93 lines
2.3 KiB
Scheme
93 lines
2.3 KiB
Scheme
|
;;; DDERIV -- Table-driven symbolic derivation.
|
||
|
|
||
|
;;; Returns the wrong answer for quotients.
|
||
|
;;; Fortunately these aren't used in the benchmark.
|
||
|
|
||
|
(library (r6rs-benchmarks dderiv)
|
||
|
(export main)
|
||
|
(import (r6rs) (r6rs mutable-pairs) (r6rs-benchmarks))
|
||
|
|
||
|
(define (lookup key table)
|
||
|
(let loop ((x table))
|
||
|
(if (null? x)
|
||
|
#f
|
||
|
(let ((pair (car x)))
|
||
|
(if (eq? (car pair) key)
|
||
|
pair
|
||
|
(loop (cdr x)))))))
|
||
|
|
||
|
(define properties '())
|
||
|
|
||
|
(define (get key1 key2)
|
||
|
(let ((x (lookup key1 properties)))
|
||
|
(if x
|
||
|
(let ((y (lookup key2 (cdr x))))
|
||
|
(if y
|
||
|
(cdr y)
|
||
|
#f))
|
||
|
#f)))
|
||
|
|
||
|
(define (put key1 key2 val)
|
||
|
(let ((x (lookup key1 properties)))
|
||
|
(if x
|
||
|
(let ((y (lookup key2 (cdr x))))
|
||
|
(if y
|
||
|
(set-cdr! y val)
|
||
|
(set-cdr! x (cons (cons key2 val) (cdr x)))))
|
||
|
(set! properties
|
||
|
(cons (list key1 (cons key2 val)) properties)))))
|
||
|
|
||
|
(define (my+dderiv a)
|
||
|
(cons '+
|
||
|
(map dderiv (cdr a))))
|
||
|
|
||
|
(define (my-dderiv a)
|
||
|
(cons '-
|
||
|
(map dderiv (cdr a))))
|
||
|
|
||
|
(define (*dderiv a)
|
||
|
(list '*
|
||
|
a
|
||
|
(cons '+
|
||
|
(map (lambda (a) (list '/ (dderiv a) a)) (cdr a)))))
|
||
|
|
||
|
(define (/dderiv a)
|
||
|
(list '-
|
||
|
(list '/
|
||
|
(dderiv (cadr a))
|
||
|
(caddr a))
|
||
|
(list '/
|
||
|
(cadr a)
|
||
|
(list '*
|
||
|
(caddr a)
|
||
|
(caddr a)
|
||
|
(dderiv (caddr a))))))
|
||
|
|
||
|
|
||
|
(define (dderiv a)
|
||
|
(if (not (pair? a))
|
||
|
(if (eq? a 'x) 1 0)
|
||
|
(let ((f (get (car a) 'dderiv)))
|
||
|
(if f
|
||
|
(f a)
|
||
|
(fatal-error "No derivation method available")))))
|
||
|
|
||
|
(define (main . args)
|
||
|
(run-benchmark
|
||
|
"dderiv"
|
||
|
dderiv-iters
|
||
|
(lambda (result)
|
||
|
(equal? result
|
||
|
'(+ (* (* 3 x x) (+ (/ 0 3) (/ 1 x) (/ 1 x)))
|
||
|
(* (* a x x) (+ (/ 0 a) (/ 1 x) (/ 1 x)))
|
||
|
(* (* b x) (+ (/ 0 b) (/ 1 x)))
|
||
|
0)))
|
||
|
(lambda (a) (lambda () (dderiv a)))
|
||
|
'(+ (* 3 x x) (* a x x) (* b x) 5)))
|
||
|
|
||
|
|
||
|
(put '+ 'dderiv my+dderiv)
|
||
|
(put '- 'dderiv my-dderiv)
|
||
|
(put '* 'dderiv *dderiv)
|
||
|
(put '/ 'dderiv /dderiv))
|