
  ;       re-ordering the columns
  ;       negating any subset of the columns
  ;       negating any subset of the rows
  ; Where we compare two matricies by lexicographically comparing the first row,
  ; then the next to last, etc., and we compare a row by lexicographically
  ; comparing the first entry, the second entry, etc., and we compare two
  ; entries by +1 > -1.
  ; Note, this scheme obeys the useful fact that if (append mat1 mat2) is
  ; maximal, then so is mat1.  Thus, we can build up maximal matricies
  ; row by row.
  ;
  ; Once you have chosen the row re-ordering so that you know which row goes
  ; last, the set of columns to negate is fixed (since the last row must be
  ; all +1's).
  ;
  ; Note, the column ordering is really totally determined as follows:
  ;       all columns for which the second row is +1 must come before all
  ;               columns for which the second row is -1.
  ;       among columns for which the second row is +1, all columns for which
  ;               the third row is +1 come before those for which the third is
  ;               -1, and similarly for columns in which the second row is -1.
  ;       etc
  ; Thus, each succeeding row sorts columns withing refinings equivalence
  ; classes.
  ;
  ; Maximal? assumes that mat has atleast one row, and that the first row
  ; is all +1's.
  (define maximal?
     (lambda (mat)
        (let pick-first-row
             ((first-row-perm
                 (gen-perms mat)))
           (if first-row-perm
               (and (zunda first-row-perm mat)
                    (pick-first-row (first-row-perm 'brother)))
               #t))))
  
  (define zunda
     (lambda (first-row-perm mat)
        (let* ((first-row
                  (first-row-perm 'now))
               (number-of-cols
                  (length first-row))
               (make-row->func
                  (lambda (if-equal if-different)
                     (lambda (row)
                        (let ((vec
                                 (make-vector number-of-cols)))
                           (do ((i 0 (+ i 1))
                                (first first-row
                                       (cdr first))
                                (row row
                                     (cdr row)))
                               ((= i number-of-cols))
                              (vector-set! vec
                                           i
                                           (if (= (car first) (car row))
                                               if-equal
                                               if-different)))
                           (lambda (i)
                              (vector-ref vec i))))))
               (mat
                  (cdr mat)))
           (zebra (first-row-perm 'child)
                  (make-row->func 1 -1)
                  (make-row->func -1 1)
                  mat
                  number-of-cols))))
  
  
  (define zebra
     (lambda (row-perm row->func+ row->func- mat number-of-cols)
        (let _-*-
             ((row-perm
                 row-perm)
              (mat
                 mat)
              (partitions
                 (list (miota number-of-cols))))
           (or (not row-perm)
               (and
                  (zulu (car mat)
                        (row->func+ (row-perm 'now))
                        partitions
                        (lambda (new-partitions)
                           (_-*- (row-perm 'child)
                                (cdr mat)
                                new-partitions)))
                  (zulu (car mat)
                        (row->func- (row-perm 'now))
                        partitions
                        (lambda (new-partitions)
                           (_-*- (row-perm 'child)
                                (cdr mat)
                                new-partitions)))
                  (let ((new-row-perm
                           (row-perm 'brother)))
                     (or (not new-row-perm)
                         (_-*- new-row-perm
                              mat
                              partitions))))))))
  
  
  (define zulu
     (let ((cons-if-not-null
              (lambda (lhs rhs)
                 (if (null? lhs)
                     rhs
                     (cons lhs rhs)))))
        (lambda (old-row new-row-func partitions equal-cont)
           (let _-*-
                ((p-in
                    partitions)
                 (old-row
                    old-row)
                 (rev-p-out
                    '()))
              (let _-split-
                   ((partition
                       (car p-in))
                    (old-row
                       old-row)
                    (plus
                       '())
                    (minus
                       '()))
                 (if (null? partition)
                     (let _-minus-
                          ((old-row
                              old-row)
                           (m
                              minus))
                        (if (null? m)
                            (let ((rev-p-out
                                     (cons-if-not-null
                                        minus
                                        (cons-if-not-null
                                           plus
                                           rev-p-out)))
                                  (p-in
                                     (cdr p-in)))
                               (if (null? p-in)
                                   (equal-cont (reverse rev-p-out))
                                   (_-*- p-in old-row rev-p-out)))
                            (or (= 1 (car old-row))
                                (_-minus- (cdr old-row)
                                         (cdr m)))))
                     (let ((next
                              (car partition)))
                        (case (new-row-func next)
                           ((1)
                              (and (= 1 (car old-row))
                                   (_-split- (cdr partition)
                                            (cdr old-row)
                                            (cons next plus)
                                            minus)))
                           ((-1)
                              (_-split- (cdr partition)
                                       old-row
                                       plus
                                       (cons next minus)))))))))))
  
  (define all?
     (lambda (ok? lst)
        (let _-*-
             ((lst
                 lst))
           (or (null? lst)
               (and (ok? (car lst))
                    (_-*- (cdr lst)))))))
  
  (define gen-perms
     (lambda (objects)
        (let _-*-
             ((zulu-future
                 objects)
              (past
                 '()))
           (if (null? zulu-future)
               #f
               (lambda (msg)
                  (case msg
                     ((now)
                        (car zulu-future))
                     ((brother)
                        (_-*- (cdr zulu-future)
                             (cons (car zulu-future)
                                   past)))
                     ((child)
                        (gen-perms
                           (fold past cons (cdr zulu-future))))
                     ((puke)
                        (cons (car zulu-future)
                              (fold past cons (cdr zulu-future))))
                     (else
                        (fatal-error 'gen-perms "Bad msg: ~a" msg))))))))
  
  (define fold
     (lambda (lst folder state)
        (let _-*-
             ((lst
                 lst)
              (state
                 state))
           (if (null? lst)
               state
               (_-*- (cdr lst)
                    (folder (car lst)
                            state))))))
  
  (define miota
     (lambda (len)
        (let _-*-
             ((i 0))
           (if (= i len)
               '()
               (cons i
                     (_-*- (+ i 1)))))))
  
  (define proc->vector
     (lambda (size proc)
        (let ((res
                 (make-vector size)))
           (do ((i 0
                   (+ i 1)))
               ((= i size))
              (vector-set! res
                           i
                           (proc i)))
           res)))
  
  ; Given a prime number P, return a procedure which, given a `maker' procedure,
  ; calls it on the operations for the field Z/PZ.
  (define make-modular
     (lambda (modulus)
        (let* ((reduce
                  (lambda (x)
                     (modulo x modulus)))
               (coef-zero?
                  (lambda (x)
                     (zero? (reduce x))))
               (coef-+
                  (lambda (x y)
                     (reduce (+ x y))))
               (coef-negate
                  (lambda (x)
                     (reduce (- x))))
               (coef-*
                  (lambda (x y)
                     (reduce (* x y))))
               (coef-recip
                  (let ((inverses
                           (proc->vector (- modulus 1)
                                         (lambda (i)
                                            (extended-gcd (+ i 1)
                                                          modulus
                                                          (lambda (gcd inverse ignore)
                                                             inverse))))))
                     ; Coef-recip.
                     (lambda (x)
                        (let ((x
                                 (reduce x)))
                           (vector-ref inverses (- x 1)))))))
           (lambda (maker)
              (maker 0    ; coef-zero
                     1            ; coef-one
                     coef-zero?
                     coef-+
                     coef-negate
                     coef-*
                     coef-recip)))))
  
  ; Extended Euclidean algorithm.
  ; (extended-gcd a b cont) computes the gcd of a and b, and expresses it
  ; as a linear combination of a and b.  It returns calling cont via
  ;       (cont gcd a-coef b-coef)
  ; where gcd is the GCD and is equal to a-coef * a + b-coef * b.
  (define extended-gcd
     (let ((n->sgn/abs
              (lambda (x cont)
                 (if (>= x 0)
                     (cont 1 x)
                     (cons -1 (- x))))))
        (lambda (a b cont)
           (n->sgn/abs a
                       (lambda (p-a p)
                          (n->sgn/abs b
                                      (lambda (q-b q)
                                         (let _-*-
                                              ((p
                                                  p)
                                               (p-a
                                                  p-a)
                                               (p-b
                                                  0)
                                               (q
                                                  q)
                                               (q-a
                                                  0)
                                               (q-b
                                                  q-b))
                                            (if (zero? q)
                                                (cont p p-a p-b)
                                                (let ((mult
                                                         (quotient p q)))
                                                   (_-*- q
                                                        q-a
                                                        q-b
                                                        (- p (* mult q))
                                                        (- p-a (* mult q-a))
                                                        (- p-b (* mult q-b)))))))))))))
  
  ; Given elements and operations on the base field, return a procedure which
  ; computes the row-reduced version of a matrix over that field.  The result
  ; is a list of rows where the first non-zero entry in each row is a 1 (in
  ; the coefficient field) and occurs to the right of all the leading non-zero
  ; entries of previous rows.  In particular, the number of rows is the rank
  ; of the original matrix, and they have the same row-space.
  ; The items related to the base field which are needed are:
  ;       coef-zero       additive identity
  ;       coef-one        multiplicative identity
  ;       coef-zero?      test for additive identity
  ;       coef-+          addition (two args)
  ;       coef-negate     additive inverse
  ;       coef-*          multiplication (two args)
  ;       coef-recip      multiplicative inverse
  ; Note, matricies are stored as lists of rows (i.e., lists of lists).
  (define make-row-reduce
     (lambda (coef-zero coef-one coef-zero? coef-+ coef-negate coef-* coef-recip)
        (lambda (mat)
           (let _-*-
                ((mat
                    mat))
              (if (or (null? mat)
                      (null? (car mat)))
                  '()
                  (let _-**-
                       ((in
                           mat)
                        (out
                           '()))
                     (if (null? in)
                         (map
                            (lambda (x)
                               (cons coef-zero x))
                            (_-*- out))
                         (let* ((prow
                                   (car in))
                                (pivot
                                   (car prow))
                                (prest
                                   (cdr prow))
                                (in
                                   (cdr in)))
                            (if (coef-zero? pivot)
                                (_-**- in
                                      (cons prest out))
                                (let ((zap-row
                                         (map
                                            (let ((mult
                                                     (coef-recip pivot)))
                                               (lambda (x)
                                                  (coef-* mult x)))
                                            prest)))
                                   (cons (cons coef-one zap-row)
                                         (map
                                            (lambda (x)
                                               (cons coef-zero x))
                                            (_-*-
                                               (fold in
                                                     (lambda (row mat)
                                                        (cons
                                                           (let ((first-col
                                                                    (car row))
                                                                 (rest-row
                                                                    (cdr row)))
                                                              (if (coef-zero? first-col)
                                                                  rest-row
                                                                  (map
                                                                     (let ((mult
                                                                              (coef-negate first-col)))
                                                                        (lambda (f z)
                                                                           (coef-+ f
                                                                                   (coef-* mult z))))
                                                                     rest-row
                                                                     zap-row)))
                                                           mat))
                                                     out))))))))))))))
  
  
  ; Given elements and operations on the base field, return a procedure which
  ; when given a matrix and a vector tests to see if the vector is in the
  ; row-space of the matrix.  This returned function is curried.
  ; The items related to the base field which are needed are:
  ;       coef-zero       additive identity
  ;       coef-one        multiplicative identity
  ;       coef-zero?      test for additive identity
  ;       coef-+          addition (two args)
  ;       coef-negate     additive inverse
  ;       coef-*          multiplication (two args)
  ;       coef-recip      multiplicative inverse
  ; Note, matricies are stored as lists of rows (i.e., lists of lists).
  (define make-in-row-space?
     (lambda (coef-zero coef-one coef-zero? coef-+ coef-negate coef-* coef-recip)
        (let ((row-reduce
                 (make-row-reduce coef-zero
                                  coef-one
                                  coef-zero?
                                  coef-+
                                  coef-negate
                                  coef-*
                                  coef-recip)))
           (lambda (mat)
              (let ((mat
                       (row-reduce mat)))
                 (lambda (row)
                    (let _-*-
                         ((row
                             row)
                          (mat
                             mat))
                       (if (null? row)
                           #t
                           (let ((r-first
                                    (car row))
                                 (r-rest
                                    (cdr row)))
                              (cond ((coef-zero? r-first)
                                       (_-*- r-rest
                                            (map cdr
                                                 (if (or (null? mat)
                                                         (coef-zero? (caar mat)))
                                                     mat
                                                     (cdr mat)))))
                                    ((null? mat)
                                       #f)
                                    (else
                                       (let* ((zap-row
                                                 (car mat))
                                              (z-first
                                                 (car zap-row))
                                              (z-rest
                                                 (cdr zap-row))
                                              (mat
                                                 (cdr mat)))
                                          (if (coef-zero? z-first)
                                              #f
                                              (_-*-
                                                 (map
                                                    (let ((mult
                                                             (coef-negate r-first)))
                                                       (lambda (r z)
                                                          (coef-+ r
                                                                  (coef-* mult z))))
                                                    r-rest
                                                    z-rest)
                                                 (map cdr mat)))))))))))))))
  
  
  ; Given a prime number, return a procedure which takes integer matricies
  ; and returns their row-reduced form, modulo the prime.
  (define make-modular-row-reduce
     (lambda (modulus)
        ((make-modular modulus)
           make-row-reduce)))
  
  
  (define make-modular-in-row-space?
     (lambda (modulus)
        ((make-modular modulus)
           make-in-row-space?)))
  
  
  
  ; Usual utilities.
  
  
  
  ; Given a bound, find a prime greater than the bound.
  (define find-prime
     (lambda (bound)
        (let* ((primes
                  (list 2))
               (last
                  (chez-box primes))
               (is-next-prime?
                  (lambda (trial)
                     (let _-*-
                          ((primes
                              primes))
                        (or (null? primes)
                            (let ((p
                                     (car primes)))
                               (or (< trial (* p p))
                                   (and (not (zero? (modulo trial p)))
                                        (_-*- (cdr primes))))))))))
           (if (> 2 bound)
               2
               (let _-*-
                    ((trial
                        3))
                  (if (is-next-prime? trial)
                      (let ((entry
                               (list trial)))
                         (set-cdr! (chez-unbox last) entry)
                         (chez-set-box! last entry)
                         (if (> trial bound)
                             trial
                             (_-*- (+ trial 2))))
                      (_-*- (+ trial 2))))))))
  
  ; Given the size of a square matrix consisting only of +1's and -1's,
  ; return an upper bound on the determinant.
  (define det-upper-bound
     (lambda (size)
        (let ((main-part
                 (expt size
                       (quotient size 2))))
           (if (even? size)
               main-part
               (* main-part
                  (do ((i 0 (+ i 1)))
                      ((>= (* i i) size)
                         i)))))))
  
  ; Fold over all maximal matrices.
  (define go
     (lambda (number-of-cols inv-size folder state)
        (let* ((in-row-space?
                  (make-modular-in-row-space?
                     (find-prime
                        (det-upper-bound inv-size))))
               (make-tester
                  (lambda (mat)
                     (let ((tests
                              (let ((old-mat
                                       (cdr mat))
                                    (new-row
                                       (car mat)))
                                 (fold-over-subs-of-size old-mat
                                                         (- inv-size 2)
                                                         (lambda (sub tests)
                                                            (cons
                                                               (in-row-space?
                                                                  (cons new-row sub))
                                                               tests))
                                                         '()))))
                        (lambda (row)
                           (let _-*-
                                ((tests
                                    tests))
                              (and (not (null? tests))
                                   (or ((car tests) row)
                                       (_-*- (cdr tests)))))))))
               (all-rows  ; all rows starting with +1 in decreasing order
                  (fold
                     (fold-over-rows (- number-of-cols 1)
                                     cons
                                     '())
                     (lambda (row rows)
                        (cons (cons 1 row)
                              rows))
                     '())))
           (let _-*-
                ((number-of-rows
                    1)
                 (rev-mat
                    (list
                       (car all-rows)))
                 (possible-future
                    (cdr all-rows))
                 (state
                    state))
              (let ((zulu-future
                       (remove-in-order
                          (if (< number-of-rows inv-size)
                              (in-row-space? rev-mat)
                              (make-tester rev-mat))
                          possible-future)))
                 (if (null? zulu-future)
                     (folder (reverse rev-mat)
                             state)
                     (let _-**-
                          ((zulu-future
                              zulu-future)
                           (state
                              state))
                        (if (null? zulu-future)
                            state
                            (let ((rest-of-future
                                     (cdr zulu-future)))
                               (_-**- rest-of-future
                                     (let* ((first
                                               (car zulu-future))
                                            (new-rev-mat
                                               (cons first rev-mat)))
                                        (if (maximal? (reverse new-rev-mat))
                                            (_-*- (+ number-of-rows 1)
                                                 new-rev-mat
                                                 rest-of-future
                                                 state)
                                            state))))))))))))
  
  (define go-folder
     (lambda (mat bsize.blen.blist)
        (let ((bsize
                 (car bsize.blen.blist))
              (size
                 (length mat)))
           (if (< size bsize)
               bsize.blen.blist
               (let ((blen
                        (cadr bsize.blen.blist))
                     (blist
                        (cddr bsize.blen.blist)))
                  (if (= size bsize)
                      (let ((blen
                               (+ blen 1)))
  ;                       (if
  ;                          (let _-*-
  ;                               ((blen
  ;                                   blen))
  ;                             (or (< blen 10)
  ;                                 (and (zero? (remainder blen 10))
  ;                                      (_-*- (quotient blen 10)))))
  ;       
  ;                          (begin
  ;                             (display blen)
  ;                             (display " of size ")
  ;                             (display bsize)
  ;                             (newline)))
  
                         (cons bsize
                               (cons blen
                                     (cond ((< blen 3000)
                                              (cons mat blist))
                                           ((= blen 3000)
                                              (cons "..." blist))
                                           (else
                                              blist)))))
  ;                    (begin
  ;                       (newline)
  ;                       (display "First of size ")
  ;                       (display size)
  ;                       (display ":")
  ;                       (newline)
  ;                       (for-each
  ;                          (lambda (row)
  ;                             (display " ")
  ;                             (for-each
  ;                                (lambda (e)
  ;                                   (case e
  ;                                      ((1)
  ;                                         (display "  1"))
  ;                                      ((-1)
  ;                                         (display " -1"))))
  ;                                row)
  ;                             (newline))
  ;                          mat)
  
                         (list size 1 mat)))))))
  
  (define really-go
     (lambda (number-of-cols inv-size)
        (cddr
           (go number-of-cols
               inv-size
               go-folder
               (list -1 -1)))))
  
  (define remove-in-order
     (lambda (remove? lst)
        (reverse
           (fold lst
                 (lambda (e lst)
                    (if (remove? e)
                        lst
                        (cons e lst)))
                 '()))))
  
  ; The first fold-over-rows is slower than the second one, but folds
  ; over rows in lexical order (large to small).
  (define fold-over-rows
     (lambda (number-of-cols folder state)
        (if (zero? number-of-cols)
            (folder '()
                    state)
            (fold-over-rows (- number-of-cols 1)
                            (lambda (tail state)
                               (folder (cons -1 tail)
                                       state))
                            (fold-over-rows (- number-of-cols 1)
                                            (lambda (tail state)
                                               (folder (cons 1 tail)
                                                       state))
                                            state)))))
  
  ; Fold over subsets of a given size.
  (define fold-over-subs-of-size
     (lambda (universe size folder state)
        (let ((usize
                 (length universe)))
           (if (< usize size)
               state
               (let _-*-
                    ((size
                        size)
                     (universe
                        universe)
                     (folder
                        folder)
                     (csize
                        (- usize size))
                     (state
                        state))
                  (cond ((zero? csize)
                           (folder universe state))
                        ((zero? size)
                           (folder '() state))
                        (else
                           (let ((first-u
                                    (car universe))
                                 (rest-u
                                    (cdr universe)))
                              (_-*- size
                                   rest-u
                                   folder
                                   (- csize 1)
                                   (_-*- (- size 1)
                                        rest-u
                                        (lambda (tail state)
                                           (folder (cons first-u tail)
                                                   state))
                                        csize
                                        state))))))))))
  
  (define (main)
    (run-benchmark
     "matrix"
     matrix-iters
     (lambda (result)
       (equal? result
               '(((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
                  (1 1 -1 -1 -1) (1 -1 1 -1 -1) (1 -1 -1 1 1))
                 ((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
                  (1 1 -1 1 -1) (1 -1 1 -1 -1) (1 -1 -1 1 1))
                 ((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
                  (1 1 -1 1 -1) (1 -1 1 -1 1) (1 -1 -1 1 1))
                 ((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
                  (1 1 -1 1 1) (1 -1 1 1 -1) (1 -1 -1 -1 1))
                 ((1 1 1 1 1) (1 1 1 1 -1) (1 1 1 -1 1)
                  (1 1 -1 1 1) (1 -1 1 1 1) (1 -1 -1 -1 -1)))))
     (lambda (number-of-cols inv-size) (lambda () (really-go number-of-cols inv-size)))
     5
     5)))