* added a few missing instruction sequences where the dest is a
memory location. * implemented integer sets (based on tree representation).
This commit is contained in:
parent
10bdc3dcd6
commit
fa94d2f6a1
|
@ -1,6 +1,9 @@
|
|||
#!/usr/bin/env ikarus --script
|
||||
|
||||
(define counter 0)
|
||||
(define (asm-test res ls)
|
||||
(printf "Testing:\n")
|
||||
(set! counter (add1 counter))
|
||||
(printf "[~s] Testing:\n" counter)
|
||||
(for-each (lambda (x)
|
||||
(printf " ~s\n" x))
|
||||
ls)
|
||||
|
@ -103,6 +106,22 @@
|
|||
[movl (disp -4 %esp) %eax]
|
||||
[ret]))
|
||||
|
||||
|
||||
(asm-test 3
|
||||
'([movl 4 (disp -4 %esp)]
|
||||
[movl 8 %eax]
|
||||
[orl %eax (disp -4 %esp)]
|
||||
[movl (disp -4 %esp) %eax]
|
||||
[ret]))
|
||||
|
||||
(asm-test 3
|
||||
'([movl 4 (disp -4 %esp)]
|
||||
[movl 8 %ebx]
|
||||
[orl %ebx (disp -4 %esp)]
|
||||
[movl (disp -4 %esp) %eax]
|
||||
[ret]))
|
||||
|
||||
|
||||
(asm-test 3
|
||||
'([movl -1 (disp -4 %esp)]
|
||||
[andl 12 (disp -4 %esp)]
|
||||
|
@ -146,5 +165,27 @@
|
|||
[call (disp 26 (obj car))]
|
||||
[ret]))
|
||||
|
||||
(asm-test 8
|
||||
'([movl (obj 1) (disp -8 %esp)]
|
||||
[movl 3 %ecx]
|
||||
[sall %cl (disp -8 %esp)]
|
||||
[movl (disp -8 %esp) %eax]
|
||||
[ret]))
|
||||
|
||||
(asm-test 1
|
||||
'([movl (obj 8) (disp -8 %esp)]
|
||||
[movl 3 %ecx]
|
||||
[sarl %cl (disp -8 %esp)]
|
||||
[movl (disp -8 %esp) %eax]
|
||||
[ret]))
|
||||
|
||||
(asm-test 1
|
||||
'([movl (obj 8) (disp -8 %esp)]
|
||||
[movl 3 %ecx]
|
||||
[shrl %cl (disp -8 %esp)]
|
||||
[movl (disp -8 %esp) %eax]
|
||||
[ret]))
|
||||
|
||||
|
||||
(printf "Happy Happy Joy Joy\n")
|
||||
(exit)
|
||||
|
|
BIN
src/ikarus.boot
BIN
src/ikarus.boot
Binary file not shown.
|
@ -887,8 +887,6 @@
|
|||
; (print-code x)
|
||||
(Program x))
|
||||
|
||||
|
||||
|
||||
(module ListySet
|
||||
(make-empty-set set-member? set-add set-rem set-difference set-union
|
||||
empty-set?
|
||||
|
@ -949,13 +947,219 @@
|
|||
[(memq (car s1) s2) (union (cdr s1) s2)]
|
||||
[else (cons (car s1) (union (cdr s1) s2))])))
|
||||
|
||||
;(module IntegerSet
|
||||
; (make-empty-set set-member? set-add set-rem set-difference
|
||||
; set-union empty-set? set->list list->set)
|
||||
;
|
||||
; )
|
||||
(module IntegerSet
|
||||
(make-empty-set set-member? set-add set-rem set-difference
|
||||
set-union empty-set? set->list list->set set-map set-for-each
|
||||
set-ormap set-andmap)
|
||||
|
||||
(begin
|
||||
(define-syntax car (identifier-syntax #%$car))
|
||||
(define-syntax cdr (identifier-syntax #%$cdr))
|
||||
(define-syntax fxsll (identifier-syntax #%$fxsll))
|
||||
(define-syntax fxsra (identifier-syntax #%$fxsra))
|
||||
(define-syntax fxlogor (identifier-syntax #%$fxlogor))
|
||||
(define-syntax fxlogand (identifier-syntax #%$fxlogand))
|
||||
(define-syntax fxlognot (identifier-syntax #%$fxlognot))
|
||||
(define-syntax fx+ (identifier-syntax #%$fx+))
|
||||
(define-syntax fxzero? (identifier-syntax #%$fxzero?))
|
||||
(define-syntax fxeven?
|
||||
(syntax-rules ()
|
||||
[(_ x) (#%$fxzero? (#%$fxlogand x 1))])))
|
||||
|
||||
(module IntegerSet
|
||||
(define shift 4)
|
||||
(define mask #xF)
|
||||
(define (index-of n) (fxsra n shift))
|
||||
(define (mask-of n) (fxsll 1 (fxlogand n mask)))
|
||||
|
||||
(define (make-empty-set) 0)
|
||||
(define (empty-set? s) (eqv? s 0))
|
||||
|
||||
(define (set-member? n s)
|
||||
(let f ([s s] [i (index-of n)] [j (mask-of n)])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(if (fxeven? i)
|
||||
(f (car s) (fxsra i 1) j)
|
||||
(f (cdr s) (fxsra i 1) j))]
|
||||
[(eq? i 0) (eq? j (fxlogand s j))]
|
||||
[else #f])))
|
||||
|
||||
(define (set-add n s)
|
||||
(let f ([s s] [i (index-of n)] [j (mask-of n)])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(if (fxeven? i)
|
||||
(let ([a0 (car s)])
|
||||
(let ([a1 (f a0 (fxsra i 1) j)])
|
||||
(if (eq? a0 a1) s (cons a1 (cdr s)))))
|
||||
(let ([d0 (cdr s)])
|
||||
(let ([d1 (f d0 (fxsra i 1) j)])
|
||||
(if (eq? d0 d1) s (cons (car s) d1)))))]
|
||||
[(eq? i 0) (fxlogor s j)]
|
||||
[else
|
||||
(if (fxeven? i)
|
||||
(cons (f s (fxsra i 1) j) 0)
|
||||
(cons s (f 0 (fxsra i 1) j)))])))
|
||||
|
||||
(define (cons^ a d)
|
||||
(if (and (eq? d 0) (fixnum? a))
|
||||
a
|
||||
(cons a d)))
|
||||
|
||||
(define (set-rem n s)
|
||||
(let f ([s s] [i (index-of n)] [j (mask-of n)])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(if (fxeven? i)
|
||||
(let ([a0 (car s)])
|
||||
(let ([a1 (f a0 (fxsra i 1) j)])
|
||||
(if (eq? a0 a1) s (cons^ a1 (cdr s)))))
|
||||
(let ([d0 (cdr s)])
|
||||
(let ([d1 (f d0 (fxsra i 1) j)])
|
||||
(if (eq? d0 d1) s (cons^ (car s) d1)))))]
|
||||
[(eq? i 0) (fxlogand s (fxlognot j))]
|
||||
[else s])))
|
||||
|
||||
(define (set-union^ s1 m2)
|
||||
(if (pair? s1)
|
||||
(let ([a0 (car s1)])
|
||||
(let ([a1 (set-union^ a0 m2)])
|
||||
(if (eq? a0 a1) s1 (cons a1 (cdr s1)))))
|
||||
(fxlogor s1 m2)))
|
||||
|
||||
(define (set-union s1 s2)
|
||||
(if (pair? s1)
|
||||
(if (pair? s2)
|
||||
(if (eq? s1 s2)
|
||||
s1
|
||||
(cons (set-union (car s1) (car s2))
|
||||
(set-union (cdr s1) (cdr s2))))
|
||||
(let ([a0 (car s1)])
|
||||
(let ([a1 (set-union^ a0 s2)])
|
||||
(if (eq? a0 a1) s1 (cons a1 (cdr s1))))))
|
||||
(if (pair? s2)
|
||||
(let ([a0 (car s2)])
|
||||
(let ([a1 (set-union^ a0 s1)])
|
||||
(if (eq? a0 a1) s2 (cons a1 (cdr s2)))))
|
||||
(fxlogor s1 s2))))
|
||||
|
||||
(define (set-difference^ s1 m2)
|
||||
(if (pair? s1)
|
||||
(let ([a0 (car s1)])
|
||||
(let ([a1 (set-difference^ a0 m2)])
|
||||
(if (eq? a0 a1) s1 (cons^ a1 (cdr s1)))))
|
||||
(fxlogand s1 (fxlognot m2))))
|
||||
|
||||
(define (set-difference^^ m1 s2)
|
||||
(if (pair? s2)
|
||||
(set-difference^^ m1 (car s2))
|
||||
(fxlogand m1 (fxlognot s2))))
|
||||
|
||||
(define (set-difference s1 s2)
|
||||
(if (pair? s1)
|
||||
(if (pair? s2)
|
||||
(if (eq? s1 s2)
|
||||
0
|
||||
(cons^ (set-difference (car s1) (car s2))
|
||||
(set-difference (cdr s1) (cdr s2))))
|
||||
(let ([a0 (car s1)])
|
||||
(let ([a1 (set-difference^ a0 s2)])
|
||||
(if (eq? a0 a1) s1 (cons^ a1 (cdr s1))))))
|
||||
(if (pair? s2)
|
||||
(set-difference^^ s1 (car s2))
|
||||
(fxlogand s1 (fxlognot s2)))))
|
||||
|
||||
(define (list->set ls)
|
||||
(let f ([ls ls] [s 0])
|
||||
(cond
|
||||
[(null? ls) s]
|
||||
[else (f (cdr ls) (set-add (car ls) s))])))
|
||||
|
||||
(define (set->list s)
|
||||
(let f ([i 0] [j (fxsll 1 shift)] [s s] [ac '()])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(f i (fxsll j 1) (car s)
|
||||
(f (fxlogor i j) (fxsll j 1) (cdr s) ac))]
|
||||
[else
|
||||
(let f ([i i] [m s] [ac ac])
|
||||
(cond
|
||||
[(fxeven? m)
|
||||
(if (fxzero? m)
|
||||
ac
|
||||
(f (fx+ i 1) (fxsra m 1) ac))]
|
||||
[else
|
||||
(f (fx+ i 1) (fxsra m 1) (cons i ac))]))])))
|
||||
|
||||
|
||||
(define (set-map proc s)
|
||||
(let f ([i 0] [j (fxsll 1 shift)] [s s] [ac '()])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(f i (fxsll j 1) (car s)
|
||||
(f (fxlogor i j) (fxsll j 1) (cdr s) ac))]
|
||||
[else
|
||||
(let f ([i i] [m s] [ac ac])
|
||||
(cond
|
||||
[(fxeven? m)
|
||||
(if (fxzero? m)
|
||||
ac
|
||||
(f (fx+ i 1) (fxsra m 1) ac))]
|
||||
[else
|
||||
(f (fx+ i 1) (fxsra m 1) (cons (proc i) ac))]))])))
|
||||
|
||||
(define (set-for-each proc s)
|
||||
(let f ([i 0] [j (fxsll 1 shift)] [s s])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(f i (fxsll j 1) (car s))
|
||||
(f (fxlogor i j) (fxsll j 1) (cdr s))]
|
||||
[else
|
||||
(let f ([i i] [m s])
|
||||
(cond
|
||||
[(fxeven? m)
|
||||
(unless (fxzero? m)
|
||||
(f (fx+ i 1) (fxsra m 1)))]
|
||||
[else
|
||||
(proc i)
|
||||
(f (fx+ i 1) (fxsra m 1))]))])))
|
||||
|
||||
(define (set-ormap proc s)
|
||||
(let f ([i 0] [j (fxsll 1 shift)] [s s])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(or (f i (fxsll j 1) (car s))
|
||||
(f (fxlogor i j) (fxsll j 1) (cdr s)))]
|
||||
[else
|
||||
(let f ([i i] [m s])
|
||||
(cond
|
||||
[(fxeven? m)
|
||||
(if (fxzero? m)
|
||||
#f
|
||||
(f (fx+ i 1) (fxsra m 1)))]
|
||||
[else
|
||||
(or (proc i)
|
||||
(f (fx+ i 1) (fxsra m 1)))]))])))
|
||||
|
||||
(define (set-andmap proc s)
|
||||
(let f ([i 0] [j (fxsll 1 shift)] [s s])
|
||||
(cond
|
||||
[(pair? s)
|
||||
(and (f i (fxsll j 1) (car s))
|
||||
(f (fxlogor i j) (fxsll j 1) (cdr s)))]
|
||||
[else
|
||||
(let f ([i i] [m s])
|
||||
(cond
|
||||
[(fxeven? m)
|
||||
(if (fxzero? m)
|
||||
#t
|
||||
(f (fx+ i 1) (fxsra m 1)))]
|
||||
[else
|
||||
(and (proc i)
|
||||
(f (fx+ i 1) (fxsra m 1)))]))])))
|
||||
#|IntegerSet|#)
|
||||
|
||||
(module IntegerSet-list
|
||||
(make-empty-set set-member? set-add set-rem set-difference set-union
|
||||
empty-set?
|
||||
set->list list->set)
|
||||
|
@ -1020,6 +1224,106 @@
|
|||
[(memq (car s1) s2) (union (cdr s1) s2)]
|
||||
[else (cons (car s1) (union (cdr s1) s2))])))
|
||||
|
||||
;;;(module IntegerSet
|
||||
;;; (make-empty-set set-member? set-add set-rem set-difference set-union
|
||||
;;; empty-set? set->list list->set)
|
||||
;;;
|
||||
;;; (define-syntax L
|
||||
;;; (lambda (x)
|
||||
;;; (syntax-case x ()
|
||||
;;; [(L expr)
|
||||
;;; (with-syntax ([w
|
||||
;;; (datum->syntax-object #'L
|
||||
;;; '(import IntegerSet-list))])
|
||||
;;; #'(let () w expr))])))
|
||||
;;;
|
||||
;;; (define-syntax T
|
||||
;;; (lambda (x)
|
||||
;;; (syntax-case x ()
|
||||
;;; [(L expr)
|
||||
;;; (with-syntax ([w
|
||||
;;; (datum->syntax-object #'L
|
||||
;;; '(import IntegerSet-tree))])
|
||||
;;; #'(let () w expr))])))
|
||||
;;;
|
||||
;;; (define-record set (ls tr))
|
||||
;;;
|
||||
;;; (define (make-empty-set)
|
||||
;;; (make-set (L (make-empty-set))
|
||||
;;; (T (make-empty-set))))
|
||||
;;;
|
||||
;;; (define (set-member? x s)
|
||||
;;; (if (L (set-member? x (set-ls s)))
|
||||
;;; (if (T (set-member? x (set-tr s)))
|
||||
;;; #t
|
||||
;;; (error "mismatch member ~s in ~s" x s))
|
||||
;;; (if (T (set-member? x (set-tr s)))
|
||||
;;; (error "mismatch member ~s in ~s" x s)
|
||||
;;; #f)))
|
||||
;;;
|
||||
;;; (define (set-add x s)
|
||||
;;; (verify-set 'set-add
|
||||
;;; (make-set (L (set-add x (set-ls s)))
|
||||
;;; (T (set-add x (set-tr s))))))
|
||||
;;;
|
||||
;;; (define (set-rem x s)
|
||||
;;; (verify-set 'set-rem
|
||||
;;; (make-set (L (set-rem x (set-ls s)))
|
||||
;;; (T (set-rem x (set-tr s))))))
|
||||
;;;
|
||||
;;; (define (set-difference s1 s2)
|
||||
;;; (verify-set 'set-difference
|
||||
;;; (make-set (L (set-difference (set-ls s1) (set-ls s2)))
|
||||
;;; (T (set-difference (set-tr s1) (set-tr s2))))))
|
||||
;;;
|
||||
;;;
|
||||
;;; (define (set-union s1 s2)
|
||||
;;; (verify-set 'set-union
|
||||
;;; (make-set (L (set-union (set-ls s1) (set-ls s2)))
|
||||
;;; (T (set-union (set-tr s1) (set-tr s2))))))
|
||||
;;;
|
||||
;;; (define (empty-set? s)
|
||||
;;; (if (L (empty-set? (set-ls s)))
|
||||
;;; (if (T (empty-set? (set-tr s)))
|
||||
;;; #t
|
||||
;;; (error "mismatch empty-set in ~s" s))
|
||||
;;; (if (T (empty-set? (set-tr s)))
|
||||
;;; (error "mismatch empty-set in ~s" s)
|
||||
;;; #f)))
|
||||
;;;
|
||||
;;; (define (verify-set who s)
|
||||
;;; (let ([ls1 (L (set->list (set-ls s)))]
|
||||
;;; [ls2 (T (set->list (set-tr s)))])
|
||||
;;; (for-each (lambda (i)
|
||||
;;; (unless (memq i ls2)
|
||||
;;; (error who "mismatch ~s ~s ~s" s ls1 ls2)))
|
||||
;;; ls1)
|
||||
;;; (for-each (lambda (i)
|
||||
;;; (unless (memq i ls1)
|
||||
;;; (error who "mismatch ~s ~s ~s" s ls2 ls2)))
|
||||
;;; ls2))
|
||||
;;; s)
|
||||
;;;
|
||||
;;; (define (set->list s)
|
||||
;;; (let ([ls1 (L (set->list (set-ls s)))]
|
||||
;;; [ls2 (T (set->list (set-tr s)))])
|
||||
;;; (for-each (lambda (i)
|
||||
;;; (unless (memq i ls2)
|
||||
;;; (error 'set->list "mismatch ~s" s)))
|
||||
;;; ls1)
|
||||
;;; (for-each (lambda (i)
|
||||
;;; (unless (memq i ls1)
|
||||
;;; (error 'set->list "mismatch ~s" s)))
|
||||
;;; ls2)
|
||||
;;; ls1))
|
||||
;;;
|
||||
;;; (define (list->set ls)
|
||||
;;; (verify-set 'list->set
|
||||
;;; (make-set (L (list->set ls))
|
||||
;;; (T (list->set ls)))))
|
||||
;;;
|
||||
;;; )
|
||||
|
||||
(module ListyGraphs
|
||||
(empty-graph add-edge! empty-graph? print-graph node-neighbors
|
||||
delete-node!)
|
||||
|
|
|
@ -124,9 +124,6 @@
|
|||
(error 'with-args "too few args")))]))
|
||||
|
||||
|
||||
;(define byte
|
||||
; (lambda (x)
|
||||
; (cons 'byte (fxlogand x 255))))
|
||||
|
||||
(define-syntax byte
|
||||
(syntax-rules ()
|
||||
|
@ -532,6 +529,8 @@
|
|||
((CODE/digit #xC1 '/4) dst (IMM8 src ac))]
|
||||
[(and (eq? src '%cl) (reg? dst))
|
||||
(CODE #xD3 (ModRM 3 '/4 dst ac))]
|
||||
[(and (eq? src '%cl) (mem? dst))
|
||||
((CODE/digit #xD3 '/4) dst ac)]
|
||||
[else (error who "invalid ~s" instr)])]
|
||||
[(shrl src dst)
|
||||
(cond
|
||||
|
@ -543,6 +542,8 @@
|
|||
(CODE #xD3 (ModRM 3 '/5 dst ac))]
|
||||
[(and (imm8? src) (mem? dst))
|
||||
((CODE/digit #xC1 '/5) dst (IMM8 src ac))]
|
||||
[(and (eq? src '%cl) (mem? dst))
|
||||
((CODE/digit #xD3 '/5) dst ac)]
|
||||
[else (error who "invalid ~s" instr)])]
|
||||
[(sarl src dst)
|
||||
(cond
|
||||
|
@ -554,6 +555,8 @@
|
|||
((CODE/digit #xC1 '/7) dst (IMM8 src ac))]
|
||||
[(and (eq? src '%cl) (reg? dst))
|
||||
(CODE #xD3 (ModRM 3 '/7 dst ac))]
|
||||
[(and (eq? src '%cl) (mem? dst))
|
||||
((CODE/digit #xD3 '/7) dst ac)]
|
||||
[else (error who "invalid ~s" instr)])]
|
||||
[(andl src dst)
|
||||
(cond
|
||||
|
@ -576,6 +579,8 @@
|
|||
(cond
|
||||
[(and (imm? src) (mem? dst))
|
||||
((CODE/digit #x81 '/1) dst (IMM32 src ac))]
|
||||
[(and (reg? src) (mem? dst))
|
||||
((CODE/digit #x09 src) dst ac)]
|
||||
[(and (imm8? src) (reg? dst))
|
||||
(CODE #x83 (ModRM 3 '/1 dst (IMM8 src ac)))]
|
||||
[(and (imm? src) (eq? dst '%eax))
|
||||
|
|
Loading…
Reference in New Issue