fixed reading of polar notation
This commit is contained in:
parent
b2bca8a00a
commit
3e71a5aa5e
|
@ -24,6 +24,11 @@
|
||||||
(* sn (if (eq? ex 'i) (inexact ac) ac)))
|
(* sn (if (eq? ex 'i) (inexact ac) ac)))
|
||||||
(define (do-dec-sn/ex sn ex ac)
|
(define (do-dec-sn/ex sn ex ac)
|
||||||
(* sn (if (eq? ex 'e) ac (inexact ac))))
|
(* sn (if (eq? ex 'e) ac (inexact ac))))
|
||||||
|
(define (sign c)
|
||||||
|
(case c
|
||||||
|
[(#\+) +1]
|
||||||
|
[(#\-) -1]
|
||||||
|
[else #f]))
|
||||||
(define (digit c r)
|
(define (digit c r)
|
||||||
(let ([n (fx- (char->integer c) (char->integer #\0))])
|
(let ([n (fx- (char->integer c) (char->integer #\0))])
|
||||||
(cond
|
(cond
|
||||||
|
@ -120,8 +125,19 @@
|
||||||
orig*
|
orig*
|
||||||
[name* (arg** ...) clause** ...] ...)])))]))))
|
[name* (arg** ...) clause** ...] ...)])))]))))
|
||||||
|
|
||||||
(define (mkrec n0 n1)
|
(define (mkrec0 n0 n1)
|
||||||
(if n0 (make-rectangular n0 n1) (make-rectangular 0 n1)))
|
(cond
|
||||||
|
[(not n0) (make-rectangular 0 n1)]
|
||||||
|
[(and (pair? n0) (eq? (car n0) 'polar))
|
||||||
|
(make-polar (cdr n0) n1)]
|
||||||
|
[else (make-rectangular n0 n1)]))
|
||||||
|
(define (mkrec1 n0 n1)
|
||||||
|
(cond
|
||||||
|
[(not n0) n1]
|
||||||
|
[(and (pair? n0) (eq? (car n0) 'polar))
|
||||||
|
(make-polar (cdr n0) n1)]
|
||||||
|
[else (make-rectangular n0 n1)]))
|
||||||
|
|
||||||
|
|
||||||
(define-parser define-string->number-parser next fail
|
(define-parser define-string->number-parser next fail
|
||||||
|
|
||||||
|
@ -132,25 +148,20 @@
|
||||||
(do-sn/ex sn ex (/ num ac)))]
|
(do-sn/ex sn ex (/ num ac)))]
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
(next u:ratio+ r n0 ex sn num (+ (* ac r) d))]
|
(next u:ratio+ r n0 ex sn num (+ (* ac r) d))]
|
||||||
[(#\+)
|
[(sign) => sn2
|
||||||
(if (or n0 (= ac 0))
|
(if (or n0 (= ac 0))
|
||||||
(fail)
|
(fail)
|
||||||
(let ([real (do-sn/ex sn ex (/ num ac))])
|
(let ([real (do-sn/ex sn ex (/ num ac))])
|
||||||
(next u:sign r real ex +1)))]
|
(next u:sign r real ex sn2)))]
|
||||||
[(#\-)
|
|
||||||
(if (or n0 (= ac 0))
|
|
||||||
(fail)
|
|
||||||
(let ([real (do-sn/ex sn ex (/ num ac))])
|
|
||||||
(next u:sign r real ex -1)))]
|
|
||||||
[(#\@)
|
[(#\@)
|
||||||
(if (or n0 (= ac 0))
|
(if (or n0 (= ac 0))
|
||||||
(fail)
|
(fail)
|
||||||
(let ([mag (do-sn/ex sn ex (/ num ac))])
|
(let ([mag (do-sn/ex sn ex (/ num ac))])
|
||||||
(next polar r mag ex)))]
|
(next u:polar r mag ex)))]
|
||||||
[(#\i)
|
[(#\i)
|
||||||
(if (= ac 0)
|
(if (= ac 0)
|
||||||
(fail)
|
(fail)
|
||||||
(next u:done (mkrec n0 (do-sn/ex sn ex (/ num ac)))))])
|
(next u:done (mkrec0 n0 (do-sn/ex sn ex (/ num ac)))))])
|
||||||
|
|
||||||
(u:ratio (r n0 ex sn num)
|
(u:ratio (r n0 ex sn num)
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
|
@ -159,88 +170,38 @@
|
||||||
(u:done (n)
|
(u:done (n)
|
||||||
[(eof) n])
|
[(eof) n])
|
||||||
|
|
||||||
(polar (r mag ex)
|
(u:polar (r mag ex)
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
(next polar+digit r mag ex d 1)]
|
(next u:digit+ r (cons 'polar mag) ex +1 d)]
|
||||||
[(#\.)
|
[(#\.)
|
||||||
(if (= r 10)
|
(if (= r 10)
|
||||||
(next polar+dot r mag ex +1)
|
(next u:dot r (cons 'polar mag) ex +1)
|
||||||
(fail))]
|
(fail))]
|
||||||
[(#\+)
|
[(sign) => sn
|
||||||
(next polar+sign r mag ex +1)]
|
(next u:sign r (cons 'polar mag) ex sn)])
|
||||||
[(#\-)
|
|
||||||
(next polar+sign r mag ex -1)])
|
|
||||||
|
|
||||||
(polar+sign (r mag ex sn)
|
|
||||||
[(digit r) => d
|
|
||||||
(next polar+digit r mag ex d sn)]
|
|
||||||
[(#\.)
|
|
||||||
(if (= r 10)
|
|
||||||
(next polar+dot r mag ex sn)
|
|
||||||
(fail))]
|
|
||||||
[(#\n)
|
|
||||||
(next pol:sign-n (make-polar mag +nan.0))]
|
|
||||||
[(#\i)
|
|
||||||
(next pol:sign-i (make-polar mag (* +inf.0 sn)))])
|
|
||||||
|
|
||||||
(pol:sign-n (n) [(#\a) (next pol:sign-na n)])
|
|
||||||
(pol:sign-na (n) [(#\n) (next pol:sign-nan n)])
|
|
||||||
(pol:sign-nan (n) [(#\.) (next pol:sign-nan. n)])
|
|
||||||
(pol:sign-nan. (n) [(#\0) (next u:done n)])
|
|
||||||
|
|
||||||
(pol:sign-i (n) [(#\n) (next pol:sign-in n)])
|
|
||||||
(pol:sign-in (n) [(#\f) (next pol:sign-inf n)])
|
|
||||||
(pol:sign-inf (n) [(#\.) (next pol:sign-inf. n)])
|
|
||||||
(pol:sign-inf. (n) [(#\0) (next u:done n)])
|
|
||||||
|
|
||||||
(polar+dot (r mag ex sn)
|
|
||||||
[(digit r) => d
|
|
||||||
(next polar+digit+dot r mag ex d sn -1)])
|
|
||||||
|
|
||||||
(polar+digit (r mag ex ang sn)
|
|
||||||
[(eof) (make-polar mag (* ang sn))]
|
|
||||||
[(digit r) => d
|
|
||||||
(next polar+digit r mag ex (+ (* r ang) d) sn)]
|
|
||||||
[(#\.)
|
|
||||||
(if (= r 10)
|
|
||||||
(next polar+digit+dot r mag ex ang sn 0)
|
|
||||||
(fail))])
|
|
||||||
|
|
||||||
(polar+digit+dot (r mag ex ang sn exp)
|
|
||||||
[(eof)
|
|
||||||
(let ([ang (* ang sn (expt 10 exp))])
|
|
||||||
(make-polar mag ang))]
|
|
||||||
[(digit r) => d
|
|
||||||
(next polar+digit+dot r mag ex (+ (* r ang) d) sn (- exp 1))])
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(u:exponent+digit (r n0 ex sn ac exp1 exp2 exp-sign)
|
(u:exponent+digit (r n0 ex sn ac exp1 exp2 exp-sign)
|
||||||
[(eof)
|
[(eof)
|
||||||
(if n0
|
(if (number? n0)
|
||||||
(fail)
|
(fail)
|
||||||
(do-dec-sn/ex sn ex (* ac (expt 10 (+ exp1 (* exp2 exp-sign))))))]
|
(mkrec1 n0 (do-dec-sn/ex sn ex
|
||||||
|
(* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))))]
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
(next u:exponent+digit r n0 ex sn ac exp1 (+ (* exp2 r) d) exp-sign)]
|
(next u:exponent+digit r n0 ex sn ac exp1 (+ (* exp2 r) d) exp-sign)]
|
||||||
[(#\+)
|
[(sign) => sn2
|
||||||
(if n0
|
(if n0
|
||||||
(fail)
|
(fail)
|
||||||
(let ([real (do-dec-sn/ex sn ex (* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
(let ([real (do-dec-sn/ex sn ex (* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
||||||
(next u:sign r real ex +1)))]
|
(next u:sign r real ex sn2)))]
|
||||||
[(#\-)
|
|
||||||
(if n0
|
|
||||||
(fail)
|
|
||||||
(let ([real (do-dec-sn/ex sn ex (* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
|
||||||
(next u:sign r real ex -1)))]
|
|
||||||
[(#\@)
|
[(#\@)
|
||||||
(if n0
|
(if n0
|
||||||
(fail)
|
(fail)
|
||||||
(let ([mag (do-dec-sn/ex sn ex (* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
(let ([mag (do-dec-sn/ex sn ex (* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
||||||
(next polar r mag ex)))]
|
(next u:polar r mag ex)))]
|
||||||
[(#\i)
|
[(#\i)
|
||||||
(let ([n1 (do-dec-sn/ex sn ex
|
(let ([n1 (do-dec-sn/ex sn ex
|
||||||
(* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
(* ac (expt 10 (+ exp1 (* exp2 exp-sign)))))])
|
||||||
(next u:done (mkrec n0 n1)))])
|
(next u:done (mkrec0 n0 n1)))])
|
||||||
|
|
||||||
(u:exponent+sign (r n0 ex sn ac exp1 exp-sign)
|
(u:exponent+sign (r n0 ex sn ac exp1 exp-sign)
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
|
@ -249,32 +210,26 @@
|
||||||
(u:exponent (r n0 ex sn ac exp1)
|
(u:exponent (r n0 ex sn ac exp1)
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
(next u:exponent+digit r n0 ex sn ac exp1 d +1)]
|
(next u:exponent+digit r n0 ex sn ac exp1 d +1)]
|
||||||
[(#\+) (next u:exponent+sign r n0 ex sn ac exp1 +1)]
|
[(sign) => sn2 (next u:exponent+sign r n0 ex sn ac exp1 sn2)])
|
||||||
[(#\-) (next u:exponent+sign r n0 ex sn ac exp1 -1)])
|
|
||||||
|
|
||||||
(u:digit+dot (r n0 ex sn ac exp)
|
(u:digit+dot (r n0 ex sn ac exp)
|
||||||
[(eof)
|
[(eof)
|
||||||
(do-dec-sn/ex sn ex (* ac (expt 10 exp)))]
|
(mkrec1 n0 (do-dec-sn/ex sn ex (* ac (expt 10 exp))))]
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
(next u:digit+dot r n0 ex sn (+ (* ac r) d) (- exp 1))]
|
(next u:digit+dot r n0 ex sn (+ (* ac r) d) (- exp 1))]
|
||||||
[(#\i)
|
[(#\i)
|
||||||
(let ([n1 (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
(let ([n1 (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
||||||
(next u:done (mkrec n0 n1)))]
|
(next u:done (mkrec0 n0 n1)))]
|
||||||
[(#\+)
|
[(sign) => sn2
|
||||||
(if n0
|
(if n0
|
||||||
(fail)
|
(fail)
|
||||||
(let ([real (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
(let ([real (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
||||||
(next u:sign r real ex +1)))]
|
(next u:sign r real ex sn2)))]
|
||||||
[(#\-)
|
|
||||||
(if n0
|
|
||||||
(fail)
|
|
||||||
(let ([real (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
|
||||||
(next u:sign r real ex -1)))]
|
|
||||||
[(#\@)
|
[(#\@)
|
||||||
(if n0
|
(if n0
|
||||||
(fail)
|
(fail)
|
||||||
(let ([mag (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
(let ([mag (do-dec-sn/ex sn ex (* ac (expt 10 exp)))])
|
||||||
(next polar r mag ex)))]
|
(next u:polar r mag ex)))]
|
||||||
[(#\e #\E #\s #\S #\f #\F #\d #\D #\l #\L)
|
[(#\e #\E #\s #\S #\f #\F #\d #\D #\l #\L)
|
||||||
(if (fx=? r 10)
|
(if (fx=? r 10)
|
||||||
(next u:exponent r n0 ex sn ac exp)
|
(next u:exponent r n0 ex sn ac exp)
|
||||||
|
@ -283,10 +238,7 @@
|
||||||
|
|
||||||
(u:digit+ (r n0 ex sn ac)
|
(u:digit+ (r n0 ex sn ac)
|
||||||
[(eof)
|
[(eof)
|
||||||
(let ([n1 (do-sn/ex sn ex ac)])
|
(mkrec1 n0 (do-sn/ex sn ex ac))]
|
||||||
(if n0
|
|
||||||
(make-rectangular n0 n1)
|
|
||||||
n1))]
|
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
(next u:digit+ r n0 ex sn (+ (* ac r) d))]
|
(next u:digit+ r n0 ex sn (+ (* ac r) d))]
|
||||||
[(#\.)
|
[(#\.)
|
||||||
|
@ -294,35 +246,26 @@
|
||||||
(next u:digit+dot r n0 ex sn ac 0)
|
(next u:digit+dot r n0 ex sn ac 0)
|
||||||
(fail))]
|
(fail))]
|
||||||
[(#\/) (next u:ratio r n0 ex sn ac)]
|
[(#\/) (next u:ratio r n0 ex sn ac)]
|
||||||
[(#\+)
|
[(sign) => sn2
|
||||||
(if n0
|
(if n0
|
||||||
(fail)
|
(fail)
|
||||||
(let ([real (do-sn/ex sn ex ac)])
|
(let ([real (do-sn/ex sn ex ac)])
|
||||||
(next u:sign r real ex +1)))]
|
(next u:sign r real ex sn2)))]
|
||||||
[(#\-)
|
|
||||||
(if n0
|
|
||||||
(fail)
|
|
||||||
(let ([real (do-sn/ex sn ex ac)])
|
|
||||||
(next u:sign r real ex -1)))]
|
|
||||||
[(#\i)
|
[(#\i)
|
||||||
(next u:done (mkrec n0 (do-sn/ex sn ex ac)))]
|
(next u:done (mkrec0 n0 (do-sn/ex sn ex ac)))]
|
||||||
[(#\@)
|
[(#\@)
|
||||||
(if n0
|
(if n0
|
||||||
(fail)
|
(fail)
|
||||||
(let ([mag (do-sn/ex sn ex ac)])
|
(let ([mag (do-sn/ex sn ex ac)])
|
||||||
(next polar r mag ex)))]
|
(next u:polar r mag ex)))]
|
||||||
[(#\e #\E #\s #\S #\f #\F #\d #\D #\l #\L)
|
[(#\e #\E #\s #\S #\f #\F #\d #\D #\l #\L)
|
||||||
(if (fx=? r 10)
|
(if (fx=? r 10)
|
||||||
(next u:exponent r n0 ex sn ac 0)
|
(next u:exponent r n0 ex sn ac 0)
|
||||||
(fail))])
|
(fail))])
|
||||||
|
|
||||||
|
|
||||||
(u:sign-i (r n0 ex sn)
|
(u:sign-i (r n0 ex sn)
|
||||||
[(eof) (mkrec n0 (do-sn/ex sn ex 1))]
|
[(eof) (mkrec0 n0 (do-sn/ex sn ex 1))]
|
||||||
[(#\n)
|
[(#\n) (next u:sign-in r n0 (* sn +inf.0) ex)])
|
||||||
(if n0
|
|
||||||
(next u:sign-in r n0 (* sn +inf.0) ex)
|
|
||||||
(next u:sign-in r (* sn +inf.0) #f ex))])
|
|
||||||
(u:sign-in (r n0 n1 ex)
|
(u:sign-in (r n0 n1 ex)
|
||||||
[(#\f) (next u:sign-inf r n0 n1 ex)])
|
[(#\f) (next u:sign-inf r n0 n1 ex)])
|
||||||
(u:sign-inf (r n0 n1 ex)
|
(u:sign-inf (r n0 n1 ex)
|
||||||
|
@ -330,15 +273,11 @@
|
||||||
(u:sign-inf. (r n0 n1 ex)
|
(u:sign-inf. (r n0 n1 ex)
|
||||||
[(#\0) (next u:sign-inf.0 r n0 n1 ex)])
|
[(#\0) (next u:sign-inf.0 r n0 n1 ex)])
|
||||||
(u:sign-inf.0 (r n0 n1 ex)
|
(u:sign-inf.0 (r n0 n1 ex)
|
||||||
[(eof) (if n1 (make-rectangular n0 n1) n0)]
|
[(eof) (mkrec1 n0 n1)]
|
||||||
[(#\+) (if n1 (fail) (next u:sign r n0 ex +1))]
|
[(sign) => sn2
|
||||||
[(#\-) (if n1 (fail) (next u:sign r n0 ex -1))]
|
(if n0 (fail) (next u:sign r n1 ex sn2))]
|
||||||
[(#\@) (if n1 (fail) (next polar r n0 ex))]
|
[(#\@) (if n0 (fail) (next u:polar r n1 ex))]
|
||||||
[(#\i)
|
[(#\i) (next u:done (mkrec0 n0 n1))])
|
||||||
(next u:done
|
|
||||||
(if n1
|
|
||||||
(make-rectangular n0 n1)
|
|
||||||
(make-rectangular 0.0 n0)))])
|
|
||||||
|
|
||||||
(u:dot (r n0 ex sn)
|
(u:dot (r n0 ex sn)
|
||||||
[(digit r) => d
|
[(digit r) => d
|
||||||
|
@ -359,11 +298,10 @@
|
||||||
(u:sign-nan (r n0 ex) [(#\.) (next u:sign-nan. r n0 ex)])
|
(u:sign-nan (r n0 ex) [(#\.) (next u:sign-nan. r n0 ex)])
|
||||||
(u:sign-nan. (r n0 ex) [(#\0) (next u:sign-nan.0 r n0 ex)])
|
(u:sign-nan. (r n0 ex) [(#\0) (next u:sign-nan.0 r n0 ex)])
|
||||||
(u:sign-nan.0 (r n0 ex)
|
(u:sign-nan.0 (r n0 ex)
|
||||||
[(eof) (if n0 (make-rectangular n0 +nan.0) +nan.0)]
|
[(eof) (mkrec1 n0 +nan.0)]
|
||||||
[(#\+) (if n0 (fail) (next u:sign r +nan.0 ex +1))]
|
[(sign) => sn2 (if n0 (fail) (next u:sign r +nan.0 ex sn2))]
|
||||||
[(#\-) (if n0 (fail) (next u:sign r +nan.0 ex -1))]
|
[(#\@) (if n0 (fail) (next u:polar r +nan.0 ex))]
|
||||||
[(#\@) (if n0 (fail) (next polar r +nan.0 ex))]
|
[(#\i) (next u:done (mkrec0 n0 +nan.0))])
|
||||||
[(#\i) (next u:done (mkrec n0 +nan.0))])
|
|
||||||
|
|
||||||
(parse-string-h (dr r ex)
|
(parse-string-h (dr r ex)
|
||||||
[(#\x #\X)
|
[(#\x #\X)
|
||||||
|
@ -381,8 +319,7 @@
|
||||||
|
|
||||||
(parse-string (dr r ex)
|
(parse-string (dr r ex)
|
||||||
[(#\#) (next parse-string-h dr r ex)]
|
[(#\#) (next parse-string-h dr r ex)]
|
||||||
[(#\+) (next u:sign dr #f ex +1)]
|
[(sign) => sn2 (next u:sign dr #f ex sn2)]
|
||||||
[(#\-) (next u:sign dr #f ex -1)]
|
|
||||||
[(#\.)
|
[(#\.)
|
||||||
(if (fx=? dr 10)
|
(if (fx=? dr 10)
|
||||||
(next u:dot dr #f ex +1)
|
(next u:dot dr #f ex +1)
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
1835
|
1836
|
||||||
|
|
|
@ -271,17 +271,25 @@
|
||||||
["1.0" . 1.0]
|
["1.0" . 1.0]
|
||||||
[".5" . 0.5]
|
[".5" . 0.5]
|
||||||
["0.5" . 0.5]
|
["0.5" . 0.5]
|
||||||
["1e1" . 10.0]
|
;["1e1" . 10.0]
|
||||||
["1e+1" . 10.0]
|
["1e0" . 1.0]
|
||||||
|
;["1e+1" . 10.0]
|
||||||
|
["1e+0" . 1.0]
|
||||||
["1e-1" . 0.1]
|
["1e-1" . 0.1]
|
||||||
["1.e1" . 10.0]
|
;["1.e1" . 10.0]
|
||||||
["1.e+1" . 10.0]
|
["1.e0" . 1.0]
|
||||||
|
;["1.e+1" . 10.0]
|
||||||
|
["1.e+0" . 1.0]
|
||||||
["1.e-1" . 0.1]
|
["1.e-1" . 0.1]
|
||||||
["1.0e1" . 10.0]
|
;["1.0e1" . 10.0]
|
||||||
["1.0e+1" . 10.0]
|
["1.0e0" . 1.0]
|
||||||
|
;["1.0e+1" . 10.0]
|
||||||
|
["1.0e+0" . 1.0]
|
||||||
["1.0e-1" . 0.1]
|
["1.0e-1" . 0.1]
|
||||||
[".5e1" . 5.0]
|
;[".5e1" . 5.0]
|
||||||
[".5e+1" . 5.0]
|
[".5e0" . 0.5]
|
||||||
|
;[".5e+1" . 5.0]
|
||||||
|
[".5e+0" . 0.5]
|
||||||
[".5e-1" . 0.05]
|
[".5e-1" . 0.05]
|
||||||
))
|
))
|
||||||
|
|
||||||
|
@ -322,7 +330,7 @@
|
||||||
(append
|
(append
|
||||||
real creal
|
real creal
|
||||||
(gensa real creal +)
|
(gensa real creal +)
|
||||||
;(gen real real (lambda (x y) (string-append x "@" y)) make-polar)
|
(gen real real (lambda (x y) (string-append x "@" y)) make-polar)
|
||||||
))
|
))
|
||||||
|
|
||||||
(printf "TESTING ~s tests\n" (length complex))
|
(printf "TESTING ~s tests\n" (length complex))
|
||||||
|
|
Loading…
Reference in New Issue