569 lines
19 KiB
Scheme
569 lines
19 KiB
Scheme
|
;;; BOYER -- Logic programming benchmark, originally written by Bob Boyer.
|
||
|
;;; Fairly CONS intensive.
|
||
|
|
||
|
(define (lookup key table)
|
||
|
(let loop ((x table))
|
||
|
(if (null? x)
|
||
|
#f
|
||
|
(let ((pair (car x)))
|
||
|
(if (eq? (car pair) key)
|
||
|
pair
|
||
|
(loop (cdr x)))))))
|
||
|
|
||
|
(define properties '())
|
||
|
|
||
|
(define (get key1 key2)
|
||
|
(let ((x (lookup key1 properties)))
|
||
|
(if x
|
||
|
(let ((y (lookup key2 (cdr x))))
|
||
|
(if y
|
||
|
(cdr y)
|
||
|
#f))
|
||
|
#f)))
|
||
|
|
||
|
(define (put key1 key2 val)
|
||
|
(let ((x (lookup key1 properties)))
|
||
|
(if x
|
||
|
(let ((y (lookup key2 (cdr x))))
|
||
|
(if y
|
||
|
(set-cdr! y val)
|
||
|
(set-cdr! x (cons (cons key2 val) (cdr x)))))
|
||
|
(set! properties
|
||
|
(cons (list key1 (cons key2 val)) properties)))))
|
||
|
|
||
|
(define unify-subst '())
|
||
|
|
||
|
(define (add-lemma term)
|
||
|
(cond ((and (pair? term)
|
||
|
(eq? (car term)
|
||
|
(quote equal))
|
||
|
(pair? (cadr term)))
|
||
|
(put (car (cadr term))
|
||
|
(quote lemmas)
|
||
|
(cons term (get (car (cadr term)) (quote lemmas)))))
|
||
|
(else (fatal-error "ADD-LEMMA did not like term: " term))))
|
||
|
|
||
|
(define (add-lemma-lst lst)
|
||
|
(cond ((null? lst)
|
||
|
#t)
|
||
|
(else (add-lemma (car lst))
|
||
|
(add-lemma-lst (cdr lst)))))
|
||
|
|
||
|
(define (apply-subst alist term)
|
||
|
(cond ((not (pair? term))
|
||
|
(cond ((assq term alist) => cdr)
|
||
|
(else term)))
|
||
|
(else (cons (car term)
|
||
|
(apply-subst-lst alist (cdr term))))))
|
||
|
|
||
|
(define (apply-subst-lst alist lst)
|
||
|
(cond ((null? lst)
|
||
|
'())
|
||
|
(else (cons (apply-subst alist (car lst))
|
||
|
(apply-subst-lst alist (cdr lst))))))
|
||
|
|
||
|
(define (falsep x lst)
|
||
|
(or (equal? x (quote (f)))
|
||
|
(member x lst)))
|
||
|
|
||
|
(define (one-way-unify term1 term2)
|
||
|
(begin (set! unify-subst '())
|
||
|
(one-way-unify1 term1 term2)))
|
||
|
|
||
|
(define (one-way-unify1 term1 term2)
|
||
|
(cond ((not (pair? term2))
|
||
|
(cond ((assq term2 unify-subst) =>
|
||
|
(lambda (x) (equal? term1 (cdr x))))
|
||
|
(else (set! unify-subst (cons (cons term2 term1)
|
||
|
unify-subst))
|
||
|
#t)))
|
||
|
((not (pair? term1))
|
||
|
#f)
|
||
|
((eq? (car term1)
|
||
|
(car term2))
|
||
|
(one-way-unify1-lst (cdr term1)
|
||
|
(cdr term2)))
|
||
|
(else #f)))
|
||
|
|
||
|
(define (one-way-unify1-lst lst1 lst2)
|
||
|
(cond ((null? lst1)
|
||
|
#t)
|
||
|
((one-way-unify1 (car lst1)
|
||
|
(car lst2))
|
||
|
(one-way-unify1-lst (cdr lst1)
|
||
|
(cdr lst2)))
|
||
|
(else #f)))
|
||
|
|
||
|
(define (rewrite term)
|
||
|
(cond ((not (pair? term))
|
||
|
term)
|
||
|
(else (rewrite-with-lemmas (cons (car term)
|
||
|
(rewrite-args (cdr term)))
|
||
|
(get (car term)
|
||
|
(quote lemmas))))))
|
||
|
|
||
|
(define (rewrite-args lst)
|
||
|
(cond ((null? lst)
|
||
|
'())
|
||
|
(else (cons (rewrite (car lst))
|
||
|
(rewrite-args (cdr lst))))))
|
||
|
|
||
|
(define (rewrite-with-lemmas term lst)
|
||
|
(cond ((or (not lst) (null? lst))
|
||
|
term)
|
||
|
((one-way-unify term (cadr (car lst)))
|
||
|
(rewrite (apply-subst unify-subst (caddr (car lst)))))
|
||
|
(else (rewrite-with-lemmas term (cdr lst)))))
|
||
|
|
||
|
(define (setup)
|
||
|
(add-lemma-lst
|
||
|
(quote ((equal (compile form)
|
||
|
(reverse (codegen (optimize form)
|
||
|
(nil))))
|
||
|
(equal (eqp x y)
|
||
|
(equal (fix x)
|
||
|
(fix y)))
|
||
|
(equal (greaterp x y)
|
||
|
(lessp y x))
|
||
|
(equal (lesseqp x y)
|
||
|
(not (lessp y x)))
|
||
|
(equal (greatereqp x y)
|
||
|
(not (lessp x y)))
|
||
|
(equal (boolean x)
|
||
|
(or (equal x (t))
|
||
|
(equal x (f))))
|
||
|
(equal (iff x y)
|
||
|
(and (implies x y)
|
||
|
(implies y x)))
|
||
|
(equal (even1 x)
|
||
|
(if (zerop x)
|
||
|
(t)
|
||
|
(odd (_1- x))))
|
||
|
(equal (countps- l pred)
|
||
|
(countps-loop l pred (zero)))
|
||
|
(equal (fact- i)
|
||
|
(fact-loop i 1))
|
||
|
(equal (reverse- x)
|
||
|
(reverse-loop x (nil)))
|
||
|
(equal (divides x y)
|
||
|
(zerop (remainder y x)))
|
||
|
(equal (assume-true var alist)
|
||
|
(cons (cons var (t))
|
||
|
alist))
|
||
|
(equal (assume-false var alist)
|
||
|
(cons (cons var (f))
|
||
|
alist))
|
||
|
(equal (tautology-checker x)
|
||
|
(tautologyp (normalize x)
|
||
|
(nil)))
|
||
|
(equal (falsify x)
|
||
|
(falsify1 (normalize x)
|
||
|
(nil)))
|
||
|
(equal (prime x)
|
||
|
(and (not (zerop x))
|
||
|
(not (equal x (add1 (zero))))
|
||
|
(prime1 x (_1- x))))
|
||
|
(equal (and p q)
|
||
|
(if p (if q (t)
|
||
|
(f))
|
||
|
(f)))
|
||
|
(equal (or p q)
|
||
|
(if p (t)
|
||
|
(if q (t)
|
||
|
(f))
|
||
|
(f)))
|
||
|
(equal (not p)
|
||
|
(if p (f)
|
||
|
(t)))
|
||
|
(equal (implies p q)
|
||
|
(if p (if q (t)
|
||
|
(f))
|
||
|
(t)))
|
||
|
(equal (fix x)
|
||
|
(if (numberp x)
|
||
|
x
|
||
|
(zero)))
|
||
|
(equal (if (if a b c)
|
||
|
d e)
|
||
|
(if a (if b d e)
|
||
|
(if c d e)))
|
||
|
(equal (zerop x)
|
||
|
(or (equal x (zero))
|
||
|
(not (numberp x))))
|
||
|
(equal (plus (plus x y)
|
||
|
z)
|
||
|
(plus x (plus y z)))
|
||
|
(equal (equal (plus a b)
|
||
|
(zero))
|
||
|
(and (zerop a)
|
||
|
(zerop b)))
|
||
|
(equal (difference x x)
|
||
|
(zero))
|
||
|
(equal (equal (plus a b)
|
||
|
(plus a c))
|
||
|
(equal (fix b)
|
||
|
(fix c)))
|
||
|
(equal (equal (zero)
|
||
|
(difference x y))
|
||
|
(not (lessp y x)))
|
||
|
(equal (equal x (difference x y))
|
||
|
(and (numberp x)
|
||
|
(or (equal x (zero))
|
||
|
(zerop y))))
|
||
|
(equal (meaning (plus-tree (append x y))
|
||
|
a)
|
||
|
(plus (meaning (plus-tree x)
|
||
|
a)
|
||
|
(meaning (plus-tree y)
|
||
|
a)))
|
||
|
(equal (meaning (plus-tree (plus-fringe x))
|
||
|
a)
|
||
|
(fix (meaning x a)))
|
||
|
(equal (append (append x y)
|
||
|
z)
|
||
|
(append x (append y z)))
|
||
|
(equal (reverse (append a b))
|
||
|
(append (reverse b)
|
||
|
(reverse a)))
|
||
|
(equal (times x (plus y z))
|
||
|
(plus (times x y)
|
||
|
(times x z)))
|
||
|
(equal (times (times x y)
|
||
|
z)
|
||
|
(times x (times y z)))
|
||
|
(equal (equal (times x y)
|
||
|
(zero))
|
||
|
(or (zerop x)
|
||
|
(zerop y)))
|
||
|
(equal (exec (append x y)
|
||
|
pds envrn)
|
||
|
(exec y (exec x pds envrn)
|
||
|
envrn))
|
||
|
(equal (mc-flatten x y)
|
||
|
(append (flatten x)
|
||
|
y))
|
||
|
(equal (member x (append a b))
|
||
|
(or (member x a)
|
||
|
(member x b)))
|
||
|
(equal (member x (reverse y))
|
||
|
(member x y))
|
||
|
(equal (length (reverse x))
|
||
|
(length x))
|
||
|
(equal (member a (intersect b c))
|
||
|
(and (member a b)
|
||
|
(member a c)))
|
||
|
(equal (nth (zero)
|
||
|
i)
|
||
|
(zero))
|
||
|
(equal (exp i (plus j k))
|
||
|
(times (exp i j)
|
||
|
(exp i k)))
|
||
|
(equal (exp i (times j k))
|
||
|
(exp (exp i j)
|
||
|
k))
|
||
|
(equal (reverse-loop x y)
|
||
|
(append (reverse x)
|
||
|
y))
|
||
|
(equal (reverse-loop x (nil))
|
||
|
(reverse x))
|
||
|
(equal (count-list z (sort-lp x y))
|
||
|
(plus (count-list z x)
|
||
|
(count-list z y)))
|
||
|
(equal (equal (append a b)
|
||
|
(append a c))
|
||
|
(equal b c))
|
||
|
(equal (plus (remainder x y)
|
||
|
(times y (quotient x y)))
|
||
|
(fix x))
|
||
|
(equal (power-eval (big-plus1 l i base)
|
||
|
base)
|
||
|
(plus (power-eval l base)
|
||
|
i))
|
||
|
(equal (power-eval (big-plus x y i base)
|
||
|
base)
|
||
|
(plus i (plus (power-eval x base)
|
||
|
(power-eval y base))))
|
||
|
(equal (remainder y 1)
|
||
|
(zero))
|
||
|
(equal (lessp (remainder x y)
|
||
|
y)
|
||
|
(not (zerop y)))
|
||
|
(equal (remainder x x)
|
||
|
(zero))
|
||
|
(equal (lessp (quotient i j)
|
||
|
i)
|
||
|
(and (not (zerop i))
|
||
|
(or (zerop j)
|
||
|
(not (equal j 1)))))
|
||
|
(equal (lessp (remainder x y)
|
||
|
x)
|
||
|
(and (not (zerop y))
|
||
|
(not (zerop x))
|
||
|
(not (lessp x y))))
|
||
|
(equal (power-eval (power-rep i base)
|
||
|
base)
|
||
|
(fix i))
|
||
|
(equal (power-eval (big-plus (power-rep i base)
|
||
|
(power-rep j base)
|
||
|
(zero)
|
||
|
base)
|
||
|
base)
|
||
|
(plus i j))
|
||
|
(equal (gcd x y)
|
||
|
(gcd y x))
|
||
|
(equal (nth (append a b)
|
||
|
i)
|
||
|
(append (nth a i)
|
||
|
(nth b (difference i (length a)))))
|
||
|
(equal (difference (plus x y)
|
||
|
x)
|
||
|
(fix y))
|
||
|
(equal (difference (plus y x)
|
||
|
x)
|
||
|
(fix y))
|
||
|
(equal (difference (plus x y)
|
||
|
(plus x z))
|
||
|
(difference y z))
|
||
|
(equal (times x (difference c w))
|
||
|
(difference (times c x)
|
||
|
(times w x)))
|
||
|
(equal (remainder (times x z)
|
||
|
z)
|
||
|
(zero))
|
||
|
(equal (difference (plus b (plus a c))
|
||
|
a)
|
||
|
(plus b c))
|
||
|
(equal (difference (add1 (plus y z))
|
||
|
z)
|
||
|
(add1 y))
|
||
|
(equal (lessp (plus x y)
|
||
|
(plus x z))
|
||
|
(lessp y z))
|
||
|
(equal (lessp (times x z)
|
||
|
(times y z))
|
||
|
(and (not (zerop z))
|
||
|
(lessp x y)))
|
||
|
(equal (lessp y (plus x y))
|
||
|
(not (zerop x)))
|
||
|
(equal (gcd (times x z)
|
||
|
(times y z))
|
||
|
(times z (gcd x y)))
|
||
|
(equal (value (normalize x)
|
||
|
a)
|
||
|
(value x a))
|
||
|
(equal (equal (flatten x)
|
||
|
(cons y (nil)))
|
||
|
(and (nlistp x)
|
||
|
(equal x y)))
|
||
|
(equal (listp (gopher x))
|
||
|
(listp x))
|
||
|
(equal (samefringe x y)
|
||
|
(equal (flatten x)
|
||
|
(flatten y)))
|
||
|
(equal (equal (greatest-factor x y)
|
||
|
(zero))
|
||
|
(and (or (zerop y)
|
||
|
(equal y 1))
|
||
|
(equal x (zero))))
|
||
|
(equal (equal (greatest-factor x y)
|
||
|
1)
|
||
|
(equal x 1))
|
||
|
(equal (numberp (greatest-factor x y))
|
||
|
(not (and (or (zerop y)
|
||
|
(equal y 1))
|
||
|
(not (numberp x)))))
|
||
|
(equal (times-list (append x y))
|
||
|
(times (times-list x)
|
||
|
(times-list y)))
|
||
|
(equal (prime-list (append x y))
|
||
|
(and (prime-list x)
|
||
|
(prime-list y)))
|
||
|
(equal (equal z (times w z))
|
||
|
(and (numberp z)
|
||
|
(or (equal z (zero))
|
||
|
(equal w 1))))
|
||
|
(equal (greatereqpr x y)
|
||
|
(not (lessp x y)))
|
||
|
(equal (equal x (times x y))
|
||
|
(or (equal x (zero))
|
||
|
(and (numberp x)
|
||
|
(equal y 1))))
|
||
|
(equal (remainder (times y x)
|
||
|
y)
|
||
|
(zero))
|
||
|
(equal (equal (times a b)
|
||
|
1)
|
||
|
(and (not (equal a (zero)))
|
||
|
(not (equal b (zero)))
|
||
|
(numberp a)
|
||
|
(numberp b)
|
||
|
(equal (_1- a)
|
||
|
(zero))
|
||
|
(equal (_1- b)
|
||
|
(zero))))
|
||
|
(equal (lessp (length (delete x l))
|
||
|
(length l))
|
||
|
(member x l))
|
||
|
(equal (sort2 (delete x l))
|
||
|
(delete x (sort2 l)))
|
||
|
(equal (dsort x)
|
||
|
(sort2 x))
|
||
|
(equal (length (cons x1
|
||
|
(cons x2
|
||
|
(cons x3 (cons x4
|
||
|
(cons x5
|
||
|
(cons x6 x7)))))))
|
||
|
(plus 6 (length x7)))
|
||
|
(equal (difference (add1 (add1 x))
|
||
|
2)
|
||
|
(fix x))
|
||
|
(equal (quotient (plus x (plus x y))
|
||
|
2)
|
||
|
(plus x (quotient y 2)))
|
||
|
(equal (sigma (zero)
|
||
|
i)
|
||
|
(quotient (times i (add1 i))
|
||
|
2))
|
||
|
(equal (plus x (add1 y))
|
||
|
(if (numberp y)
|
||
|
(add1 (plus x y))
|
||
|
(add1 x)))
|
||
|
(equal (equal (difference x y)
|
||
|
(difference z y))
|
||
|
(if (lessp x y)
|
||
|
(not (lessp y z))
|
||
|
(if (lessp z y)
|
||
|
(not (lessp y x))
|
||
|
(equal (fix x)
|
||
|
(fix z)))))
|
||
|
(equal (meaning (plus-tree (delete x y))
|
||
|
a)
|
||
|
(if (member x y)
|
||
|
(difference (meaning (plus-tree y)
|
||
|
a)
|
||
|
(meaning x a))
|
||
|
(meaning (plus-tree y)
|
||
|
a)))
|
||
|
(equal (times x (add1 y))
|
||
|
(if (numberp y)
|
||
|
(plus x (times x y))
|
||
|
(fix x)))
|
||
|
(equal (nth (nil)
|
||
|
i)
|
||
|
(if (zerop i)
|
||
|
(nil)
|
||
|
(zero)))
|
||
|
(equal (last (append a b))
|
||
|
(if (listp b)
|
||
|
(last b)
|
||
|
(if (listp a)
|
||
|
(cons (car (last a))
|
||
|
b)
|
||
|
b)))
|
||
|
(equal (equal (lessp x y)
|
||
|
z)
|
||
|
(if (lessp x y)
|
||
|
(equal t z)
|
||
|
(equal f z)))
|
||
|
(equal (assignment x (append a b))
|
||
|
(if (assignedp x a)
|
||
|
(assignment x a)
|
||
|
(assignment x b)))
|
||
|
(equal (car (gopher x))
|
||
|
(if (listp x)
|
||
|
(car (flatten x))
|
||
|
(zero)))
|
||
|
(equal (flatten (cdr (gopher x)))
|
||
|
(if (listp x)
|
||
|
(cdr (flatten x))
|
||
|
(cons (zero)
|
||
|
(nil))))
|
||
|
(equal (quotient (times y x)
|
||
|
y)
|
||
|
(if (zerop y)
|
||
|
(zero)
|
||
|
(fix x)))
|
||
|
(equal (get j (set i val mem))
|
||
|
(if (eqp j i)
|
||
|
val
|
||
|
(get j mem)))))))
|
||
|
|
||
|
(define (tautologyp x true-lst false-lst)
|
||
|
(cond ((truep x true-lst)
|
||
|
#t)
|
||
|
((falsep x false-lst)
|
||
|
#f)
|
||
|
((not (pair? x))
|
||
|
#f)
|
||
|
((eq? (car x)
|
||
|
(quote if))
|
||
|
(cond ((truep (cadr x)
|
||
|
true-lst)
|
||
|
(tautologyp (caddr x)
|
||
|
true-lst false-lst))
|
||
|
((falsep (cadr x)
|
||
|
false-lst)
|
||
|
(tautologyp (cadddr x)
|
||
|
true-lst false-lst))
|
||
|
(else (and (tautologyp (caddr x)
|
||
|
(cons (cadr x)
|
||
|
true-lst)
|
||
|
false-lst)
|
||
|
(tautologyp (cadddr x)
|
||
|
true-lst
|
||
|
(cons (cadr x)
|
||
|
false-lst))))))
|
||
|
(else #f)))
|
||
|
|
||
|
(define (tautp x)
|
||
|
(tautologyp (rewrite x)
|
||
|
'() '()))
|
||
|
|
||
|
(define (test alist term)
|
||
|
(tautp
|
||
|
(apply-subst alist term)))
|
||
|
|
||
|
(define (trans-of-implies n)
|
||
|
(list (quote implies)
|
||
|
(trans-of-implies1 n)
|
||
|
(list (quote implies)
|
||
|
0 n)))
|
||
|
|
||
|
(define (trans-of-implies1 n)
|
||
|
(cond ((equal? n 1)
|
||
|
(list (quote implies)
|
||
|
0 1))
|
||
|
(else (list (quote and)
|
||
|
(list (quote implies)
|
||
|
(- n 1)
|
||
|
n)
|
||
|
(trans-of-implies1 (- n 1))))))
|
||
|
|
||
|
(define (truep x lst)
|
||
|
(or (equal? x (quote (t)))
|
||
|
(member x lst)))
|
||
|
|
||
|
(setup)
|
||
|
|
||
|
(define (main . args)
|
||
|
(run-benchmark
|
||
|
"boyer"
|
||
|
boyer-iters
|
||
|
(lambda (result) (equal? result #t))
|
||
|
(lambda (alist term) (lambda () (test alist term)))
|
||
|
(quote ((x f (plus (plus a b)
|
||
|
(plus c (zero))))
|
||
|
(y f (times (times a b)
|
||
|
(plus c d)))
|
||
|
(z f (reverse (append (append a b)
|
||
|
(nil))))
|
||
|
(u equal (plus a b)
|
||
|
(difference x y))
|
||
|
(w lessp (remainder a b)
|
||
|
(member a (length b)))))
|
||
|
(quote (implies (and (implies x y)
|
||
|
(and (implies y z)
|
||
|
(and (implies z u)
|
||
|
(implies u w))))
|
||
|
(implies x w)))))
|