* rewrote char categories stuff
* constituents vector is gone removed: src/unicode/extract-categories.ss src/unicode/unicode-constituents.ss added: src/unicode/extract-info.ss src/unicode/unicode-charinfo.ss modified: src/ikarus.boot src/ikarus.unicode-data.ss src/unicode/unicode-data.ss
This commit is contained in:
parent
e6f678bb52
commit
62ee718fb8
BIN
src/ikarus.boot
BIN
src/ikarus.boot
Binary file not shown.
|
@ -17,8 +17,9 @@
|
|||
string-ci=? string-ci<? string-ci<=? string-ci>? string-ci>=?
|
||||
string-foldcase char-general-category))
|
||||
|
||||
(include "unicode/unicode-constituents.ss")
|
||||
; (include "unicode/unicode-constituents.ss")
|
||||
(include "unicode/unicode-char-cases.ss")
|
||||
(include "unicode/unicode-charinfo.ss")
|
||||
|
||||
(define (binary-search n v)
|
||||
(let ([k ($fx- ($vector-length v) 1)])
|
||||
|
@ -31,7 +32,7 @@
|
|||
[($fx<= ($vector-ref v j) n) (f j k n v)]
|
||||
[else (f i ($fx- j 1) n v)]))]))))
|
||||
|
||||
(define (char-general-category c)
|
||||
(define (lookup-char-info c)
|
||||
(let ([v unicode-categories-lookup-vector]
|
||||
[t unicode-categories-values-vector])
|
||||
(define (f i k n)
|
||||
|
@ -47,18 +48,25 @@
|
|||
(cond
|
||||
[(fx<= (vector-ref v j) n) (f j k n)]
|
||||
[else (f i (fx- j 1) n)]))]))
|
||||
(if (char? c)
|
||||
(vector-ref unicode-categories-name-vector
|
||||
(f 0 (fx- (vector-length v) 1) (char->integer c)))
|
||||
(error 'char-general-category "~s is not a char" c))))
|
||||
(f 0 (fx- (vector-length v) 1) (char->integer c))))
|
||||
|
||||
(define (char-general-category c)
|
||||
(if (char? c)
|
||||
(vector-ref unicode-categories-name-vector
|
||||
(fxlogand 63 (lookup-char-info c)))
|
||||
(error 'char-general-category "~s is not a char" c)))
|
||||
|
||||
(define (binary-search-on? n v)
|
||||
($fx= ($fxlogand (binary-search n v) 1) 1))
|
||||
|
||||
(define (unicode-printable-char? c)
|
||||
(binary-search-on?
|
||||
($char->fixnum c)
|
||||
unicode-constituents-vector))
|
||||
;(define (unicode-printable-char? c)
|
||||
; (binary-search-on?
|
||||
; ($char->fixnum c)
|
||||
; unicode-constituents-vector))
|
||||
(define (unicode-printable-char? c)
|
||||
(if (char? c)
|
||||
(not (fxzero? (fxlogand (lookup-char-info c) constituent-property)))
|
||||
(error 'unicode-printable-char? "~s is not a char" c)))
|
||||
|
||||
(define (convert-char x adjustment-vec)
|
||||
(let ([n ($char->fixnum x)])
|
||||
|
|
|
@ -1,192 +0,0 @@
|
|||
#!/usr/bin/env ikarus --r6rs-script
|
||||
|
||||
(import
|
||||
(ikarus)
|
||||
(unicode-data))
|
||||
|
||||
|
||||
(define (codes-in-cats ls cats)
|
||||
(let f ([ls ls] [ac '()])
|
||||
(cond
|
||||
[(null? ls) (reverse ac)]
|
||||
[(memq (cdar ls) cats)
|
||||
(f (cdr ls) (cons (caar ls) ac))]
|
||||
[else (f (cdr ls) ac)])))
|
||||
|
||||
(define (make-xonxoff ls)
|
||||
;;; makes a list where if your index is at an odd
|
||||
;;; position, then you're ON. If your index is not in
|
||||
;;; the list, then look for the index before you.
|
||||
(cons 0
|
||||
(let f ([i 1] [on? #f]
|
||||
[ls (if (= (car ls) 0)
|
||||
(error 'make-xonxoff "first is on")
|
||||
ls)])
|
||||
(cond
|
||||
[(null? ls) (list i)]
|
||||
[(= i (car ls))
|
||||
(if on?
|
||||
(f (+ i 1) #t (cdr ls))
|
||||
(cons i (f (+ i 1) #t (cdr ls))))]
|
||||
[else
|
||||
(if on?
|
||||
(cons i (f (+ i 1) #f ls))
|
||||
(f (+ i 1) #f ls))]))))
|
||||
|
||||
|
||||
(define (search-on? n v)
|
||||
(let ([k (- (vector-length v) 1)])
|
||||
(let f ([i 0] [k k])
|
||||
(cond
|
||||
[(fx= i k) (odd? i)]
|
||||
[else
|
||||
(let ([j (fxsra (+ i k 1) 1)])
|
||||
(cond
|
||||
[(<= (vector-ref v j) n) (f j k)]
|
||||
[else (f i (- j 1))]))]))))
|
||||
|
||||
|
||||
(define (verify vec ls)
|
||||
(let f ([i 0] [ls ls])
|
||||
(unless (> i #x10FFFF)
|
||||
(let-values ([(on? ls)
|
||||
(cond
|
||||
[(null? ls) (values #f '())]
|
||||
[(= i (car ls)) (values #t (cdr ls))]
|
||||
[else (values #f ls)])])
|
||||
(unless (equal? on? (search-on? i vec))
|
||||
(error #f "did not pass on ~s" i))
|
||||
(f (+ i 1) ls)))))
|
||||
|
||||
|
||||
(define (cat fields)
|
||||
(let ([num (car fields)]
|
||||
[cat (caddr fields)])
|
||||
(cons
|
||||
(read (open-input-string (format "#x~a" num)))
|
||||
(string->symbol cat))))
|
||||
|
||||
(define categories
|
||||
;;; 30 categories
|
||||
'([Lu "Letter, Uppercase"]
|
||||
[Ll "Letter, Lowercase"]
|
||||
[Lt "Letter, Titlecase"]
|
||||
[Lm "Letter, Modifier"]
|
||||
[Lo "Letter, Other"]
|
||||
[Mn "Mark, Nonspacing"]
|
||||
[Mc "Mark, Spacing Combining"]
|
||||
[Me "Mark, Enclosing"]
|
||||
[Nd "Number, Decimal Digit"]
|
||||
[Nl "Number, Letter"]
|
||||
[No "Number, Other"]
|
||||
[Pc "Punctuation, Connector"]
|
||||
[Pd "Punctuation, Dash"]
|
||||
[Ps "Punctuation, Open"]
|
||||
[Pe "Punctuation, Close"]
|
||||
[Pi "Punctuation, Initial quote"]
|
||||
[Pf "Punctuation, Final quote"]
|
||||
[Po "Punctuation, Other"]
|
||||
[Sm "Symbol, Math"]
|
||||
[Sc "Symbol, Currency"]
|
||||
[Sk "Symbol, Modifier"]
|
||||
[So "Symbol, Other"]
|
||||
[Zs "Separator, Space"]
|
||||
[Zl "Separator, Line"]
|
||||
[Zp "Separator, Paragraph"]
|
||||
[Cc "Other, Control"]
|
||||
[Cf "Other, Format"]
|
||||
[Cs "Other, Surrogate"]
|
||||
[Co "Other, Private Use"]
|
||||
[Cn "Other, Not Assigned"]
|
||||
))
|
||||
|
||||
(define (category-index x)
|
||||
(let f ([ls categories] [i 0])
|
||||
(cond
|
||||
[(null? ls) (error 'category-index "invalid cat ~s" x)]
|
||||
[(eq? x (caar ls)) i]
|
||||
[else (f (cdr ls) (add1 i))])))
|
||||
|
||||
|
||||
(define (insert-missing ls)
|
||||
(let f ([ls ls] [i 0] [ac '()])
|
||||
(cond
|
||||
[(> i #x10FFFF) (reverse ac)]
|
||||
[(null? ls)
|
||||
(f ls (+ i 1) (cons (cons i 'Cn) ac))]
|
||||
[(= i (caar ls))
|
||||
(f (cdr ls) (+ i 1) (cons (car ls) ac))]
|
||||
[else
|
||||
(f ls (+ i 1) (cons (cons i 'Cn) ac))])))
|
||||
|
||||
(define (make-cats-table ls)
|
||||
(map
|
||||
(lambda (x)
|
||||
(cons (car x)
|
||||
(cons (cadr x) (category-index (cddr x)))))
|
||||
(let f ([i 1] [st (car ls)] [ls (cdr ls)] [ac '()])
|
||||
(cond
|
||||
[(null? ls) (reverse (cons (cons i st) ac))]
|
||||
[(eq? (cdar ls) (cdr st)) (f (add1 i) st (cdr ls) ac)]
|
||||
[else
|
||||
(f 1 (car ls) (cdr ls) (cons (cons i st) ac))]))))
|
||||
|
||||
|
||||
(define (merge-sequences ls)
|
||||
(define (split ls)
|
||||
(cond
|
||||
[(null? ls) (values '() '())]
|
||||
[(= (caar ls) 1)
|
||||
(let-values ([(chain no-chain) (split (cdr ls))])
|
||||
(values (cons (cdar ls) chain) no-chain))]
|
||||
[else
|
||||
(values '() ls)]))
|
||||
(define (mk-chain a chain)
|
||||
(cond
|
||||
[(null? chain) a]
|
||||
[else
|
||||
(cons (car a)
|
||||
(list->vector
|
||||
(cons (cdr a)
|
||||
(map cdr chain))))]))
|
||||
(cond
|
||||
[(null? ls) '()]
|
||||
[(= (caar ls) 1)
|
||||
(let-values ([(chain no-chain) (split (cdr ls))])
|
||||
(cons (mk-chain (cdar ls) chain)
|
||||
(merge-sequences no-chain)))]
|
||||
[else (cons (cdar ls) (merge-sequences (cdr ls)))]))
|
||||
|
||||
|
||||
|
||||
|
||||
(let ([ls (map cat (get-unicode-data "UNIDATA/UnicodeData.txt"))])
|
||||
(let ([wanted
|
||||
(codes-in-cats ls
|
||||
'(Lu Ll Lt Lm Lo Mn Mc Me Nd Nl No Pd Pc Po Sc Sm Sk So Co))]
|
||||
[cats-table (merge-sequences
|
||||
(make-cats-table
|
||||
(insert-missing ls)))])
|
||||
(let ([xonxoff (list->vector (make-xonxoff wanted))])
|
||||
(verify xonxoff wanted)
|
||||
(with-output-to-file "unicode-constituents.ss"
|
||||
(lambda ()
|
||||
(printf ";;; DO NOT EDIT\n")
|
||||
(printf ";;; automatically generated\n")
|
||||
(printf ";;; ~s elements in vector\n\n" (vector-length xonxoff))
|
||||
(pretty-print
|
||||
`(define unicode-constituents-vector ',xonxoff))
|
||||
(printf ";;; ~s elements in cats\n" (length cats-table))
|
||||
(pretty-print
|
||||
`(define unicode-categories-lookup-vector
|
||||
',(list->vector (map car cats-table))))
|
||||
(pretty-print
|
||||
`(define unicode-categories-values-vector
|
||||
',(list->vector (map cdr cats-table))))
|
||||
(pretty-print
|
||||
`(define unicode-categories-name-vector
|
||||
',(list->vector (map car categories)))))
|
||||
'replace))))
|
||||
|
||||
|
||||
(printf "Happy Happy Joy Joy\n")
|
|
@ -0,0 +1,301 @@
|
|||
#!/usr/bin/env ikarus --r6rs-script
|
||||
|
||||
;;; this file is a mess.
|
||||
|
||||
(import
|
||||
(ikarus)
|
||||
(unicode-data))
|
||||
|
||||
|
||||
(define (hex-string->number str)
|
||||
(or (string->number (string-append "#x" str))
|
||||
(error 'hex-string->number "invalid ~s" str)))
|
||||
|
||||
(define (find-char c s)
|
||||
(let f ([i 0] [n (string-length s)])
|
||||
(cond
|
||||
[(= i n) #f]
|
||||
[(char=? (string-ref s i) c) i]
|
||||
[else (f (add1 i) n)])))
|
||||
|
||||
(define (extract-range str)
|
||||
(cond
|
||||
[(find-char #\. str)
|
||||
=>
|
||||
(lambda (i)
|
||||
(cons (hex-string->number (substring str 0 i))
|
||||
(hex-string->number (substring str (+ i 2) (string-length str)))))]
|
||||
[else
|
||||
(let ([n (hex-string->number str)])
|
||||
(cons n n))]))
|
||||
|
||||
|
||||
|
||||
(define (codes-in-cats ls cats)
|
||||
(let f ([ls ls] [ac '()])
|
||||
(cond
|
||||
[(null? ls) (reverse ac)]
|
||||
[(memq (cdar ls) cats)
|
||||
(f (cdr ls) (cons (caar ls) ac))]
|
||||
[else (f (cdr ls) ac)])))
|
||||
|
||||
(define (make-xonxoff ls)
|
||||
;;; makes a list where if your index is at an odd
|
||||
;;; position, then you're ON. If your index is not in
|
||||
;;; the list, then look for the index before you.
|
||||
(cons 0
|
||||
(let f ([i 1] [on? #f]
|
||||
[ls (if (= (car ls) 0)
|
||||
(error 'make-xonxoff "first is on")
|
||||
ls)])
|
||||
(cond
|
||||
[(null? ls) (list i)]
|
||||
[(= i (car ls))
|
||||
(if on?
|
||||
(f (+ i 1) #t (cdr ls))
|
||||
(cons i (f (+ i 1) #t (cdr ls))))]
|
||||
[else
|
||||
(if on?
|
||||
(cons i (f (+ i 1) #f ls))
|
||||
(f (+ i 1) #f ls))]))))
|
||||
|
||||
|
||||
(define (search-on? n v)
|
||||
(let ([k (- (vector-length v) 1)])
|
||||
(let f ([i 0] [k k])
|
||||
(cond
|
||||
[(fx= i k) (odd? i)]
|
||||
[else
|
||||
(let ([j (fxsra (+ i k 1) 1)])
|
||||
(cond
|
||||
[(<= (vector-ref v j) n) (f j k)]
|
||||
[else (f i (- j 1))]))]))))
|
||||
|
||||
|
||||
(define (verify vec ls)
|
||||
(let f ([i 0] [ls ls])
|
||||
(unless (> i #x10FFFF)
|
||||
(let-values ([(on? ls)
|
||||
(cond
|
||||
[(null? ls) (values #f '())]
|
||||
[(= i (car ls)) (values #t (cdr ls))]
|
||||
[else (values #f ls)])])
|
||||
(unless (equal? on? (search-on? i vec))
|
||||
(error #f "did not pass on ~s" i))
|
||||
(f (+ i 1) ls)))))
|
||||
|
||||
|
||||
(define (cat fields)
|
||||
(let ([num (car fields)]
|
||||
[cat (caddr fields)])
|
||||
(cons
|
||||
(read (open-input-string (format "#x~a" num)))
|
||||
(string->symbol cat))))
|
||||
|
||||
|
||||
(define constituent-property #x010000)
|
||||
(define uppercase-property #x020000)
|
||||
(define lowercase-property #x040000)
|
||||
(define titlecase-property #x080000)
|
||||
(define alphabetic-property #x100000)
|
||||
(define numeric-property #x200000)
|
||||
(define whitespace-property #x400000)
|
||||
|
||||
;;; Uppercase = Lu + Other_Uppercase
|
||||
;;; Lowercase = Ll + Other_Lowercase
|
||||
;;; Titlecase = Lt
|
||||
;;; Alphabetic = Lu + Ll + Lt + Lm + Lo + Nl + Other_Alphabetic
|
||||
;;; Numeric = ???
|
||||
;;; White_Space =
|
||||
|
||||
(define proplist-properties
|
||||
`(["Other_Uppercase" ,uppercase-property]
|
||||
["Other_Lowercase" ,lowercase-property]
|
||||
["Other_Alphabetic" ,alphabetic-property]
|
||||
["White_Space" ,whitespace-property]))
|
||||
|
||||
(define categories
|
||||
;;; 30 categories
|
||||
`([Lu ,(+ 00 constituent-property uppercase-property alphabetic-property) "Letter, Uppercase"]
|
||||
[Ll ,(+ 01 constituent-property lowercase-property alphabetic-property) "Letter, Lowercase"]
|
||||
[Lt ,(+ 02 constituent-property titlecase-property alphabetic-property) "Letter, Titlecase"]
|
||||
[Lm ,(+ 03 constituent-property alphabetic-property) "Letter, Modifier"]
|
||||
[Lo ,(+ 04 constituent-property alphabetic-property) "Letter, Other"]
|
||||
[Mn ,(+ 05 constituent-property) "Mark, Nonspacing"]
|
||||
[Mc ,(+ 06 constituent-property) "Mark, Spacing Combining"]
|
||||
[Me ,(+ 07 constituent-property) "Mark, Enclosing"]
|
||||
[Nd ,(+ 08 constituent-property numeric-property) "Number, Decimal Digit"]
|
||||
[Nl ,(+ 09 constituent-property alphabetic-property numeric-property) "Number, Letter"]
|
||||
[No ,(+ 10 constituent-property numeric-property) "Number, Other"]
|
||||
[Pc ,(+ 11 constituent-property) "Punctuation, Connector"]
|
||||
[Pd ,(+ 12 constituent-property) "Punctuation, Dash"]
|
||||
[Ps ,(+ 13 ) "Punctuation, Open"]
|
||||
[Pe ,(+ 14 ) "Punctuation, Close"]
|
||||
[Pi ,(+ 15 ) "Punctuation, Initial quote"]
|
||||
[Pf ,(+ 16 ) "Punctuation, Final quote"]
|
||||
[Po ,(+ 17 constituent-property) "Punctuation, Other"]
|
||||
[Sm ,(+ 18 constituent-property) "Symbol, Math"]
|
||||
[Sc ,(+ 19 constituent-property) "Symbol, Currency"]
|
||||
[Sk ,(+ 20 constituent-property) "Symbol, Modifier"]
|
||||
[So ,(+ 21 constituent-property) "Symbol, Other"]
|
||||
[Zs ,(+ 22 ) "Separator, Space"]
|
||||
[Zl ,(+ 23 ) "Separator, Line"]
|
||||
[Zp ,(+ 24 ) "Separator, Paragraph"]
|
||||
[Cc ,(+ 25 ) "Other, Control"]
|
||||
[Cf ,(+ 26 ) "Other, Format"]
|
||||
[Cs ,(+ 27 ) "Other, Surrogate"]
|
||||
[Co ,(+ 28 constituent-property) "Other, Private Use"]
|
||||
[Cn ,(+ 29 ) "Other, Not Assigned"]
|
||||
))
|
||||
|
||||
|
||||
(define (category-index x)
|
||||
(cond
|
||||
[(assq x categories) => cadr]
|
||||
[else (error 'category-index "invalid cat ~s" x)]))
|
||||
|
||||
|
||||
(define (insert-missing ls)
|
||||
(let ([Cn-index (category-index 'Cn)])
|
||||
(let f ([ls ls] [i 0] [ac '()])
|
||||
(cond
|
||||
[(> i #x10FFFF) (reverse ac)]
|
||||
[(null? ls)
|
||||
(f ls (+ i 1) (cons (cons i Cn-index) ac))]
|
||||
[(= i (caar ls))
|
||||
(f (cdr ls) (+ i 1)
|
||||
(cons (cons (caar ls) (category-index (cdar ls))) ac))]
|
||||
[else
|
||||
(f ls (+ i 1) (cons (cons i Cn-index) ac))]))))
|
||||
|
||||
(define (make-cats-table ls)
|
||||
(let f ([i 1] [st (car ls)] [ls (cdr ls)] [ac '()])
|
||||
(cond
|
||||
[(null? ls) (reverse (cons (cons i st) ac))]
|
||||
[(equal? (cdar ls) (cdr st)) (f (add1 i) st (cdr ls) ac)]
|
||||
[else
|
||||
(f 1 (car ls) (cdr ls) (cons (cons i st) ac))])))
|
||||
|
||||
|
||||
(define (merge-sequences ls)
|
||||
(define (split ls)
|
||||
(cond
|
||||
[(null? ls) (values '() '())]
|
||||
[(= (caar ls) 1)
|
||||
(let-values ([(chain no-chain) (split (cdr ls))])
|
||||
(values (cons (cdar ls) chain) no-chain))]
|
||||
[else
|
||||
(values '() ls)]))
|
||||
(define (mk-chain a chain)
|
||||
(cond
|
||||
[(null? chain) a]
|
||||
[else
|
||||
(cons (car a)
|
||||
(list->vector
|
||||
(cons (cdr a)
|
||||
(map cdr chain))))]))
|
||||
(cond
|
||||
[(null? ls) '()]
|
||||
[(= (caar ls) 1)
|
||||
(let-values ([(chain no-chain) (split (cdr ls))])
|
||||
(cons (mk-chain (cdar ls) chain)
|
||||
(merge-sequences no-chain)))]
|
||||
[else (cons (cdar ls) (merge-sequences (cdr ls)))]))
|
||||
|
||||
(define (iota i n)
|
||||
(let f ([i i] [n n] [ac '()])
|
||||
(cond
|
||||
[(= i n) ac]
|
||||
[else (f i (sub1 n) (cons (sub1 n) ac))])))
|
||||
|
||||
;;; first, make a big vector for all characters
|
||||
;;; place all in category Cn, unless proven otherwise
|
||||
(let ([v (make-vector (+ #x10FFFF 1) (category-index 'Cn))])
|
||||
(let ([ls (get-unicode-data "UNIDATA/UnicodeData.txt")])
|
||||
;;; interesting parts of each element in ls are:
|
||||
;;; field0: the character index, numeric
|
||||
;;; field2: the category, symbolic
|
||||
(for-each
|
||||
(lambda (x)
|
||||
(let ([idx (hex-string->number (list-ref x 0))]
|
||||
[cat (category-index (string->symbol (list-ref x 2)))])
|
||||
(vector-set! v idx cat)))
|
||||
ls))
|
||||
;;; every element of v now maps to the category-index.
|
||||
(let ([ls (get-unicode-data "UNIDATA/PropList.txt")])
|
||||
;;; field0 is a range
|
||||
;;; field1 is a property name
|
||||
(for-each
|
||||
(lambda (x)
|
||||
(let ([range (extract-range (car x))]
|
||||
[name (cadr x)])
|
||||
(cond
|
||||
[(assoc name proplist-properties) =>
|
||||
(lambda (a)
|
||||
(let ([n (cadr a)])
|
||||
(let f ([i (car range)] [j (cdr range)])
|
||||
(unless (> i j)
|
||||
(vector-set! v i (fxlogor (vector-ref v i) n))
|
||||
(f (add1 i) j)))))])))
|
||||
ls))
|
||||
(let ([table
|
||||
(merge-sequences
|
||||
(make-cats-table
|
||||
(map cons
|
||||
(iota 0 (vector-length v))
|
||||
(vector->list v))))])
|
||||
(with-output-to-file "unicode-charinfo.ss"
|
||||
(lambda ()
|
||||
(printf ";;; DO NOT EDIT\n")
|
||||
(printf ";;; automatically generated\n")
|
||||
(printf ";;; ~s elements in vectors\n\n" (length table))
|
||||
(pretty-print
|
||||
`(begin
|
||||
(define constituent-property ,constituent-property )
|
||||
(define uppercase-property ,uppercase-property )
|
||||
(define lowercase-property ,lowercase-property )
|
||||
(define titlecase-property ,titlecase-property )
|
||||
(define alphabetic-property ,alphabetic-property )
|
||||
(define numeric-property ,numeric-property )
|
||||
(define whitespace-property ,whitespace-property)))
|
||||
(pretty-print
|
||||
`(define unicode-categories-lookup-vector
|
||||
',(list->vector (map car table))))
|
||||
(pretty-print
|
||||
`(define unicode-categories-values-vector
|
||||
',(list->vector (map cdr table))))
|
||||
(pretty-print
|
||||
`(define unicode-categories-name-vector
|
||||
',(list->vector (map car categories)))))
|
||||
'replace))
|
||||
(exit 0)
|
||||
(let ([ls (map cat (get-unicode-data "UNIDATA/UnicodeData.txt"))])
|
||||
(let ([wanted
|
||||
(codes-in-cats ls
|
||||
'(Lu Ll Lt Lm Lo Mn Mc Me Nd Nl No Pd Pc Po Sc Sm Sk So Co))]
|
||||
[cats-table (merge-sequences
|
||||
(make-cats-table
|
||||
(insert-missing ls)))])
|
||||
(let ([xonxoff (list->vector (make-xonxoff wanted))])
|
||||
(verify xonxoff wanted)
|
||||
(with-output-to-file "unicode-info.ss"
|
||||
(lambda ()
|
||||
(printf ";;; DO NOT EDIT\n")
|
||||
(printf ";;; automatically generated\n")
|
||||
(printf ";;; ~s elements in vector\n\n" (vector-length xonxoff))
|
||||
(pretty-print
|
||||
`(define unicode-constituents-vector ',xonxoff))
|
||||
(printf ";;; ~s elements in cats\n" (length cats-table))
|
||||
(pretty-print
|
||||
`(define unicode-categories-lookup-vector
|
||||
',(list->vector (map car cats-table))))
|
||||
(pretty-print
|
||||
`(define unicode-categories-values-vector
|
||||
',(list->vector (map cdr cats-table))))
|
||||
(pretty-print
|
||||
`(define unicode-categories-name-vector
|
||||
',(list->vector (map car categories)))))
|
||||
'replace)))))
|
||||
|
||||
|
||||
(printf "Happy Happy Joy Joy\n")
|
|
@ -0,0 +1,371 @@
|
|||
;;; DO NOT EDIT
|
||||
;;; automatically generated
|
||||
;;; 1486 elements in vectors
|
||||
|
||||
(begin
|
||||
(define constituent-property 65536)
|
||||
(define uppercase-property 131072)
|
||||
(define lowercase-property 262144)
|
||||
(define titlecase-property 524288)
|
||||
(define alphabetic-property 1048576)
|
||||
(define numeric-property 2097152)
|
||||
(define whitespace-property 4194304))
|
||||
(define unicode-categories-lookup-vector
|
||||
'#(0 9 14 32 33 36 37 40 46 48 58 60 63 65 91 97 123 127 133 134 160 162 166
|
||||
168 178 180 188 191 192 215 216 223 247 248 256 311 313 328 330 376 378 382
|
||||
385 387 390 392 393 396 398 402 403 405 406 409 412 414 415 417 422 424 426
|
||||
428 430 432 433 436 439 441 443 445 448 452 476 478 495 497 502 505 563 570
|
||||
572 573 575 577 579 583 591 660 661 688 697 704 706 710 722 736 741 750 751
|
||||
768 837 838 880 884 886 890 891 894 895 900 902 904 907 910 912 913 930 931
|
||||
940 975 976 978 981 984 1007 1012 1017 1019 1021 1072 1120 1155 1159 1160
|
||||
1162 1216 1218 1230 1232 1300 1329 1367 1369 1370 1376 1377 1416 1419 1425
|
||||
1456 1470 1473 1475 1476 1478 1480 1488 1515 1520 1523 1525 1536 1540 1547
|
||||
1548 1550 1552 1558 1563 1564 1566 1568 1569 1595 1600 1601 1611 1624 1625
|
||||
1631 1632 1642 1646 1648 1649 1748 1750 1757 1759 1761 1765 1767 1769 1770
|
||||
1773 1774 1776 1786 1789 1791 1792 1806 1810 1840 1856 1867 1869 1902 1920
|
||||
1958 1969 1970 1984 1994 2027 2036 2038 2039 2042 2043 2305 2307 2308 2362
|
||||
2364 2366 2369 2377 2381 2382 2384 2385 2389 2392 2402 2404 2406 2416 2417
|
||||
2427 2432 2434 2436 2437 2445 2447 2449 2451 2473 2474 2481 2483 2486 2490
|
||||
2492 2494 2497 2501 2503 2505 2507 2509 2511 2519 2520 2524 2526 2527 2530
|
||||
2532 2534 2544 2546 2548 2554 2555 2561 2563 2565 2571 2575 2577 2579 2601
|
||||
2602 2609 2610 2612 2613 2615 2616 2618 2620 2622 2625 2627 2631 2633 2635
|
||||
2637 2638 2649 2653 2655 2662 2672 2674 2677 2689 2691 2693 2702 2703 2706
|
||||
2707 2729 2730 2737 2738 2740 2741 2746 2748 2750 2753 2758 2759 2761 2763
|
||||
2765 2766 2768 2769 2784 2786 2788 2790 2800 2802 2817 2818 2820 2821 2829
|
||||
2831 2833 2835 2857 2858 2865 2866 2868 2869 2874 2876 2881 2884 2887 2889
|
||||
2891 2893 2894 2902 2904 2908 2910 2911 2914 2918 2928 2930 2946 2949 2955
|
||||
2958 2961 2962 2966 2969 2971 2974 2976 2979 2981 2984 2987 2990 3002 3006
|
||||
3008 3009 3011 3014 3017 3018 3021 3022 3031 3032 3046 3056 3059 3065 3067
|
||||
3073 3076 3077 3085 3086 3089 3090 3113 3114 3124 3125 3130 3134 3137 3141
|
||||
3142 3145 3146 3149 3150 3157 3159 3168 3170 3174 3184 3202 3204 3205 3213
|
||||
3214 3217 3218 3241 3242 3252 3253 3258 3260 3264 3269 3271 3273 3274 3276
|
||||
3278 3285 3287 3294 3296 3298 3300 3302 3312 3313 3315 3330 3332 3333 3341
|
||||
3342 3345 3346 3369 3370 3386 3390 3393 3396 3398 3401 3402 3405 3406 3415
|
||||
3416 3424 3426 3430 3440 3458 3460 3461 3479 3482 3506 3507 3516 3518 3520
|
||||
3527 3530 3531 3535 3538 3541 3544 3552 3570 3572 3573 3585 3633 3634 3636
|
||||
3643 3647 3648 3654 3655 3661 3664 3674 3676 3713 3715 3717 3719 3721 3723
|
||||
3725 3726 3732 3736 3737 3744 3745 3748 3752 3754 3756 3757 3761 3762 3764
|
||||
3770 3771 3773 3774 3776 3781 3784 3789 3790 3792 3802 3804 3806 3840 3841
|
||||
3844 3859 3864 3866 3872 3882 3892 3902 3904 3912 3913 3947 3953 3967 3968
|
||||
3970 3973 3974 3976 3980 3984 3992 3993 4029 4030 4038 4039 4045 4047 4048
|
||||
4050 4096 4130 4131 4136 4137 4139 4141 4145 4147 4150 4154 4160 4170 4176
|
||||
4182 4184 4186 4256 4294 4304 4347 4349 4352 4442 4447 4515 4520 4602 4608
|
||||
4681 4682 4686 4688 4695 4698 4702 4704 4745 4746 4750 4752 4785 4786 4790
|
||||
4792 4799 4802 4806 4808 4823 4824 4881 4882 4886 4888 4955 4959 4961 4969
|
||||
4989 4992 5008 5018 5024 5109 5121 5741 5743 5751 5760 5761 5787 5789 5792
|
||||
5867 5870 5873 5888 5901 5902 5906 5908 5909 5920 5938 5940 5941 5943 5952
|
||||
5970 5972 5984 5997 5998 6001 6002 6004 6016 6068 6070 6071 6078 6086 6087
|
||||
6089 6100 6103 6104 6107 6110 6112 6122 6128 6138 6144 6150 6151 6155 6158
|
||||
6160 6170 6176 6211 6212 6264 6272 6313 6314 6400 6429 6432 6435 6439 6441
|
||||
6444 6448 6450 6451 6457 6460 6464 6465 6468 6470 6480 6510 6512 6517 6528
|
||||
6570 6576 6593 6600 6602 6608 6618 6622 6624 6656 6679 6681 6684 6686 6688
|
||||
6912 6916 6917 6964 6966 6971 6973 6978 6981 6988 6992 7002 7009 7019 7028
|
||||
7037 7424 7468 7522 7544 7545 7579 7616 7627 7678 7680 7829 7836 7840 7930
|
||||
7936 7944 7952 7958 7960 7966 7968 7976 7984 7992 8000 8006 8008 8014 8016
|
||||
8024 8032 8040 8048 8062 8064 8072 8080 8088 8096 8104 8112 8117 8118 8120
|
||||
8124 8127 8130 8133 8134 8136 8140 8141 8144 8148 8150 8152 8156 8157 8160
|
||||
8168 8173 8176 8178 8181 8182 8184 8188 8189 8191 8192 8203 8208 8214 8216
|
||||
8219 8221 8224 8232 8234 8239 8240 8249 8251 8255 8257 8260 8263 8274 8277
|
||||
8287 8288 8292 8298 8304 8306 8308 8314 8317 8320 8330 8333 8336 8341 8352
|
||||
8374 8400 8413 8417 8418 8421 8432 8448 8450 8451 8455 8456 8458 8459 8462
|
||||
8464 8467 8470 8473 8478 8484 8490 8494 8496 8500 8501 8505 8506 8508 8510
|
||||
8512 8517 8518 8522 8524 8526 8527 8531 8544 8560 8576 8579 8581 8592 8597
|
||||
8602 8604 8608 8609 8611 8612 8614 8615 8622 8623 8654 8656 8658 8661 8692
|
||||
8960 8968 8972 8992 8994 9001 9003 9084 9085 9115 9140 9180 9186 9192 9216
|
||||
9255 9280 9291 9312 9372 9398 9424 9450 9472 9655 9656 9665 9666 9720 9728
|
||||
9839 9840 9885 9888 9907 9985 9989 9990 9994 9996 10024 10025 10060 10063
|
||||
10067 10070 10072 10079 10081 10088 10102 10132 10133 10136 10160 10161
|
||||
10175 10176 10181 10183 10187 10192 10214 10220 10224 10240 10496 10627
|
||||
10649 10712 10716 10748 10750 11008 11035 11040 11044 11264 11311 11312
|
||||
11359 11362 11365 11367 11373 11380 11382 11384 11392 11491 11493 11499
|
||||
11513 11517 11518 11520 11558 11568 11622 11631 11632 11648 11671 11680
|
||||
11687 11688 11695 11696 11703 11704 11711 11712 11719 11720 11727 11728
|
||||
11735 11736 11743 11776 11778 11782 11785 11790 11799 11800 11804 11806
|
||||
11904 11930 11931 12020 12032 12246 12272 12284 12288 12289 12292 12306
|
||||
12308 12318 12320 12321 12330 12336 12337 12342 12344 12347 12350 12352
|
||||
12353 12439 12441 12443 12445 12447 12449 12539 12540 12543 12544 12549
|
||||
12589 12593 12687 12688 12690 12694 12704 12728 12736 12752 12784 12800
|
||||
12831 12832 12842 12868 12880 12881 12896 12928 12938 12977 12992 13055
|
||||
13056 13312 13313 19893 19894 19904 19968 19969 40891 40892 40960 40981
|
||||
40982 42125 42128 42183 42752 42775 42779 42784 42786 43008 43010 43011
|
||||
43014 43015 43019 43020 43043 43045 43047 43048 43052 43072 43124 43128
|
||||
44032 44033 55203 55204 55296 55297 56191 56193 56319 56321 57343 57345
|
||||
63743 63744 64046 64048 64107 64112 64218 64256 64263 64275 64280 64285
|
||||
64287 64297 64298 64311 64312 64317 64320 64322 64323 64325 64326 64434
|
||||
64467 64830 64832 64848 64912 64914 64968 65008 65020 65022 65024 65040
|
||||
65047 65050 65056 65060 65072 65073 65075 65077 65093 65095 65097 65101
|
||||
65104 65107 65108 65112 65119 65122 65124 65127 65130 65132 65136 65141
|
||||
65142 65277 65279 65281 65284 65285 65288 65294 65296 65306 65308 65311
|
||||
65313 65339 65345 65371 65380 65382 65392 65393 65438 65440 65471 65474
|
||||
65480 65482 65488 65490 65496 65498 65501 65504 65506 65509 65511 65513
|
||||
65517 65519 65529 65532 65534 65536 65548 65549 65575 65576 65595 65596
|
||||
65598 65599 65614 65616 65630 65664 65787 65792 65794 65795 65799 65844
|
||||
65847 65856 65909 65913 65930 65931 66304 66335 66336 66340 66352 66369
|
||||
66370 66378 66379 66432 66462 66464 66500 66504 66512 66513 66518 66560
|
||||
66600 66640 66718 66720 66730 67584 67590 67592 67594 67638 67639 67641
|
||||
67644 67645 67647 67648 67840 67862 67866 67871 67872 68096 68097 68100
|
||||
68101 68103 68108 68112 68116 68117 68120 68121 68148 68152 68155 68159
|
||||
68160 68168 68176 68185 73728 74607 74752 74851 74864 74868 118784 119030
|
||||
119040 119079 119082 119141 119143 119146 119149 119155 119163 119171
|
||||
119173 119180 119210 119214 119262 119296 119362 119365 119366 119552
|
||||
119639 119648 119666 119808 119834 119860 119886 119893 119894 119912
|
||||
119938 119964 119966 119968 119970 119971 119973 119975 119977 119981
|
||||
119982 119990 119994 119997 120004 120005 120016 120042 120068 120070
|
||||
120071 120075 120077 120085 120086 120093 120094 120120 120122 120123
|
||||
120127 120128 120133 120135 120138 120145 120146 120172 120198 120224
|
||||
120250 120276 120302 120328 120354 120380 120406 120432 120458 120486
|
||||
120488 120513 120514 120539 120540 120546 120571 120572 120597 120598
|
||||
120604 120629 120630 120655 120656 120662 120687 120688 120713 120714
|
||||
120720 120745 120746 120771 120772 120778 120780 120782 120832 131072
|
||||
131073 173782 173783 194560 195102 917505 917506 917536 917632 917760
|
||||
918000 983040 983041 1048573 1048574 1048576 1048577 1114109 1114110))
|
||||
(define unicode-categories-values-vector
|
||||
'#(25 4194329 25 4194326 65553 65555 65553 #(13 14 65553 65554 65553 65548)
|
||||
65553 2162696 65553 65554 65553 1245184 #(13 65553 14 65556 65547 65556)
|
||||
1376257 #(13 65554 14 65554) 25 4194329 25 #(4194326 65553) 65555 65557
|
||||
#(65556 65557 1376257 15 65554 26 65557 65556 65557 65554) 2162698
|
||||
#(65556 1376257 65557 65553 65556 2162698 1376257 16) 2162698 65553 1245184
|
||||
65554 1245184 1376257 65554 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184) 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184) 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257) 1245184 #(1376257 1245184 1376257 1245184) 1376257 1245184
|
||||
#(1376257 1245184 1376257) 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
#(1376257 1245184 1376257 1245184 1376257) 1245184 #(1376257 1245184)
|
||||
1376257 #(1245184 1376257) 1245184 1376257 1245184
|
||||
#(1376257 1245184 1376257) 1245184 1376257 #(1114116 1245184) 1376257
|
||||
1114116
|
||||
#(1245184 1638402 1376257 1245184 1638402 1376257 1245184 1638402 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184) 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184) 1376257
|
||||
#(1245184 1638402 1376257 1245184 1376257) 1245184
|
||||
#(1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184) 1376257 1245184 1376257 1245184 1376257
|
||||
#(1245184 1376257) 1245184
|
||||
#(1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184) 1376257
|
||||
1114116 1376257 1376259 1114115 1376259 65556 1114115 65556 1376259 65556
|
||||
1114115 65556 65541 1376261 65541 29 65556 29 1376259 1376257 65553 29
|
||||
65556 #(1245184 65553) 1245184 #(29 1245184 29) 1245184 1376257 1245184 29
|
||||
1245184 1376257 29 1376257 1245184 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184) 1376257
|
||||
#(1245184 1376257 65554 1245184 1376257) 1245184 1376257 1245184 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 65557) 65541 29
|
||||
65543
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257)
|
||||
1245184
|
||||
#(1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184) 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257) 29 1245184 29 1114115 65553 29
|
||||
1376257 #(29 65553 65548) 29 65541 1114117 #(65553 1114117 65553) 1114117
|
||||
65553 1114117 #(65553 1114117) 29 1114116 29 1114116 65553 29 26 29 65555
|
||||
65553 65557 1114117 29 65553 29 65553 29 1114116 29 1114115 1114116 1114117
|
||||
65541 1114117 29 2162696 65553 1114116 1114117 1114116 #(65553 1114116)
|
||||
1114117 #(26 65543) 65541 1114117 1114115 1114117 65557 65541 1114117
|
||||
1114116 2162696 1114116 65557 1114116 65553 #(29 26 1114116 1114117)
|
||||
1114116 1114117 65541 29 1114116 29 1114116 1114117 1114116 29 2162696
|
||||
1114116 65541 1114115 65557 65553 1114115 29 1114117 1114118 1114116 29
|
||||
#(65541 1114116) 1114118 1114117 1114118 65541 29 1114116 65541 29 1114116
|
||||
1114117 65553 2162696 65553 29 1114116 #(29 1114117) 1114118 29 1114116 29
|
||||
1114116 29 1114116 29 1114116 #(29 1114116) 29 1114116 29 #(65541 1114116)
|
||||
1114118 1114117 29 1114118 29 1114118 #(65541 1114116) 29 1114118 29
|
||||
1114116 29 1114116 1114117 29 2162696 1114116 65555 2162698 65557 29
|
||||
1114117 #(1114118 29) 1114116 29 1114116 29 1114116 29 1114116 29 1114116
|
||||
29 1114116 29 1114116 29 #(65541 29) 1114118 1114117 29 1114117 29 1114117
|
||||
65541 29 1114116 #(29 1114116) 29 2162696 1114117 1114116 29 1114117
|
||||
#(1114118 29) 1114116 29 1114116 29 1114116 29 1114116 29 1114116 29
|
||||
1114116 29 #(65541 1114116) 1114118 1114117 29 1114117 #(1114118 29)
|
||||
1114118 65541 29 1114116 29 1114116 1114117 29 2162696 #(29 65555) 29
|
||||
1114117 1114118 29 1114116 29 1114116 29 1114116 29 1114116 29 1114116 29
|
||||
1114116 29 #(65541 1114116 1114118 1114117 1114118) 1114117 29 1114118 29
|
||||
1114118 65541 29 #(1114117 1114118) 29 1114116 29 1114116 29 2162696
|
||||
#(65557 1114116) 29 #(1114117 1114116 29) 1114116 29 1114116 29 1114116 29
|
||||
1114116 #(29 1114116 29) 1114116 29 1114116 29 1114116 29 1114116 29
|
||||
1114118 1114117 1114118 29 1114118 29 1114118 65541 29 1114118 29 2162696
|
||||
2162698 65557 #(65555 65557) 29 1114118 29 1114116 29 1114116 29 1114116 29
|
||||
1114116 29 1114116 29 1114117 1114118 29 1114117 29 1114117 65541 29
|
||||
1114117 29 1114116 29 2162696 29 1114118 29 1114116 29 1114116 29 1114116
|
||||
29 1114116 29 1114116 29 #(65541 1114116 1114118 1114117) 1114118
|
||||
#(29 1114117) 1114118 29 1114118 #(1114117 65541) 29 1114118 29
|
||||
#(1114116 29) 1114116 1114117 29 2162696 29 65557 29 1114118 29 1114116 29
|
||||
1114116 29 1114116 29 1114116 29 1114118 1114117 29 1114118 29 1114118
|
||||
65541 29 1114118 29 1114116 29 2162696 29 1114118 29 1114116 29 1114116 29
|
||||
1114116 #(29 1114116) 29 1114116 29 65541 29 1114118 1114117
|
||||
#(29 1114117 29) 1114118 29 1114118 65553 29 1114116 1114117 1114116
|
||||
1114117 29 65555 1114116 1114115 65541 #(1114117 65541 65553) 2162696 65553
|
||||
29 1114116 #(29 1114116) 29 1114116 #(29 1114116) 29 1114116 29 1114116 29
|
||||
1114116 29 1114116 #(29 1114116 29 1114116) 29 1114116 29 1114116 1114117
|
||||
1114116 1114117 29 1114117 1114116 29 1114116 #(29 1114115 29) 65541
|
||||
1114117 29 2162696 29 1114116 29 1114116 65557 65553 65557 65541 65557
|
||||
2162696 2162698 #(65557 65541 65557 65541 65557 65541 13 14 13 14) 65542
|
||||
1114116 29 1114116 29 1114117 1114118 1114117 65541 65553 65541 1114116 29
|
||||
1114117 29 1114117 29 65557 65541 65557 29 65557 65553 29 1114116 29
|
||||
1114116 29 1114116 #(29 1114118) 1114117 #(1114118 1114117) 29
|
||||
#(1114117 65541 1114118 65541) 29 2162696 65553 1114116 1114118 1114117 29
|
||||
1245184 29 1114116 #(65553 1114115) 29 1114116 29 1114116 29 1114116 29
|
||||
1114116 29 1114116 29 1114116 #(29 1114116 29) 1114116 29 1114116 29
|
||||
1114116 29 1114116 29 1114116 29 1114116 #(29 1114116 29) 1114116 29
|
||||
1114116 29 1114116 29 1114116 29 1114116 29 #(1114117 65557) 65553 2162698
|
||||
29 1114116 65557 29 1114116 29 1114116 65553 1114116 29 4194326 1114116
|
||||
#(13 14) 29 1114116 65553 3211273 29 1114116 29 1114116 1114117 65541 29
|
||||
1114116 1114117 65541 65553 29 1114116 1114117 29 1114116 29 1114116 29
|
||||
1114117 29 1114116 26 1114118 1114117 1114118 1114117 1114118 65541 65553
|
||||
1114115 65553 #(65555 1114116 65541) 29 2162696 29 2162698 29 65553 65548
|
||||
65553 65541 #(4194326 29) 2162696 29 1114116 1114115 1114116 29 1114116
|
||||
1114117 29 1114116 29 1114117 1114118 1114117 1114118 29 1114118 1114117
|
||||
1114118 65541 29 65557 29 65553 2162696 1114116 29 1114116 29 1114116 29
|
||||
1114118 1114116 1114118 29 2162696 29 65553 65557 1114116 1114117 1114118
|
||||
29 65553 29 1114117 1114118 1114116 #(65541 1114118) 1114117
|
||||
#(1114118 1114117) 1114118 #(1114117 1114118 65542) 1114116 29 2162696
|
||||
65553 65557 65541 65557 29 1376257 1376259 1376257 1376259 1376257 1376259
|
||||
65541 29 65541
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184) 1376257 29
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257)
|
||||
29 1376257 1245184 1376257 29 1245184 29 1376257 1245184 1376257 1245184
|
||||
1376257 29 1245184 29 1376257
|
||||
#(29 1245184 29 1245184 29 1245184 29 1245184) 1376257 1245184 1376257 29
|
||||
1376257 1638402 1376257 1638402 1376257 1638402 1376257 29 1376257 1245184
|
||||
#(1638402 65556 1376257) 65556 1376257 29 1376257 1245184 1638402 65556
|
||||
1376257 29 1376257 1245184 29 65556 1376257 1245184 65556 29 1376257 29
|
||||
1376257 1245184 1638402 65556 29 4194326 26 65548 65553 #(15 16 13) 15
|
||||
#(16 13 15) 65553 #(4194327 4194328) 26 4194326 65553 #(15 16) 65553 65547
|
||||
65553 #(65554 13 14) 65553 #(65554 65553 65547) 65553 4194326 26 29 26
|
||||
#(2162698 1376257) 29 2162698 65554 #(13 14 1376257) 2162698 65554
|
||||
#(13 14 29) 1376259 29 65555 29 65541 65543 65541 65543 65541 29 65557
|
||||
1245184 65557 1245184 65557 1376257 1245184 1376257 1245184
|
||||
#(1376257 65557 1245184) 65557 1245184 65557
|
||||
#(1245184 65557 1245184 65557 1245184 65557) 1245184 #(65557 1376257)
|
||||
1245184 1376257 1114116 1376257 65557 1376257 1245184 65554 1245184 1376257
|
||||
#(65557 65554) 65557 1376257 29 2162698 3342345 3473417 3211273
|
||||
#(1245184 1376257) 29 65554 65557 65554 65557 65554 65557 65554 65557 65554
|
||||
65557 65554 65557 65554 65557 #(65554 65557 65554) 65557 65554 65557 65554
|
||||
65557 65554 65557 #(13 14) 65557 65554 65557 65554 65557 65554 65557 29
|
||||
65557 29 65557 29 2162698 65557 1245205 1376277 2162698 65557 65554 65557
|
||||
65554 65557 65554 65557 65554 65557 29 65557 29 65557 29 65557 29 65557 29
|
||||
65557 #(29 65557 29) 65557 29 #(65557 29) 65557 29 65557
|
||||
#(13 14 13 14 13 14 13 14 13 14 13 14 13 14) 2162698 65557 29 65557 29
|
||||
65557 29 65554 #(13 14) 65554 29 65554 #(13 14 13 14 13 14) 29 65554 65557
|
||||
65554 #(13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14)
|
||||
65554 #(13 14 13 14) 65554 #(13 14) 65554 65557 29 65557 29 1245184 29
|
||||
1376257 #(29 1245184 1376257) 1245184 1376257
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257) 29 #(1376257 1245184)
|
||||
1376257 29
|
||||
#(1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184)
|
||||
1376257 65557 29 65553 2162698 65553 1376257 29 1114116 29 1114115 29
|
||||
1114116 29 1114116 29 1114116 29 1114116 29 1114116 29 1114116 29 1114116
|
||||
29 1114116 29 1114116 29 65553 #(15 16 15 16) 65553 #(15 16 65553 15 16)
|
||||
65553 65548 29 #(15 16) 29 65557 29 65557 29 65557 29 65557 29 4194326
|
||||
65553 #(65557 1114115 1114116 3211273 13 14 13 14 13 14 13 14 13 14) 65557
|
||||
#(13 14 13 14 13 14 13 14 65548 13) 14 65557 3211273 65541 65548 1114115
|
||||
65557 3211273 #(1114115 1114116 65553) 65557 29 1114116 29 65541 65556
|
||||
1114115 #(1114116 65548) 1114116 65553 1114115 1114116 29 1114116 29
|
||||
1114116 29 65557 2162698 65557 1114116 29 65557 29 1114116 65557 29 2162698
|
||||
65557 29 65557 2162698 65557 2162698 65557 2162698 65557 29 65557 1114116
|
||||
29 1114116 29 65557 1114116 29 1114116 29 1114116 1114115 1114116 29 65557
|
||||
29 65556 1114115 29 65556 29 1114116 65542 1114116 65541 1114116 65541
|
||||
1114116 1114118 1114117 1114118 65557 29 1114116 65553 29 1114116 29
|
||||
1114116 29 27 29 27 29 27 29 #(27 65564) 29 65564 1114116 29 1114116 29
|
||||
1114116 29 1376257 29 1376257 29 #(1114116 1114117) 1114116 65554 1114116
|
||||
29 1114116 #(29 1114116 29) 1114116 29 1114116 29 1114116 29 1114116
|
||||
#(13 14) 29 1114116 29 1114116 29 1114116 #(65555 65557) 29 65541 65553
|
||||
#(13 14 65553) 29 65541 29 65553 65548 65547
|
||||
#(13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14) 65553 #(13 14) 65553
|
||||
65547 65553 29 65553 #(65548 13 14 13 14 13 14) 65553 #(65554 65548) 65554
|
||||
#(29 65553 65555) 65553 29 1114116 29 1114116 29 #(26 29) 65553 65555 65553
|
||||
#(13 14 65553 65554 65553 65548) 65553 2162696 65553 65554 65553 1245184
|
||||
#(13 65553 14 65556 65547 65556) 1376257
|
||||
#(13 65554 14 65554 13 14 65553 13 14) 65553 1114116 1114115 1114116
|
||||
1114115 1114116 29 1114116 29 1114116 29 1114116 29 1114116 29 65555
|
||||
#(65554 65556 65557) 65555 #(29 65557) 65554 65557 29 26 65557 29 1114116
|
||||
29 1114116 29 1114116 29 1114116 29 1114116 29 1114116 29 1114116 29 65553
|
||||
65557 29 2162698 29 65557 3211273 2162698 65557 2162698 29 1114116 29
|
||||
2162698 29 1114116 3211273 1114116 3211273 29 1114116 #(29 65553) 1114116
|
||||
29 1114116 65553 3211273 29 1245184 1376257 1114116 29 2162696 29 1114116
|
||||
29 #(1114116 29) 1114116 29 1114116 29 1114116 29 1114116 29 1114116
|
||||
2162698 29 65553 29 1114116 1114117 29 1114117 29 1114117 1114116 29
|
||||
1114116 29 1114116 29 65541 29 65541 2162698 29 65553 29 1114116 29 3211273
|
||||
29 65553 29 65557 29 65557 29 65557 65542 65541 65557 65542 26 65541 65557
|
||||
65541 65557 65541 65557 29 65557 65541 65557 29 65557 29 2162698 29 1245184
|
||||
1376257 1245184 1376257 29 1376257 1245184 1376257 #(1245184 29) 1245184 29
|
||||
1245184 29 1245184 29 1245184 29 1245184 1376257 #(29 1376257 29) 1376257
|
||||
29 1376257 1245184 1376257 1245184 29 1245184 29 1245184 29 1245184 29
|
||||
1376257 1245184 29 1245184 29 1245184 #(29 1245184) 29 1245184 29 1376257
|
||||
1245184 1376257 1245184 1376257 1245184 1376257 1245184 1376257 1245184
|
||||
1376257 1245184 1376257 29 1245184 65554 1376257 65554 1376257 1245184
|
||||
65554 1376257 65554 1376257 1245184 65554 1376257 65554 1376257 1245184
|
||||
65554 1376257 65554 1376257 1245184 65554 1376257 65554 1376257
|
||||
#(1245184 1376257) 29 2162696 29 1114116 29 1114116 29 1114116 29 26 29 26
|
||||
29 65541 29 65564 29 65564 29 65564 29 65564 29))
|
||||
(define unicode-categories-name-vector
|
||||
'#(Lu Ll Lt Lm Lo Mn Mc Me Nd Nl No Pc Pd Ps Pe Pi Pf Po Sm Sc Sk So Zs Zl Zp
|
||||
Cc Cf Cs Co Cn))
|
|
@ -1,281 +0,0 @@
|
|||
;;; DO NOT EDIT
|
||||
;;; automatically generated
|
||||
;;; 947 elements in vector
|
||||
|
||||
(define unicode-constituents-vector
|
||||
'#(0 33 40 42 91 92 93 94 123 124 125 126 127 161 171 172 173 174 187 188 880
|
||||
884 886 890 895 900 907 908 909 910 930 931 975 976 1159 1160 1300 1329
|
||||
1367 1369 1376 1377 1416 1417 1419 1425 1480 1488 1515 1520 1525 1547 1558
|
||||
1563 1564 1566 1568 1569 1595 1600 1631 1632 1757 1758 1806 1808 1867 1869
|
||||
1902 1920 1970 1984 2043 2305 2362 2364 2382 2384 2389 2392 2417 2427 2432
|
||||
2433 2436 2437 2445 2447 2449 2451 2473 2474 2481 2482 2483 2486 2490 2492
|
||||
2501 2503 2505 2507 2511 2519 2520 2524 2526 2527 2532 2534 2555 2561 2564
|
||||
2565 2571 2575 2577 2579 2601 2602 2609 2610 2612 2613 2615 2616 2618 2620
|
||||
2621 2622 2627 2631 2633 2635 2638 2649 2653 2654 2655 2662 2677 2689 2692
|
||||
2693 2702 2703 2706 2707 2729 2730 2737 2738 2740 2741 2746 2748 2758 2759
|
||||
2762 2763 2766 2768 2769 2784 2788 2790 2800 2801 2802 2817 2820 2821 2829
|
||||
2831 2833 2835 2857 2858 2865 2866 2868 2869 2874 2876 2884 2887 2889 2891
|
||||
2894 2902 2904 2908 2910 2911 2914 2918 2930 2946 2948 2949 2955 2958 2961
|
||||
2962 2966 2969 2971 2972 2973 2974 2976 2979 2981 2984 2987 2990 3002 3006
|
||||
3011 3014 3017 3018 3022 3031 3032 3046 3067 3073 3076 3077 3085 3086 3089
|
||||
3090 3113 3114 3124 3125 3130 3134 3141 3142 3145 3146 3150 3157 3159 3168
|
||||
3170 3174 3184 3202 3204 3205 3213 3214 3217 3218 3241 3242 3252 3253 3258
|
||||
3260 3269 3270 3273 3274 3278 3285 3287 3294 3295 3296 3300 3302 3312 3313
|
||||
3315 3330 3332 3333 3341 3342 3345 3346 3369 3370 3386 3390 3396 3398 3401
|
||||
3402 3406 3415 3416 3424 3426 3430 3440 3458 3460 3461 3479 3482 3506 3507
|
||||
3516 3517 3518 3520 3527 3530 3531 3535 3541 3542 3543 3544 3552 3570 3573
|
||||
3585 3643 3647 3676 3713 3715 3716 3717 3719 3721 3722 3723 3725 3726 3732
|
||||
3736 3737 3744 3745 3748 3749 3750 3751 3752 3754 3756 3757 3770 3771 3774
|
||||
3776 3781 3782 3783 3784 3790 3792 3802 3804 3806 3840 3898 3902 3912 3913
|
||||
3947 3953 3980 3984 3992 3993 4029 4030 4045 4047 4050 4096 4130 4131 4136
|
||||
4137 4139 4140 4147 4150 4154 4160 4186 4256 4294 4304 4349 4352 4442 4447
|
||||
4515 4520 4602 4608 4681 4682 4686 4688 4695 4696 4697 4698 4702 4704 4745
|
||||
4746 4750 4752 4785 4786 4790 4792 4799 4800 4801 4802 4806 4808 4823 4824
|
||||
4881 4882 4886 4888 4955 4959 4989 4992 5018 5024 5109 5121 5751 5761 5787
|
||||
5792 5873 5888 5901 5902 5909 5920 5943 5952 5972 5984 5997 5998 6001 6002
|
||||
6004 6016 6068 6070 6110 6112 6122 6128 6138 6144 6158 6160 6170 6176 6264
|
||||
6272 6314 6400 6429 6432 6444 6448 6460 6464 6465 6468 6510 6512 6517 6528
|
||||
6570 6576 6602 6608 6618 6622 6684 6686 6688 6912 6988 6992 7037 7424 7627
|
||||
7678 7836 7840 7930 7936 7958 7960 7966 7968 8006 8008 8014 8016 8024 8025
|
||||
8026 8027 8028 8029 8030 8031 8062 8064 8117 8118 8133 8134 8148 8150 8156
|
||||
8157 8176 8178 8181 8182 8191 8208 8216 8224 8232 8240 8249 8251 8261 8263
|
||||
8287 8304 8306 8308 8317 8319 8333 8336 8341 8352 8374 8400 8432 8448 8527
|
||||
8531 8581 8592 9001 9003 9192 9216 9255 9280 9291 9312 9885 9888 9907 9985
|
||||
9989 9990 9994 9996 10024 10025 10060 10061 10062 10063 10067 10070 10071
|
||||
10072 10079 10081 10088 10102 10133 10136 10160 10161 10175 10176 10181
|
||||
10183 10187 10192 10214 10224 10627 10649 10712 10716 10748 10750 11035
|
||||
11040 11044 11264 11311 11312 11359 11360 11373 11380 11384 11392 11499
|
||||
11513 11558 11568 11622 11631 11632 11648 11671 11680 11687 11688 11695
|
||||
11696 11703 11704 11711 11712 11719 11720 11727 11728 11735 11736 11743
|
||||
11776 11778 11782 11785 11787 11788 11790 11800 11904 11930 11931 12020
|
||||
12032 12246 12272 12284 12289 12296 12306 12308 12316 12317 12320 12352
|
||||
12353 12439 12441 12544 12549 12589 12593 12687 12688 12728 12736 12752
|
||||
12784 12831 12832 12868 12880 13055 13056 13313 19893 19894 19904 19969
|
||||
40891 40892 40960 42125 42128 42183 42752 42779 42784 42786 43008 43052
|
||||
43072 43128 44032 44033 55203 55204 57344 57345 63743 64046 64048 64107
|
||||
64112 64218 64256 64263 64275 64280 64285 64311 64312 64317 64318 64319
|
||||
64320 64322 64323 64325 64326 64434 64467 64830 64848 64912 64914 64968
|
||||
65008 65022 65024 65047 65049 65050 65056 65060 65072 65077 65093 65095
|
||||
65097 65107 65108 65113 65119 65127 65128 65132 65136 65141 65142 65277
|
||||
65281 65288 65290 65339 65340 65341 65342 65371 65372 65373 65374 65375
|
||||
65377 65378 65380 65471 65474 65480 65482 65488 65490 65496 65498 65501
|
||||
65504 65511 65512 65519 65532 65534 65536 65548 65549 65575 65576 65595
|
||||
65596 65598 65599 65614 65616 65630 65664 65787 65792 65795 65799 65844
|
||||
65847 65931 66304 66335 66336 66340 66352 66379 66432 66462 66463 66500
|
||||
66504 66518 66560 66718 66720 66730 67584 67590 67592 67593 67594 67638
|
||||
67639 67641 67644 67645 67647 67648 67840 67866 67871 67872 68096 68100
|
||||
68101 68103 68108 68116 68117 68120 68121 68148 68152 68155 68159 68168
|
||||
68176 68185 73728 74607 74752 74851 74864 74868 118784 119030 119040 119079
|
||||
119082 119155 119163 119262 119296 119366 119552 119639 119648 119666
|
||||
119808 119893 119894 119965 119966 119968 119970 119971 119973 119975
|
||||
119977 119981 119982 119994 119995 119996 119997 120004 120005 120070
|
||||
120071 120075 120077 120085 120086 120093 120094 120122 120123 120127
|
||||
120128 120133 120134 120135 120138 120145 120146 120486 120488 120780
|
||||
120782 120832 131072 131073 173782 173783 194560 195102 917760 918000
|
||||
983040 983041 1048573 1048574 1048576 1048577 1114109 1114110))
|
||||
;;; 1464 elements in cats
|
||||
(define unicode-categories-lookup-vector
|
||||
'#(0 32 33 36 37 40 46 48 58 60 63 65 91 97 123 127 160 162 166 168 178 180
|
||||
188 191 192 215 216 223 247 248 256 311 313 328 330 376 378 382 385 387 390
|
||||
392 393 396 398 402 403 405 406 409 412 414 415 417 422 424 426 428 430 432
|
||||
433 436 439 441 443 445 448 452 476 478 495 497 502 505 563 570 572 573 575
|
||||
577 579 583 591 660 661 688 706 710 722 736 741 750 751 768 880 884 886 890
|
||||
891 894 895 900 902 904 907 910 912 913 930 931 940 975 976 978 981 984
|
||||
1007 1012 1017 1019 1021 1072 1120 1155 1159 1160 1162 1216 1218 1230 1232
|
||||
1300 1329 1367 1369 1370 1376 1377 1416 1419 1425 1470 1473 1475 1476 1478
|
||||
1480 1488 1515 1520 1523 1525 1536 1540 1547 1548 1550 1552 1558 1563 1564
|
||||
1566 1568 1569 1595 1600 1601 1611 1631 1632 1642 1646 1648 1649 1748 1750
|
||||
1757 1759 1765 1767 1769 1770 1774 1776 1786 1789 1791 1792 1806 1810 1840
|
||||
1867 1869 1902 1920 1958 1969 1970 1984 1994 2027 2036 2038 2039 2042 2043
|
||||
2305 2307 2308 2362 2364 2366 2369 2377 2381 2382 2384 2385 2389 2392 2402
|
||||
2404 2406 2416 2417 2427 2432 2434 2436 2437 2445 2447 2449 2451 2473 2474
|
||||
2481 2483 2486 2490 2492 2494 2497 2501 2503 2505 2507 2509 2511 2519 2520
|
||||
2524 2526 2527 2530 2532 2534 2544 2546 2548 2554 2555 2561 2563 2565 2571
|
||||
2575 2577 2579 2601 2602 2609 2610 2612 2613 2615 2616 2618 2620 2622 2625
|
||||
2627 2631 2633 2635 2638 2649 2653 2655 2662 2672 2674 2677 2689 2691 2693
|
||||
2702 2703 2706 2707 2729 2730 2737 2738 2740 2741 2746 2748 2750 2753 2758
|
||||
2759 2761 2763 2765 2766 2768 2769 2784 2786 2788 2790 2800 2802 2817 2818
|
||||
2820 2821 2829 2831 2833 2835 2857 2858 2865 2866 2868 2869 2874 2876 2881
|
||||
2884 2887 2889 2891 2893 2894 2902 2904 2908 2910 2911 2914 2918 2928 2930
|
||||
2946 2949 2955 2958 2961 2962 2966 2969 2971 2974 2976 2979 2981 2984 2987
|
||||
2990 3002 3006 3008 3009 3011 3014 3017 3018 3021 3022 3031 3032 3046 3056
|
||||
3059 3065 3067 3073 3076 3077 3085 3086 3089 3090 3113 3114 3124 3125 3130
|
||||
3134 3137 3141 3142 3145 3146 3150 3157 3159 3168 3170 3174 3184 3202 3204
|
||||
3205 3213 3214 3217 3218 3241 3242 3252 3253 3258 3260 3264 3269 3271 3273
|
||||
3274 3276 3278 3285 3287 3294 3296 3298 3300 3302 3312 3313 3315 3330 3332
|
||||
3333 3341 3342 3345 3346 3369 3370 3386 3390 3393 3396 3398 3401 3402 3405
|
||||
3406 3415 3416 3424 3426 3430 3440 3458 3460 3461 3479 3482 3506 3507 3516
|
||||
3518 3520 3527 3530 3531 3535 3538 3541 3544 3552 3570 3572 3573 3585 3633
|
||||
3634 3636 3643 3647 3648 3654 3655 3663 3664 3674 3676 3713 3715 3717 3719
|
||||
3721 3723 3725 3726 3732 3736 3737 3744 3745 3748 3752 3754 3756 3757 3761
|
||||
3762 3764 3770 3771 3773 3774 3776 3781 3784 3790 3792 3802 3804 3806 3840
|
||||
3841 3844 3859 3864 3866 3872 3882 3892 3902 3904 3912 3913 3947 3953 3967
|
||||
3968 3973 3974 3976 3980 3984 3992 3993 4029 4030 4038 4039 4045 4047 4048
|
||||
4050 4096 4130 4131 4136 4137 4139 4141 4145 4147 4150 4152 4154 4160 4170
|
||||
4176 4182 4184 4186 4256 4294 4304 4347 4349 4352 4442 4447 4515 4520 4602
|
||||
4608 4681 4682 4686 4688 4695 4698 4702 4704 4745 4746 4750 4752 4785 4786
|
||||
4790 4792 4799 4802 4806 4808 4823 4824 4881 4882 4886 4888 4955 4959 4961
|
||||
4969 4989 4992 5008 5018 5024 5109 5121 5741 5743 5751 5760 5761 5787 5789
|
||||
5792 5867 5870 5873 5888 5901 5902 5906 5909 5920 5938 5941 5943 5952 5970
|
||||
5972 5984 5997 5998 6001 6002 6004 6016 6068 6070 6071 6078 6086 6087 6089
|
||||
6100 6103 6104 6107 6110 6112 6122 6128 6138 6144 6150 6151 6155 6158 6160
|
||||
6170 6176 6211 6212 6264 6272 6313 6314 6400 6429 6432 6435 6439 6441 6444
|
||||
6448 6450 6451 6457 6460 6464 6465 6468 6470 6480 6510 6512 6517 6528 6570
|
||||
6576 6593 6600 6602 6608 6618 6622 6624 6656 6679 6681 6684 6686 6688 6912
|
||||
6916 6917 6964 6966 6971 6973 6978 6979 6981 6988 6992 7002 7009 7019 7028
|
||||
7037 7424 7468 7522 7544 7545 7579 7616 7627 7678 7680 7829 7836 7840 7930
|
||||
7936 7944 7952 7958 7960 7966 7968 7976 7984 7992 8000 8006 8008 8014 8016
|
||||
8024 8032 8040 8048 8062 8064 8072 8080 8088 8096 8104 8112 8117 8118 8120
|
||||
8124 8127 8130 8133 8134 8136 8140 8141 8144 8148 8150 8152 8156 8157 8160
|
||||
8168 8173 8176 8178 8181 8182 8184 8188 8189 8191 8192 8203 8208 8214 8216
|
||||
8219 8221 8224 8232 8234 8239 8240 8249 8251 8255 8257 8260 8263 8274 8277
|
||||
8287 8288 8292 8298 8304 8306 8308 8314 8317 8320 8330 8333 8336 8341 8352
|
||||
8374 8400 8413 8417 8418 8421 8432 8448 8450 8451 8455 8456 8458 8459 8462
|
||||
8464 8467 8470 8473 8478 8484 8490 8494 8496 8500 8501 8505 8506 8508 8510
|
||||
8512 8517 8518 8522 8524 8526 8527 8531 8544 8579 8581 8592 8597 8602 8604
|
||||
8608 8609 8611 8612 8614 8615 8622 8623 8654 8656 8658 8661 8692 8960 8968
|
||||
8972 8992 8994 9001 9003 9084 9085 9115 9140 9180 9186 9192 9216 9255 9280
|
||||
9291 9312 9372 9450 9472 9655 9656 9665 9666 9720 9728 9839 9840 9885 9888
|
||||
9907 9985 9989 9990 9994 9996 10024 10025 10060 10063 10067 10070 10072
|
||||
10079 10081 10088 10102 10132 10133 10136 10160 10161 10175 10176 10181
|
||||
10183 10187 10192 10214 10220 10224 10240 10496 10627 10649 10712 10716
|
||||
10748 10750 11008 11035 11040 11044 11264 11311 11312 11359 11362 11365
|
||||
11367 11373 11380 11382 11384 11392 11491 11493 11499 11513 11517 11518
|
||||
11520 11558 11568 11622 11631 11632 11648 11671 11680 11687 11688 11695
|
||||
11696 11703 11704 11711 11712 11719 11720 11727 11728 11735 11736 11743
|
||||
11776 11778 11782 11785 11790 11799 11800 11804 11806 11904 11930 11931
|
||||
12020 12032 12246 12272 12284 12288 12289 12292 12306 12308 12318 12320
|
||||
12321 12330 12336 12337 12342 12344 12347 12350 12352 12353 12439 12441
|
||||
12443 12445 12447 12449 12539 12540 12543 12544 12549 12589 12593 12687
|
||||
12688 12690 12694 12704 12728 12736 12752 12784 12800 12831 12832 12842
|
||||
12868 12880 12881 12896 12928 12938 12977 12992 13055 13056 13312 13313
|
||||
19893 19894 19904 19968 19969 40891 40892 40960 40981 40982 42125 42128
|
||||
42183 42752 42775 42779 42784 42786 43008 43010 43011 43014 43015 43019
|
||||
43020 43043 43045 43047 43048 43052 43072 43124 43128 44032 44033 55203
|
||||
55204 55296 55297 56191 56193 56319 56321 57343 57345 63743 63744 64046
|
||||
64048 64107 64112 64218 64256 64263 64275 64280 64285 64287 64297 64298
|
||||
64311 64312 64317 64320 64322 64323 64325 64326 64434 64467 64830 64832
|
||||
64848 64912 64914 64968 65008 65020 65022 65024 65040 65047 65050 65056
|
||||
65060 65072 65073 65075 65077 65093 65095 65097 65101 65104 65107 65108
|
||||
65112 65119 65122 65124 65127 65130 65132 65136 65141 65142 65277 65279
|
||||
65281 65284 65285 65288 65294 65296 65306 65308 65311 65313 65339 65345
|
||||
65371 65380 65382 65392 65393 65438 65440 65471 65474 65480 65482 65488
|
||||
65490 65496 65498 65501 65504 65506 65509 65511 65513 65517 65519 65529
|
||||
65532 65534 65536 65548 65549 65575 65576 65595 65596 65598 65599 65614
|
||||
65616 65630 65664 65787 65792 65794 65795 65799 65844 65847 65856 65909
|
||||
65913 65930 65931 66304 66335 66336 66340 66352 66369 66370 66378 66379
|
||||
66432 66462 66464 66500 66504 66512 66513 66518 66560 66600 66640 66718
|
||||
66720 66730 67584 67590 67592 67594 67638 67639 67641 67644 67645 67647
|
||||
67648 67840 67862 67866 67871 67872 68096 68097 68100 68101 68103 68108
|
||||
68112 68116 68117 68120 68121 68148 68152 68155 68159 68160 68168 68176
|
||||
68185 73728 74607 74752 74851 74864 74868 118784 119030 119040 119079
|
||||
119082 119141 119143 119146 119149 119155 119163 119171 119173 119180
|
||||
119210 119214 119262 119296 119362 119365 119366 119552 119639 119648
|
||||
119666 119808 119834 119860 119886 119893 119894 119912 119938 119964
|
||||
119966 119968 119970 119971 119973 119975 119977 119981 119982 119990
|
||||
119994 119997 120004 120005 120016 120042 120068 120070 120071 120075
|
||||
120077 120085 120086 120093 120094 120120 120122 120123 120127 120128
|
||||
120133 120135 120138 120145 120146 120172 120198 120224 120250 120276
|
||||
120302 120328 120354 120380 120406 120432 120458 120486 120488 120513
|
||||
120514 120539 120540 120546 120571 120572 120597 120598 120604 120629
|
||||
120630 120655 120656 120662 120687 120688 120713 120714 120720 120745
|
||||
120746 120771 120772 120778 120780 120782 120832 131072 131073 173782
|
||||
173783 194560 195102 917505 917506 917536 917632 917760 918000 983040
|
||||
983041 1048573 1048574 1048576 1048577 1114109 1114110))
|
||||
(define unicode-categories-values-vector
|
||||
'#(25 22 17 19 17 #(13 14 17 18 17 12) 17 8 17 18 17 0 #(13 17 14 20 11 20) 1
|
||||
#(13 18 14 18) 25 #(22 17) 19 21 #(20 21 1 15 18 26 21 20 21 18) 10
|
||||
#(20 1 21 17 20 10 1 16) 10 17 0 18 0 1 18 1
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1 #(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1) 0 #(1 0 1 0) 1 0 #(1 0 1) 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
#(1 0 1 0 1) 0 #(1 0) 1 #(0 1) 0 1 0 #(1 0 1) 0 1 #(4 0) 1 4
|
||||
#(0 2 1 0 2 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1 #(0 2 1 0 1) 0
|
||||
#(1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
|
||||
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1 0 1 0 1 #(0 1) 0
|
||||
#(1 0 1 0 1 0 1 0) 1 4 1 3 20 3 20 3 20 3 20 5 29 20 29 3 1 17 29 20
|
||||
#(0 17) 0 #(29 0 29) 0 1 0 29 0 1 29 1 0 1
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1 #(0 1 18 0 1) 0 1 0 1
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21) 5
|
||||
29 7
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1) 0 #(1 0 1 0 1 0 1 0 1 0 1 0) 1
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1) 29 0 29 3
|
||||
17 29 1 #(29 17 12) 29 5 #(17 5 17) 5 17 5 #(17 5) 29 4 29 4 17 29 26 29 19
|
||||
17 21 5 29 17 29 17 29 4 29 3 4 5 29 8 17 4 5 4 #(17 4) 5 #(26 7) 5 3 5 21
|
||||
5 4 8 4 21 4 17 #(29 26 4 5) 4 5 29 4 29 4 5 4 29 8 4 5 3 21 17 3 29 5 6 4
|
||||
29 #(5 4) 6 5 6 5 29 4 5 29 4 5 17 8 17 29 4 #(29 5) 6 29 4 29 4 29 4 29 4
|
||||
#(29 4) 29 4 29 #(5 4) 6 5 29 6 29 6 #(5 4) 29 6 29 4 29 4 5 29 8 4 19 10
|
||||
21 29 5 #(6 29) 4 29 4 29 4 29 4 29 4 29 4 29 4 29 #(5 29) 6 5 29 5 29 5 29
|
||||
4 #(29 4) 29 8 5 4 29 5 #(6 29) 4 29 4 29 4 29 4 29 4 29 4 29 #(5 4) 6 5 29
|
||||
5 #(6 29) 6 5 29 4 29 4 5 29 8 #(29 19) 29 5 6 29 4 29 4 29 4 29 4 29 4 29
|
||||
4 29 #(5 4 6 5 6) 5 29 6 29 6 5 29 #(5 6) 29 4 29 4 29 8 #(21 4) 29
|
||||
#(5 4 29) 4 29 4 29 4 29 4 #(29 4 29) 4 29 4 29 4 29 4 29 6 5 6 29 6 29 6 5
|
||||
29 6 29 8 10 21 #(19 21) 29 6 29 4 29 4 29 4 29 4 29 4 29 5 6 29 5 29 5 29
|
||||
5 29 4 29 8 29 6 29 4 29 4 29 4 29 4 29 4 29 #(5 4 6 5) 6 #(29 5) 6 29 6 5
|
||||
29 6 29 #(4 29) 4 5 29 8 29 21 29 6 29 4 29 4 29 4 29 4 29 6 5 29 6 29 6 5
|
||||
29 6 29 4 29 8 29 6 29 4 29 4 29 4 #(29 4) 29 4 29 5 29 6 5 #(29 5 29) 6 29
|
||||
6 17 29 4 5 4 5 29 19 4 3 5 17 8 17 29 4 #(29 4) 29 4 #(29 4) 29 4 29 4 29
|
||||
4 29 4 #(29 4 29 4) 29 4 29 4 5 4 5 29 5 4 29 4 #(29 3 29) 5 29 8 29 4 29 4
|
||||
21 17 21 5 21 8 10 #(21 5 21 5 21 5 13 14 13 14) 6 4 29 4 29 5 6 5 17 5 4
|
||||
29 5 29 5 29 21 5 21 29 21 17 29 4 29 4 29 4 #(29 6) 5 #(6 5) 29 5 #(6 5)
|
||||
29 8 17 4 6 5 29 0 29 4 #(17 3) 29 4 29 4 29 4 29 4 29 4 29 4 #(29 4 29) 4
|
||||
29 4 29 4 29 4 29 4 29 4 #(29 4 29) 4 29 4 29 4 29 4 29 4 29 #(5 21) 17 10
|
||||
29 4 21 29 4 29 4 17 4 29 22 4 #(13 14) 29 4 17 9 29 4 29 4 5 29 4 5 17 29
|
||||
4 5 29 4 29 4 29 5 29 4 26 6 5 6 5 6 5 17 3 17 #(19 4 5) 29 8 29 10 29 17
|
||||
12 17 5 #(22 29) 8 29 4 3 4 29 4 5 29 4 29 5 6 5 6 29 6 5 6 5 29 21 29 17 8
|
||||
4 29 4 29 4 29 6 4 6 29 8 29 17 21 4 5 6 29 17 29 5 6 4 #(5 6) 5 #(6 5) 6 5
|
||||
6 4 29 8 17 21 5 21 29 1 3 1 3 1 3 5 29 5
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
|
||||
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
|
||||
0) 1 29
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
|
||||
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1) 29 1 0 1 29 0 29 1 0 1 0 1 29 0 29 1
|
||||
#(29 0 29 0 29 0 29 0) 1 0 1 29 1 2 1 2 1 2 1 29 1 0 #(2 20 1) 20 1 29 1 0
|
||||
2 20 1 29 1 0 29 20 1 0 20 29 1 29 1 0 2 20 29 22 26 12 17 #(15 16 13) 15
|
||||
#(16 13 15) 17 #(23 24) 26 22 17 #(15 16) 17 11 17 #(18 13 14) 17
|
||||
#(18 17 11) 17 22 26 29 26 #(10 1) 29 10 18 #(13 14 1) 10 18 #(13 14 29) 3
|
||||
29 19 29 5 7 5 7 5 29 21 0 21 0 21 1 0 1 0 #(1 21 0) 21 0 21
|
||||
#(0 21 0 21 0 21) 0 #(21 1) 0 1 4 1 21 1 0 18 0 1 #(21 18) 21 1 29 10 9
|
||||
#(0 1) 29 18 21 18 21 18 21 18 21 18 21 18 21 18 21 #(18 21 18) 21 18 21 18
|
||||
21 18 21 #(13 14) 21 18 21 18 21 18 21 29 21 29 21 29 10 21 10 21 18 21 18
|
||||
21 18 21 18 21 29 21 29 21 29 21 29 21 29 21 #(29 21 29) 21 29 #(21 29) 21
|
||||
29 21 #(13 14 13 14 13 14 13 14 13 14 13 14 13 14) 10 21 29 21 29 21 29 18
|
||||
#(13 14) 18 29 18 #(13 14 13 14 13 14) 29 18 21 18
|
||||
#(13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14) 18
|
||||
#(13 14 13 14) 18 #(13 14) 18 21 29 21 29 0 29 1 #(29 0 1) 0 1
|
||||
#(0 1 0 1 0 1) 29 #(1 0) 1 29
|
||||
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
|
||||
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
|
||||
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0) 1 21 29 17 10 17 1 29
|
||||
4 29 3 29 4 29 4 29 4 29 4 29 4 29 4 29 4 29 4 29 4 29 17 #(15 16 15 16) 17
|
||||
#(15 16 17 15 16) 17 12 29 #(15 16) 29 21 29 21 29 21 29 21 29 22 17
|
||||
#(21 3 4 9 13 14 13 14 13 14 13 14 13 14) 21
|
||||
#(13 14 13 14 13 14 13 14 12 13) 14 21 9 5 12 3 21 9 #(3 4 17) 21 29 4 29 5
|
||||
20 3 #(4 12) 4 17 3 4 29 4 29 4 29 21 10 21 4 29 21 29 4 21 29 10 21 29 21
|
||||
10 21 10 21 10 21 29 21 4 29 4 29 21 4 29 4 29 4 3 4 29 21 29 20 3 29 20 29
|
||||
4 6 4 5 4 5 4 6 5 6 21 29 4 17 29 4 29 4 29 27 29 27 29 27 29 #(27 28) 29
|
||||
28 4 29 4 29 4 29 1 29 1 29 #(4 5) 4 18 4 29 4 #(29 4 29) 4 29 4 29 4 29 4
|
||||
#(13 14) 29 4 29 4 29 4 #(19 21) 29 5 17 #(13 14 17) 29 5 29 17 12 11
|
||||
#(13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14) 17 #(13 14) 17 11 17 29
|
||||
17 #(12 13 14 13 14 13 14) 17 #(18 12) 18 #(29 17 19) 17 29 4 29 4 29
|
||||
#(26 29) 17 19 17 #(13 14 17 18 17 12) 17 8 17 18 17 0 #(13 17 14 20 11 20)
|
||||
1 #(13 18 14 18 13 14 17 13 14) 17 4 3 4 3 4 29 4 29 4 29 4 29 4 29 19
|
||||
#(18 20 21) 19 #(29 21) 18 21 29 26 21 29 4 29 4 29 4 29 4 29 4 29 4 29 4
|
||||
29 17 21 29 10 29 21 9 10 21 10 29 4 29 10 29 4 9 4 9 29 4 #(29 17) 4 29 4
|
||||
17 9 29 0 1 4 29 8 29 4 29 #(4 29) 4 29 4 29 4 29 4 29 4 10 29 17 29 4 5 29
|
||||
5 29 5 4 29 4 29 4 29 5 29 5 10 29 17 29 4 29 9 29 17 29 21 29 21 29 21 6 5
|
||||
21 6 26 5 21 5 21 5 21 29 21 5 21 29 21 29 10 29 0 1 0 1 29 1 0 1 #(0 29) 0
|
||||
29 0 29 0 29 0 29 0 1 #(29 1 29) 1 29 1 0 1 0 29 0 29 0 29 0 29 1 0 29 0 29
|
||||
0 #( |